Contents

ILLUSTRATIONS
 Figures xiii
 Tables xiii

PREFACE xvii

INTRODUCTION xxix
 Intended Audience xx
 Driving Principle xxi
 Organization of the Text xxiii

PART I. WHY SCENARIO-DRIVEN PLANNING? 1

1. PRODUCTIVITY AND STRATEGY 3
 1.1 The Productivity Dilemma 4
 1.2 Learning from Experience? 11
 1.3 A Way Out? 17
 Summary 19

2. ENVIRONMENTAL TRIGGERS AND SCENARIOS 21
 2.1 The Concept of Scenario 22
 History of the Concept 22
 Benefits of Scenario-driven Planning 23
 2.2 Areas of Application and Scenario Scope 24
 2.3 Example 1: Drucker’s Macroenvironmental Scenarios 28
 2.4 Example 2: GE’s Forecasting with Scenarios 31
 2.5 Example 3: Shell’s Classic Scenario Experience 33
 2.6 Why Are Forecasts Always Wrong? 35
 Forecasting with Delphi 35
 Shell’s Scenarios Were NOT Forecasts 38
Scenario-Driven Planning

Partial Model Test #2: Intended Rationality of Objective Setting 207
Bounded Rationality and Inefficiency in the Entire Model 207
From Downside Risk to Upside Potential of the Entire Model 209
Conclusion 213
Summary 213

PART VI. REPERCEIVING IN THE MULTIVERSE OF RATIONALITY 215

11. STRATEGY DESIGNS OF THE 1990s 217
11.1 Back from the USSR: A Commonwealth of Independent States 218
 Russia's Alternative Futures 219
 Potentially Expedient Levers 223
11.2 Reaching for the Transnational Gestalt 224
 Internationalization Archetypes 225
 Toward the Transnational Breakthrough 229
 The Transformation Prerequisites 232
 Conclusion 234
Summary 236

12. PLANNING TECHNOLOGY FOR THE 1990s 237
12.1 It Pays to Think Globally, but When in Rome… 238
 Planning Organizational Learning 238
 Modeling Organizational Learning 239
 Organizational Learning Scenarios 242
 Conclusion 244
12.2 Productivity and Organizational Learning 247
 The Root Metaphor 248
 Bridging the Gap 250
 Conclusion 255
Summary 255

PART VII. APPENDIX 257

A. THEORETICAL FOUNDATIONS OF SCENARIO-DRIVEN PLANNING 259
A.1 A Commonsense Approach to Scenarios Has Come of Age 260
 Background: Qualitative Versus Quantitative Scenarios 260
 Reference Scenarios Versus Interactive Planning 262
 Point Estimates Versus Probabilistic Scenarios 264
 Computing Scenarios for a Decision Situation 266
A.2 Some Recent Theoretical Contributions 267
A.3 Where Are We Headed in Scenario Analysis? 269
Summary 276
Contents

B. THE ART OF ORGANIZATIONAL LEARNING 277
 B.1 Modeling: Prelude To Organizational Learning 278
 Modeling What? 278
 The Modeling Process 280
 B.2 The Art of Plot Composition 284
 Schwartz's Macroenvironmental Scenario Rules of Thumb 285
 Schwartz's Steps to Developing Macroenvironmental Scenarios 286
 Summary 289

C. INTELLIGENCE-AMPLIFYING TOOLS 291
 C.1 Influence Diagramming (ID) 292
 Background: Early Developments 292
 Influence Diagramming (ID) 296
 Cognitive Mapping at the University of Bath 298
 C.2 Comprehensive Situation Mapping (CSM) 300
 Background: Systems Concepts 300
 Comprehensive Situation Mapping (CSM) 302
 Additional CSM Features 305
 CSM's Mapping Conventions 307
 C.3 Cross-Impact Matrix Multiplication Applied to Classification: The
 MICMAC Method 308
 Combining MICMAC with Infoplus' CSM 312
 Combining MICMAC with Combank's CSM 315
 C.4 Battelle Scenario Input to Corporate Strategy (BASICS) 318
 BASICS' Input 321
 Battelle's Computational Procedure 322
 BASICS' Output 324
 Conclusion 326
 C.5 System Dynamics Simulation Modeling Software 326
 The Zorbalander's College Fund: An Illustration of
 DYNAMO®, DYSMAP2, iThink™, STELLA®, and Vensim™ 327
 Summary 335

BIBLIOGRAPHY 337
INDEX 363
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3.1</td>
<td>The Cross-Impact Matrix of Miller & Randles (1986)</td>
<td>131</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Framework for Scenario-Driven Planning</td>
<td>149</td>
</tr>
<tr>
<td>9.1.1</td>
<td>Infoplus’ Complete CSM with Change Transmittance Coefficients,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time Lags and Scenarios</td>
<td>160</td>
</tr>
<tr>
<td>9.1.1a</td>
<td>Infoplus’ Illustrative Example of Pure Scenario Z at t=11 months</td>
<td>162</td>
</tr>
<tr>
<td>9.1.1b</td>
<td>Infoplus’ Illustrative Example of Pure Scenario Z at t=20 months</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>from the Initial +10% Increase in External Funding</td>
<td></td>
</tr>
<tr>
<td>9.1.1c</td>
<td>Cumulative % Changes Under Pure Scenario Z by t=20 months</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>from the Initial +10% Increase in External Funding</td>
<td></td>
</tr>
<tr>
<td>9.1.2</td>
<td>Infoplus’ Computed Scenarios</td>
<td>168</td>
</tr>
<tr>
<td>9.1.3</td>
<td>Infoplus’ Probabilistic Scenarios</td>
<td>171</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Combank’s Complete CSM with Scenario Input</td>
<td>175</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Combank’s Computed Scenarios</td>
<td>178</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Combank’s Probabilistic Scenarios</td>
<td>180</td>
</tr>
<tr>
<td>10.2.1</td>
<td>A Powerful Strategic Inquiry System</td>
<td>195</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Feedback Loops of Datacom’s Sales Organization Model</td>
<td>200</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Datacom’s Sales Organization in Steady State</td>
<td>201</td>
</tr>
<tr>
<td>10.3.3</td>
<td>Test #1: Datacom’s Overtime Adjustment Process</td>
<td>205</td>
</tr>
<tr>
<td>10.3.4</td>
<td>Test #2: Datacom’s Objective Setting Process</td>
<td>206</td>
</tr>
<tr>
<td>10.3.5</td>
<td>Productivity and Sales Traps in Datacom’s Sales Organization</td>
<td>208</td>
</tr>
<tr>
<td>10.3.6</td>
<td>Sensitivity of Datacom’s Sales and Sales Objective to Multiple</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>Environmental Scenarios</td>
<td></td>
</tr>
<tr>
<td>10.3.7</td>
<td>Sensitivity of the Relationship Between Motivation and Sales</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>Performance to Multiple Environmental Scenarios</td>
<td></td>
</tr>
<tr>
<td>11.1.1</td>
<td>Russia’s Alternative Futures in Five Dimensions</td>
<td>221</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Internationalization Archetypes on the Integration-Responsiveness Grid</td>
<td>227</td>
</tr>
<tr>
<td>11.2.2</td>
<td>The Transnational Breakthrough Transformation</td>
<td>230</td>
</tr>
<tr>
<td>11.2.3</td>
<td>The Transnational Transformation Requirements</td>
<td>233</td>
</tr>
<tr>
<td>12.1.1</td>
<td>CSM of Organizational Learning</td>
<td>241</td>
</tr>
<tr>
<td>12.1.2</td>
<td>Organizational Learning Scenarios</td>
<td>243</td>
</tr>
<tr>
<td>12.1.3</td>
<td>Relationship Between Investment in New Management</td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Technology and Productivity</td>
<td></td>
</tr>
<tr>
<td>12.2.1</td>
<td>Elements of an Arched Gateway Bridging the Gap Between</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>a Focal Strategic Situation and Its Solution Set</td>
<td></td>
</tr>
<tr>
<td>12.2.2</td>
<td>Short-Cut Solutions</td>
<td>251</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Scenario-Driven Planning Can Bridge the Gap Between</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>a Focal Strategic Situation and Its Potential Solutions</td>
<td></td>
</tr>
<tr>
<td>A.1.1</td>
<td>Corporate Planning Framework</td>
<td>261</td>
</tr>
<tr>
<td>A.3.1</td>
<td>Planning Levels</td>
<td>271</td>
</tr>
<tr>
<td>A.3.2</td>
<td>Proposed Model</td>
<td>272</td>
</tr>
<tr>
<td>A.3.3</td>
<td>Stochastic Modeling and Simulation in Scenario-Driven Planning</td>
<td>273</td>
</tr>
<tr>
<td>B.1.1</td>
<td>The Recursive Nature of Strategic Situation Formulation</td>
<td>282</td>
</tr>
</tbody>
</table>
Illustrations

C.1.1 Diagrams Whose Elements May Possess (a) a Single Interpretation, or (b) Varying Interpretations 293
C.1.2 Backstep Analysis Diagram 295
C.1.3 Influence Diagram (ID) of a City's Health and Migration Management Situation 297
C.4.1 The BASICS Computer Program 320
C.4.2 Relationship Between the Initial Probability $P(i)$ and the Adjusted Probability $P(i,j)$ Along the Cross-Impact Index $j=-3,-2,\ldots,3$ 325
C.5.1 System Dynamics Simulation Modeling Flow Diagrams: (a) DYNA- MO® & DYSMAP2, (b) iThink™ & STELLA® and (c) Vensim™ 329
C.5.2 Sensitivity to Annual Deposits 333

TABLES

2.2.1 Industries That Benefit from Scenario-Driven Planning 25
2.2.2 Business Areas That Benefit from Scenario-Driven Planning 26
3.1.1 Common Response Barriers 49
5.3.1 Variables Pertinent to Infoplus' Strategic Situation 92
8.1.1 Grouping of Cognitive Biases (CBs) 141
9.1.1 Infoplus' Scenario Input 167
9.2.1 Combank's Scenario Input 176
C.4.1 Index Values Used in Defining BASICS' Cross-Impact Matrices 322
Illustrations

FIGURES

1 (a) Cause-&-Effect View of Early Human Relations School
(b) Japanese View of Management as Main Coproducer
(c) View Advocated in This Book

1.1.1 Cones of Resolution Showing the Contribution of Scenario-Driven
Planning to Strategic Management

1.2.1 Grouping Managerial Problems

2.4.1 GE’s Environmental Analysis Procedure Used from 1960
Until the Early 1980s

3.1.1 Environmental Dimensions and Perceived Uncertainty

3.2.1 Uncertainties Besetting Strategic Management

4.1.1 Examples of (a) a Corporate Model and (b) a CSM Causal Map

4.2.1 Changes in Strategy Framework Extending the One Presented
by Ginsberg (1988)

5.2.1 Infoplus’ Organization

5.3.1 Infoplus’ (a) Influence Diagram (ID) and (b) Comprehensive
Situation Map (CSM)

5.4.1 Grouping Strategic Variables According to Their Exposure and Influence

5.4.2 Overall (a) Exposure and (b) Influence at Infoplus

5.4.3 Grouping Infoplus’ Variables into Dispersing, Linking and Absorbing
According to Their Exposure and Influence

6.3.1 CSM of Combank’s Integrated View

6.4.1 Overall (a) Exposure and (b) Influence at Combank

6.4.2 Grouping Combank’s Variables into Dispersing, Absorbing
and Singular According to Their Exposure and Influence