CONTENTS

PREFACE			xi
1.	THEO	RY OF DEA MODELS	1
	1.1	Statics and Dynamics	3
		A. Short-run vs. long run	3 7 9
		B. Adjustment cost model	g
		C. Technological change	
		D. A control system model	11
	1.2	Types of Efficiency	12 13
		A. Scale efficiency	13
		B. Allocative efficiency	15 17
		C. Subclural criticioney	17
		D. Stochastic efficiency	22
	1.3	Models of Systems Efficiency	25
	1.4	Efficiency Distributions	30
	1.5	Applying DEA Models	32
	1.6	Outline of the Book	34
2.	DYNAMICS OF EFFICIENCY		38
	2.1	Expansion Frontier and Allocative Efficiency	39
	2.2	Dynamic Production Frontiers	43
	2.3	Comparing Statics and Dynamics	47
	2.4	Concept of Efficiency in DEA Models	55
		A. Efficiency in control systems	55
		B. Efficiency with integrated processes	57
		C. System reliability and efficiency	58
		D. Vector efficiency	60
	2.5	Efficiency Analysis by Optimal Control	65
	2.6	Transformations of the Dynamic Model	74
3.	TECHNICAL CHANGE AND EFFICIENCY		
	3.1	Forms of Technical Change	86
		A. Change in input parameters	87
		B. Cumulative output and efficiency	94
	3.2	A Continuous Model of Efficiency	100
	3.3	A Model of Cumulative Output	110
	3.4	Scope of Applications	113
	3.5	Structural Change	119
	3.6	Dynamics of Capacity Utilization	121

viii CONTENTS

4.	STOCHASTIC EFFICIENCY			
	4.1 4.2 4.3 4.4 4.5	Efficiency Distribution Under Outliers Chance-constrained Efficiency Models of Efficiency Distribution Econometrics of Efficiency Frontier Efficiency Based on Stochastic Control A. Risk sensitivity of DEA efficiency B. Estimation of time-varying parameters C. Estimation with non-stationary data	136 142 144 147 162 162 166	
	4.6	Efficiency Under Goal Programming	171	
5.	THEORY OF SYSTEMS EFFICIENCY			
	5.1 5.2	Input-Output and Control Systems Flexible Manufacturing Systems Example 1: A model of flexible investment Example 2: An entropy model of flexibility Example 3: Production planning under learning	180 187 191 1 9 3	
	5.3	Example 4: A DEA model of economies of scope Stochastic Efficiency and Reliability Example 5: A DEA model of reliability and efficiency	200 202 203	
	5.4	Example 6: Model of reliability improvement Technical Change and Diffusion Example 7: Dynamic production frontier Example 8: A model of evolutionary efficiency	205 207 208 209	
6.		ROPY, EFFICIENCY AND THE INDEX IBERS	216	
	6.1 6.2	Types of Efficiency Distributions Entropy and Efficiency Example 1: Maximum entropy models Example 2: A seismic reliability problem Example 3: Application to a DEA model	217 224 225 227 229	
	6.3	Measuring TFP Example 4: Test for technical change	231 233	
	6.4 6.5	Index Number Comparison Tests of Efficiency in DEA Models	234 237	
7.	ECONOMIC THEORY AND DEA			
	7.1 7.2 7.3	Economic Theory and DEA Efficiency Dynamic Production Frontiers and Efficiency Econometric Issues in Efficiency Analysis	251 260 267	

	7.4	Policy Implications of DEA Models	269
	7.5	Externalities and Interdependence	272
8.	FRONTIERS OF EFFICIENCY RESEARCH		277
	8.1	Entropy and Efficiency	278
	8.2	Dynamic Efficiency and Heteroscedasticity	280
	8.3	Efficiency, Externality and Indivisibility	282
INDEX			285