Contents

Method summaries Acknowledgements		i
		X
Prefa	ce	xii
1	Statistical process control	1
1.1	Development of SPC	1
1.2	What SPC is and is not	5
1.3	On-line SPC methods	3
1.4	Off-line process control	2 3 4
1.5	SPC methodology	ϵ
1.6	Other factors affecting the success of SPC	8
1.7	Outline of the book	10
	Exercises	10
2	Some basic distributions	11
2.1	Introduction	11
2.2	Some basic definitions	12
2.3	Attribute data – binomial distribution	14
2.4	Countable data – Poisson distribution	15
2.5	Geometric distribution	18
2.6	The Normal distribution	20
2.7	Distributions derived from the Normal distribution	21
2.8	Application of results – a simple control chart	23
2.9	Testing for Normality	28
2.10*	The Normal approximation to the binomial distribution	32
2.11*	Normal approximation to the Poisson distribution	33
	Exercises	34
3	Process variation	39
3.1	Reasons for process variation	39
3.2	Types of process variation	40
3.3	Some models for process variation	43
3.4	Sampling error and measurement error	46
3.5	Studying process variation	48

vi Contents

3.6	Estimating the process average level and variation –	
3.7	grouped data	55
3.7	Estimating the process average level and variation –	
	one-at-a-time data Exercises	63
	Exercises	65
4	Process capability	70
4.1	Initial process capability studies	70
4.2	Shewhart control limits and specification limits or	
12	tolerances	73
4.3 4.4	Relative capability	76
4.4	Process capability indices for more complex process models	80
4.5	How to handle low capability processes	82
	Exercises	83
5	Basic Shewhart control charts for continuous variables	85
5.1	Introduction	85
5.2	Control charts for average level	91
5.3	Charts for control of (within-group) process spread	95
5.4	The average run length	100
5.5	Special problems	103
5.6*	Some theoretical results for Shewhart charts	105
5.7*	Charts for control of process spread	110
	Exercises	111
6	Extensions to Shewhart charts for one-at-a-time data	114
6.1	One-at-a-time sampling	114
6.2	Estimation of σ for one-at-a-time data	116
6.3	Details of further control charts for control of process	110
	average level	122
6.4	Control of process spread	128
6.5	Choice of charting method	129
6.6	Practical use of Shewhart and moving-average charts	130
6.7*	Properties of EWMA and MA charts	133
	Exercises	135
7	Cumulative sum techniques for continuous variables	138
7.1	Introduction	138
7.2	CuSum charts for control of average level	158
7.3	CuSum charts for control of process spread	155
7.4*	Nomogram for CuSums	164
	Exercises	168
		100

8	Further theoretical results on control charts for continuous	
0.1	variables	170
8.1	Introduction	170
8.2	The effect of departures from assumption on moments of \bar{x} and s^2	171
8.3	Shewhart charts – Markov chain approach	172
8.4	Cumulative sum charts	177
8.5	Charts for control of process spread	189
	Exercises	190
9	The design of control charts from specification limits	192
9.1	Single specification limits	192
9.2	Single specification limits: Chart for means	194
9.3	Double specification limits: High-capability processes	205
9.4	Double specification limits: An alternative approach	208
	Exercises	210
10	Control of discrete data processes	212
10.1	Introduction	212
10.2	Shewhart charts for countable data $(c \text{ and } u)$	218
10.3	Shewhart charts for attribute data $(np \text{ and } p)$	227
10.4	CuSum charts for countable data: General points	232
10.5	CuSum charts for countable data	234
10.6	CuSum charts for attribute data	238
10.7	CuSum plots for countable or attribute data when the	
10.0	Poisson or Binomial distribution does not apply	238
10.8	Comparison of Shewhart and CuSum schemes	239
	Exercises	240
11	Sampling inspection	241
11.1	Introduction	241
11.2	Classification of inspection plans	246
11.3	Some properties of sampling plans	250
11.4	Methods of choosing sampling plans for attributes	256
	Exercises	266
12	Inspection by variables	269
12.1	Introduction	269
12.2	Single specification limit, σ known	271
12.3	Single specification limit. σ unknown	275
12.4	Estimation of fraction non-conforming, single specification	
10.5	limit	279
12.5	Double specification limit, σ known	283

viii Contents

12.6	Double specification limit, σ unknown	289
12.7	Multivariate sampling plans	289
	Exercises	290
13	Standard sampling systems	291
13.1	Introduction	291
13.2	Statement of Method for inspection by attributes	293
13.3	Inspection by variables (ISO 3951)	298
13.4	International Standards for process and quality control	299
14*	Adaptive sampling plans	303
14.1	Basic description and aims	303
14.2	CSP-1 and the AOQL criterion	304
14.3	Theory of CSP-1	307
14.4	The AEDL criterion	309
14.5	Decision-theory approach to CSP-1	310
14.6	Modifications to CSP-1	312
14.7	Process trouble shooting	315
14.8	Adaptive control	316
14.9	Use of CuSum techniques	319
14.10	Skip-lot sampling plans	321
	Exercises	321
15	Some further topics	323
15.1	Computing	323
15.2	Economic approaches to the design of charts and sampling plans	327
15.3	Some further charting methods	327
15.4	Multivariate methods	330
	Appendix A	332
	Statistical Tables	332
	Appendix B	344
	Datasets for sampling experiment	J-1-1
	Appendix C	375
	National and International Standards relating to	_
	Quality Control	
	References	384
	Index	201

Method summaries

2.1	Checking for normality – using normal probability paper	30
3.1	Calculating running means	48
3.2	Basic rule for CuSum plotting	54
3.3	Estimation of μ and $\sigma_{\rm w}$ by the ' σ ' method: grouped or	
	blocked data	56
3.4	Estimation of μ and $\sigma_{\rm w}$ by the range method: grouped or	
	blocked data	57
3.5	Estimation of between-group variation $\sigma_{\rm B}$	60
3.6	Estimation of standard error of group means	62
3.7	Estimation of μ and $\sigma_{\rm w}$ for one-at-a-time data	64
4.1	Summary of steps in a process capability analysis	72
5.1	Construction of \bar{X} -chart	92
5.2	Construction of a range chart by the range method	95
5.3	Construction of a range chart by the ' σ ' method	96
6.1	Estimation of σ by moving ranges of k points	118
6.2	Construction of a moving-average chart	124
6.3	Construction of exponentially weighted moving-average	
	charts	126
6.4	Construction of a moving-range chart	128
7.1	Scaling a CuSum plot	140
7.2	Setting up a CuSum V-mask	142
7.3	Using a CuSum V-mask	143
7.4	Decision interval CuSum schemes	149
7.5	Setting up CuSum charts	156
7.6	CuSum scheme for ranges	159
7.7	CuSum scheme for standard deviations	161
7.8	Design of one-sided CuSum scheme	166
7.9	Design of one-sided CuSum scheme from limited information	166
7.10	Calculation of ARL curve of a one-sided CuSum scheme	167
3.1	Single specification limit. Position of action limit	197
9.2	Single specification limit. Position of action limit (More	
	accurate method)	199
0.3	Single specification limit. One-sided \bar{X} -chart (More	
	accurate method)	202

x Method summaries

10.1	Shewhart chart for countable data (small values of \bar{c})	219
10.2	Shewhart chart for countable data (large values of \bar{c})	222
10.3	Shewhart chart for countable data (over or under dispersion)	224
10.4	Moving-average charts for countable data	226
10.5	np charts using the normal approximation to the	
	binomial distribution	229
10.6	np charts using a direct normal approximation	231
10.7	Moving-average p or np charts	232
10.8	CuSum charts for countable data: Choosing parameters	235
10.9	Operating a CuSum scheme for countable data	236
10.10	CuSum charts for countable and attribute data when	
	Poisson or binomial distribution does not apply	239
11.1	Producer's and consumer's risk method of determining	
	attribute sampling plans	257
11.2	A simple semi-economic scheme	264
12.1	Inspection by variables, single specification limit, σ known	272
12.2	Inspection by variables, single specification limit, σ unknown	275
12.3	Inspection by variables, single specification limit, σ known.	
	Fraction non-conforming method.	280
12.4	Inspection by variables, single specification limit, σ	
	unknown. Fraction non-conforming method.	282
12.5	Inspection by variables, double specification limit, σ known	288
12.6		289
13.1	Inspection by attributes using ISO 2859 (BS 6001)	293
13.2	Inspection by variables, s method (ISO 3951)	298