TABLE OF CONTENTS

PART I INTRODUCTION

1	Introduction 3	ı
1.1	Prologue	
1.2	Motorist information systems and road-pricing	1
1.3	Objective of the book	•
1.4	Outline of the book	•
	Cutiffic of the book	,
2	Motorist information systems: An introduction)
2.1	Introduction)
2.2	Benefits from motorist information systems	l
2.3	Possible adverse effects of motorist information systems	ļ
2.4	Wardrop's principles and motorist information systems	5
2.5	The relationship between concentration, overreaction, market penetration	
	and Wardrop's principles)
2.6	External effects and motorist information systems)
2.7	Traffic generating properties of motorist information systems	,
2.8	The level of market penetration	ľ
2.9	The case of non-recurrent congestion	
2.10	Motorist information systems as a tool for achieving government's	
	objectives 32	,
2.11	Conclusion	
3	Road-pricing: An introduction	,
3.1	Introduction	
3.2	The theory: First-best?	
3.3	Congestion-pricing: Pros and cons	
3.4	Behavioural responses towards congestion-pricing	
3.5	Implementing congestion-pricing	,
3.6	The Dutch failure to implement congestion-pricing	
3.7	Conclusion	

4	A stochastic route choice framework	50
4.1	Introduction	50
4.2	Perception and uncertainty in user equilibrium models: Relation to motorist	
4 2	information systems	59
4.3	A route choice model with stochastic travel costs and driver information	61
4.4	An extension of the route choice model: Costs of uncertainty	64
4.3	Conclusion	65
App	p.4.A An introduction to the bottleneck model	66
PAI	RT II THEORETICAL MODELS	
5	Welfare economic analysis of motorist information in a one-route	
- 1	network	73
7.1	Introduction	73
3.4	Une-link stochastic network deterministic user equilibrium model	71
0.3	Efficiency and equity issues of information	01
,. 	Conclusion	00
App	5.5.A Proof of Proposition 5.1	91
ó	Welfare economic analysis of motorist information in a two-route	
	network	94
). l	introduction	Ω4
•.∠	Some definitions	Λ <i>t</i>
د.ر	I Wo-route stochastic network deterministic user equilibrium model	05
·- T	Woder experiments	Λ1
	Conclusion	Λ 5
ւրբ	O.A.1 Proof of Proposition 6.1	07
\pp	.6.A2 Proof of Proposition 6.2	10
	Endogenous demand for motorist information 1	11
. I	Introduction	1 1
	SNOUE HOUR WITH endogenous demand for information	
٠.	Regulatory issues	17
	Conclusion	12
·PΡ·	./.Al Flool of Proposition /]	15
pp.	.7.A2 Derivation of Figure 7.3	27
	Including the costs of uncertainty	
. 1	introduction	
_	DIVIDUE INJUGIS WITH COSTS OF Inncertainty	8.0
	internation provision and system ontimal behaviour	
4	Conclusion	9
PP.	o.A. Hour of Froposition 8.1	-
PΡ.	6.A2 Froot of Proposition 8.2	6
pp.		
- •	5.15 Troof of Troposition 6.5	2

Table of contents	ix
9.1 Introduction	154 154 154 156 160 172
10.1 Introduction	173 173 174 175 177 183
PART III SIMULATION MODELS	
11. Simulation modelling: Recurrent congestion 11.1 Introduction 11.2 Four different types of information provision 11.3 Behavioural models 11.4 Simulation framework 11.5 Results of simulation experiments 11.6 Conclusion 12 Simulation modelling: Non-recurrent congestion 12.1 Introduction 12.2 Recurrent versus non-recurrent congestion 12.3 Information accuracy 12.4 The model 12.5 Model parameters 12.6 Results of the simulation experiments 12.7 Conclusion	187 187 188 189 195 201 212 214 214 216 217 219 220 222 230
PART IV EMPIRICAL MODELS 13 Radio traffic and variable message sign information; An empirical analysis 13.1 Introduction 13.2 The literature 13.3 The Amsterdam survey 13.4 The analysis 13.5 Conclusion	236 237 240

1 able of conf.	ents
14.1 Introduction 14.2 The data 14.3 Analysis of the work start time 14.4 Implications for road-pricing and motorist information systems 14.5 Conclusion	257 258 259 268
PART V CONCLUSIONS	
15 Summary, conclusions and future research directions	273
15.1 Summary	273
13.2 Conclusions	276
15.3 Future research directions	277
References	279
Subject index	289
Author index	201

LIST OF FIGURES

Figure 1.1	Structure of the book
Figure 2.1	Network performance as a function of market penetration 12
Figure 2.2	Predictive information and drivers' responses
Figure 2.3	Iterative procedure for calculating perfect predictive
•	information
Figure 2.4	Travel time as a function of market penetration
Figure 2.5	Information benefits to equipped drivers. Case 1
Figure 2.6	Information benefits to equipped drivers. Case 2
Figure 2.7	Relationship between quality of information and level of market
	penetration. Information collected via equipped drivers 27
Figure 2.8	Relationship between quality of information and level of market
•	penetration. Information collected via loop detectors in the road.27
Figure 2.9	Market potential of motorist information system for two
	marginal cost curves (A and B)
Figure 3.1	Traditional diagram of congestion-pricing with linear curves 38
Figure 3.2	Congestion-prices: Based on prevailing or predicted
J	levels of congestion?
Figure 3.3	Compensation effects of congestion-pricing
Figure 4A.1	Standard diagram of bottleneck model
Figure 5.1	Graphical illustration of equilibrium model with informed
Č	and uninformed individuals
Figure 5.2	Welfare effects for x-travellers
Figure 5.3	Expected net private benefits for x (informed) and
C .	y (uninformed) travellers
Figure 5.4	Welfare effects for y-travellers
Figure 5.5	Impacts of probability of low capacity on ω
Figure 5.6	Impact of demand elasticity on ω
Figure 5.7	Impact of market penetration on ω
Figure 6.1	Example of an increase in welfare due to route switching
U	by an informed road user
Figure 6.2	Expected travel costs as a function of the expected
0	number of informed drivers
Figure 6.3	Expected saving in travel costs as a function of the
5	expected number of informed drivers
Figure 6.4	Relative welfare improvement as a function of the
B	expected number of informed drivers
Figure 6A.1	Expected usage declines both for group y and for group x
	when perfect information is taken away from group x

Figure 7.1	Welfare effects of information.	112
Figure 7.2	Difference in expected net private benefits of the model	112
	with endogenous demand for information and the model	
	in which no information is available.	115
Figure 7.3	Welfare effects of endogenous information.	116
Figure 7.4	The relationship between the price of information.	110
	subsidising information, and expected welfare	119
Figure 7.5	Relationship between the price of information and welfare	123
Figure 8.1	Model N and I: Case $N_1 < N_N < N_1^0$.	132
Figure 8.2	Model N and I: Case $N_N < N_1^1 < N_1^0$.	133
Figure 8.3	Expected network travel costs in model N and P.	135
Figure 8.4	Relative welfare improvement as a function of the	133
	value-of-uncertainty (B)	1.42
Figure 8.5	Relative welfare improvement as a function of the	143
-	absolute value of the slope of the demand function.	144
Figure 9.1	Network structure	144
Figure 9.2	Expected net welfare gain due to information provision	155
•	to x-travellers as a function of the capacity shock	
	bi-bi (Model P - Model N): b -0.015	
Figure 9.3	b_1^1 - b_1^0 (Model P_x - Model N); b_2 =0.015. Expected net welfare gain due to information provision	161
	to x-travellers as a function of the capacity shock	
	hi-hi (Model P - Model N), h =0.02	
Figure 9.4	b ₁ -b ₁ (Model P _x - Model N); b ₂ =0.03.	162
	Expected net welfare gain due to information provision	
Figure 9.5	to x-travellers as a function of b ₂ (Model P _x - Model N)	163
-8	Expected net welfare gain due to information to	
	y-travellers as a function of the capacity shock	
Figure 9.6	b ₁ -b ₁ ⁰ (Model P _{x+y} - Model P _x); b ₂ =0.015.	164
- 1guile 9.0	Expected liet welfare gain due to information to	
	y-travellers as a function of the capacity shock	
Figure 9.7	$b_1^1-b_1^0$ (Model P_{x+y} - Model P_x); $b_2=0.03$.	165
rigure 7.7	Expected het welfare gain due to information to	
Figure 9.8	y-travellers as a function of b_2 (Model P_{x+y} - Model P_x).	166
7.1gur0 7.0	Expected het welfare gain due to information provision	
	to x-travellers as a function of b ₃	
Figure 9.9	(Model P ^x - Model N); b ₂ =0.02.	168
riguic 9.9	expected net welfare gain due to information provision	
	to x-travellers as a function of b ₃	
Figure 9.10	(Model P ^x - Model N); b ₂ =0.04.	169
riguie 9.10	Expected liet werrare gain due to information provision	
	to y-travellers as a function of b ₃	
Figure 0.11	(Model P ^{x+y} - Model P ^x); b ₂ =0.02.	170
Figure 9.11	Expected liet wellare gain due to information provision	
	to y-travellers as a function of b.	
Figure 10.1	(Model P ^{x+y} - Model P ^x); b ₂ =0.04.	71
Figure 10.1	ms productive of cost snocks; indices of relative welfore	
		70

List of figures	xiii
bisi of figures	X111

Figure 10.2	Varying congestion cost parameter volatility: indices of	
Figure 10.3	relative welfare improvement.	180
rigute 10.5	Varying demand characteristics with cost-shocks: indices of	
Figure 10.4	relative welfare improvement.	181
rigule 10.4	Varying demand characteristics with cost shocks and a	
	free-flow cost differential: indices of relative welfare	
F: 10.5	improvement.	182
Figure 10.5	Varying probabilities of cost shocks: flat fees and	
D: 11.1	expected fine fees	182
Figure 11.1	Road network used in simulation experiments.	197
Figure 11.2	Departure time structure.	198
Figure 11.3	Flow of control in simulation model	200
Figure 11.4	Evolution of daily average travel time during a	
	simulation run. K0=8, bound=0.	202
Figure 11.5	Travel time as a percentage of the travel time under	
	the model with bound=0 for three levels of congestion	203
Figure 11.6	Number of routes used for models with different bounds	
	and three levels of congestion	204
Figure 11.7	Number of periods till steady state is reached for models	
	with different bounds and three levels of congestion	204
Figure 11.8	Evolution of drivers' switching propensity under model	
	with different bounds and congestion level K0=8	205
Figure 11.9	Travel times compared to no information case. K0=5	207
Figure 11.10	Travel times compared to no information case. K0=8	207
Figure 11.11	Travel times compared to no information case. K0=12	208
Figure 11.12	Average daily travel times for drivers with and without	
•	information. K0=5, level of market penetration is 5%	208
Figure 11.13	Daily travel time pattern for no and full market penetration.	
C	K0=8	209
Figure 11.14	Travel times compared to no information case. K0=5	210
Figure 11.15	Travel times compared to no information case. K0=8	210
Figure 11.16	Travel times compared to no information case. K0=12	211
Figure 12.1	Transport system without shocks.	216
Figure 12.2	Transport system with shocks.	217
Figure 12.3		218
Figure 12.4		219
Figure 12.5		220
Figure 12.6	Daily network wide travel time for 1 run. upd=1, p=0.19,	220
1 iguit 12.0		224
Figure 12.7	Benefits for different groups of drivers. upd=1, p=0.19,	224
1 iguic 12.7		224
Figure 12.0		224
Figure 12.8	Network wide performance as a function of market	221
Figure 12.0		226
Figure 12.9	Effects of information for six incident rates.	
Fig. 10 10	upd=1, en_route_bound=0.05.	227
Figure 12.10	Effects of information for three incident rates.	

		upd=10, en_route_bound=0.05.	227
Figure	12.11	Dependency between updating frequency and incident	
		rates. 50% market penetration, en_route_bound=0.05	228
Figure	12.12	Effects of en_route_bound on network wide performance.	
		upd=1, p=0.19.	229
Figure	12.13	Effects of en_route_bound on network wide performance.	
г.		upd=10, p=0.19.	229
Figure	12.14	Network wide performance in relation to switching	
		propensity, market penetration and information quality	230
Figure	13.1	Major road network of the Amsterdam region.	238
Figure	13.2	Outline of the empirical analysis.	241
Figure	14.1	Work start time intervals	262
•			203

LIST OF TABLES

Table 3.1	Assessment of the attractiveness of different types of congestion-pricing	2
Table 4.1	Combination of features of network and individual	_
1 able 4.1		^
T 11 11 1		
Table 11.1	Information provision types	-
Table 11.2	Three levels of network capacity	
Table 12.1	Model parameters	
Table 12.2	Experimental design of simulation experiments	2
Table 13.1	Survey characteristics	0
Table 13.2	Reference group of dummy variables	3
Table 13.3	Estimation results of listening propensity to radio traffic	
	information and route choice influence due to radio traffic	
	information: Two ordered probit models 24	4
Table 13.4	Estimation results of route choice influence due to RIA traffic	
	information: Ordered probit model. Estimation results of	
	satisfaction with alternative route: Multiple logit model 24	7
Table 13.5	Bivariate ordered probit model of route choice adaptations	•
1401C 15.5	due to radio traffic information and RIA traffic information . 25	1
Table 13.6	Bivariate ordered probit models of willingness-to-pay for	•
1 able 13.0		
	in-vehicle RIA traffic information and listening propensity to	
m 11 444	radio traffic information	
Table 14.1	Survey characteristics	9
Table 14.2	Tobit estimation results of work flexibility intervals, first,	
	second and third column. Logit estimation of satisfaction,	
	fourth column	1
Table 14.3	Results of indifferent and intolerable work start time	
	intervals during the morning peak-hours	5
Table 14.4	Workers' restrictions preventing them from having more	
	flexible work start times during the peak-hours 26	6