Contents

Li	st of]	Figures		xi
Li	st of '	Tables		xv
Pr	eface			xix
1	Met	hodolog	gical issues in longitudinal research	1
	1.1	Introd	uction	1
	1.2	The da	ata box	5
	1.3	The th	ree modes of the data box: selection effects	9
	1.4	Design	ns for longitudinal studies	19
	1.5	Validi	ty issues in longitudinal research	29
		1.5.1	Statistical conclusion validity	31
		1.5.2	Internal validity	31
		1.5.3	External validity	35
		1.5.4	Reliability and other aspects of construct	
			validity	36
	1.6	Other	methodological concerns in longitudinal	
		resear	ch	37
		1.6.1	Conditional or unconditional analysis	37
		1.6.2	Aggregation	40
		1.6.3	Missing data	41
	1.7	Furthe	er reading	44
2	Ana	lysis of	longitudinal categorical data using optimal	
	scaling techniques			46
	2.1	Introd	uction	46
		2.1.1	Assumptions	49

vi Contents

	2.2	Multiv	variate analysis using optimal scaling	50
		2.2.1	Multiple Correspondence Analysis	51
		2.2.2	Nonlinear Principal Component Analysis	64
		2.2.3	Nonlinear Generalized Canonical Analysis	74
	2.3	Longit	tudinal extensions to optimal scaling	
		techni	ques	84
		2.3.1	Flattening the data box: time points	
			adding subjects or time points adding	
			variables	85
		2.3.2	Time as a categorical variable	98
		2.3.3	Modelling time with lagged variables	110
	2.4	Multiv	variate dynamic analysis	121
		2.4.1	AR(I)MA models	121
		2.4.2	The linear dynamic system	125
	2.5	Multiv	variate dynamic analysis of categorical data	132
		2.5.1	Optimal scaling extensions to linear	
			dynamic analysis for $N=1$	132
		2.5.2	Optimal scaling extensions to linear	
			dynamic analysis for $N > 1$	139
		2.5.3	Other multivariate dynamic analysis	
			techniques for categorical data	148
	2.6	Missir	ng data	149
	2.7	Discus	ssion	151
	2.8	Furthe	er reading	154
3	Uni	variate	and multivariate analysis of variance of	
		itudina	<u>-</u>	155
	3.1	Introd	uction	155
		3.1.1	Types of longitudinal designs	156
		3.1.2	Hypothesis testing	158
		3.1.3	Differences among waves	160
		3.1.4	Multivariate approaches	162
		3.1.5		165
		3.1.6	Structured multivariate analysis of repeated	
			measures	166
		3.1.7	Trend analysis	167
		3.1.8	Relationships between univariate and	
			structured multivariate analysis	169
			-	

Contents vii

		3.1.9	Assumptions in univariate ANOVA of	
			repeated measures	170
		3.1.10	Practical recommendations	174
	3.2	One-g	roup/one-variable/two-waves designs	176
		3.2.1	t-test for dependent samples	176
		3.2.2	t-test using difference scores	177
		3.2.3	ANOVA	178
		3.2.4	MANOVA	179
		3.2.5	Analysis of covariance	180
		3.2.6	Comparison of approaches	182
	3.3	Multip	ole-groups/one-variable/two-waves designs	183
		3.3.1	Repeated measures ANOVA	183
		3.3.2	MANOVA	184
		3.3.3	ANOVA on difference scores	185
		3.3.4	Analysis of covariance	186
		3.3.5	Comparison of approaches	188
	3.4	One-g	roup/one-variable/multiple-waves designs	189
		3.4.1	RB ANOVA	190
		3.4.2	MANOVA	192
		3.4.3	Difference scores	193
		3.4.4	Analysis of covariance	194
	3.5	Multip	ole-groups/one-variable/multiple-waves	
		design	S	194
	3.6	Multip	ole-variables/multiple-waves designs	195
	3.7	Relation	ons with other techniques	201
		3.7.1	Relations with multilevel analysis	201
		3.7.2	Relations with structural equation models	202
	3.8	Missir	ng data	202
	3.9	Discus	ssion	204
	3.10	Furthe	er reading	205
4	Stru	ctural (equation models for longitudinal data	207
	4.1	Introd	uction	207
	4.2	Linear	structural equation models	211
		4.2.1	Assumptions	211
		4.2.2	Structural equation and path diagrams	
			for various models	212
		4.2.3	Model specification	218

viii Contents

		4.2.4	Model testing	221
		4.2.5	Interpretation of results	231
	4.3	Structu	ral equation modelling of longitudinal data	232
		4.3.1	Autoregressive models	234
		4.3.2	Growth curve modelling	248
	4.4	Recent	developments	260
	4.5	Missin	g data	263
	4.6	Discus	sion	265
	4.7	Further	r reading	268
5	Mul	tilevel a	nalysis of longitudinal data	269
	5.1	Introdu	uction	269
		5.1.1	Multilevel data	269
		5.1.2	Multilevel analysis	271
		5.1.3	Multilevel analysis of longitudinal data	273
		5.1.4	Software for multilevel analysis	274
	5.2	A Two	-Level Model	275
		5.2.1	Two levels: a within-unit and a between-	
			unit model	275
		5.2.2	Single equation version: a mixed linear	
			model	278
		5.2.3	Assumptions	279
		5.2.4	Estimation	280
	5.3	The m	ultilevel treatment of longitudinal data	281
		5.3.1	The hierarchical interpretation of repeated	
			measures	282
		5.3.2	Two levels: a within-subject and between-	
			subject model	283
		5.3.3	A hypothetical example	285
		5.3.4	The within-subject covariance structure	287
		5.3.5	Hypothesis testing	288
		5.3.6	Empirical examples	292
	5.4	Furthe	er issues in longitudinal multilevel analysis	301
		5.4.1	Time-varying covariates	301
		5.4.2	Centring of explanatory variables	302
		5.4.3	Other growth models	305
	5.5	Proper	rties of longitudinal multilevel analysis	306
		_	Characteristics of growth	307

Contents ix

		5.5.2	Emphasis on individual growth	308
		5.5.3		308
		5.5.4	· · · · · · · · · · · · · · · · · · ·	
			structure	309
		5.5.5	Correspondence in results	309
		5.5.6	*	309
	5.6	Relation	ons with (generalized) MANOVA	310
	5.7	Relation	ons with structural equation modelling	313
	5.8	Missir	ng data	314
	5.9	Discus	ssion	315
	5.10	Furthe	r reading	316
6	Log-	linear	and Markov modelling of categorical	
	long	itudina	l data	318
	6.1	Introd	uction	318
		6.1.1	Assumptions	321
	6.2	Log-li	near models	322
		6.2.1	Notation and an example	322
		6.2.2	Model specification	324
		6.2.3	Log-linear analysis for a 2×2 contingency	
			table	325
		6.2.4	Log-linear analysis for more than one table	327
		6.2.5	Log-linear analysis for an $I \times I$ contingency	
			table: testing various hypotheses on change	333
	6.3	Marko	v models	340
		6.3.1	Simple Markov models	343
		6.3.2	Latent Markov models	349
		6.3.3	Mixed Markov models	359
		6.3.4	Latent mixed Markov models	362
	6.4	Log-li	near analysis and Markov models	364
	6.5	Missin	ng data	366
	6.6	Discus	ssion	367
	6.7	Furthe	r reading	368
7	Epile	ogue		371
	7.1		ons between longitudinal analysis techniques	373
	7.2	Choos	ing a longitudinal analysis method	381
	7.3	Longit	udinal analysis techniques we did not discuss	383

References	385
Notes on contributors	407
Author index	410
Subject index	416

List of Figures

1.1	Basic Data Relation Matrix (BDRM) or Data	
	Box Proposed by Cattell (1946, 1952, 1988)	6
1.2	Six Correlational or Relational Matrices and Techniques	
	Obtainable from the Three Facets Persons, Variables	
	and Occasions (After Cattell, 1988)	7
1.3	Positive Correlation Computed over Time Points	32
1.4	Negative Correlation Computed over Time Points	33
2.1	Nominal $N \times 3$ Data Matrix, Corresponding	
	Indicator Matrices, and Quantifications of the	
	First Variable	53
2.2	Artificial Data: HOMALS Discrimination Measures	59
2.3	Artificial Data: HOMALS Category Quantifications	62
2.4	Artificial Data: HOMALS Object Scores	63
2.5	Artificial Data: PRINCALS Multiple and Single	
	Category Coordinates of Educational Level and	
	Age	70
2.6	Artificial Data: PRINCALS Category Quantifications	
	of Multiple Nominal Variables and Single Category	
	Coordinates of Single Variables	72
2.7	Artificial Data: PRINCALS Object Scores	73
2.8	Artificial Data: OVERALS Component Loadings	
	of Single Variables	80
2.9	Artificial Data: OVERALS Category Centroids	
	and Connected Projected Centroids	82
2.10	Artificial Data: OVERALS Object Scores	83
2.11	Slicing and Vertical Stacking of the Data Box	86
2.12	Slicing and Horizontal Stacking of the Data Box	90

xii List of Figures

2.13	Care Substitution Data. Category Quantifications	
	of the HOMALS Solution	95
2.14	Care Substitution Data: Average Object Scores	
	of Indication Subgroups in Experimental and	
	Control Group at the Measurement Occasions	97
2.15	Categorical Time Variable Set-up	99
2.16	Attachment Data: Design of Categorical Time	
	Variable OVERALS Analysis	105
2.17	Attachment Data: Component Loadings of Quantified	
	Mother and Child Variables	107
2.18	Attachment Data: Developments for Three Attachment	
	Subgroups	109
2.19	Relating Lag(1) Variable to Lag(0) Variable	111
2.20	Relating Lag(1) Variable to its Lag(0) Version	112
2.21	Lag(7) and Lag(1) Versions of Variables Relating	
	to Lag(0) Variables	113
2.22	Relating Lag(1) and Lag(0) Versions of Variables	
	for N Subjects	114
2.23	Attachment Data: Lagged Analysis Design	118
2.24	Attachment Data: Component Loadings of Quantified	
	Mother and Child Variables in Lagged Analysis	120
2.25	Autoregressive Model	122
2.26	Moving Average Model	124
2.27	Linear Dynamic System	127
2.28	Linear Dynamic System with Transition Matrices,	
	Disturbances and Error Terms	128
2.29	Shift Matrix S	130
2.30	Blood Pressure Data: Relation of WEEKDAY	
	and Lag(1) Version of MEDICATION with Diastolic	
	and Systolic Blood Pressure	137
2.31	Menstrual Distress Data: Synchronized Latent	
	State Scores for Subgroups	145
2.32	Deletion of Records in Lagged Analysis Because	
	of Missing Occasion	152
4.1	Simple Regression Model	213
4.2	Multiple Regression Model	214
4.3	Exploratory Factor Analysis Model	215

List of Figures	X111
List of a iguics	AIII

4.4	Confirmatory Factor Analysis Model	216
4.5	MIMIC Model	217
4.6	Hypothetical Model	219
4.7	Simple Measurement Model	223
4.8	Simple Measurement Model	226
4.9	Longitudinal Model with Correlated Error Terms	233
4.10	Markov Model for Observed Variables	234
4.11	Markov Model for Latent Variables	236
4.12	Dynamic Factor Model with Predictor Variables	237
4.13	Depression Data: Linear Dynamic Model	242
4.14	Depression Data: Linear Dynamic Model with	
	Phantom Variables	244
4.15	Depression Data: Results for Linear Dynamic	
	Model	246
4.16	Growth Curve Model of Latent Ability	249
4.17	Depression Data: Growth Curve Model with	
	Demographic Predictors	253
4.18	Depression Data: Growth Curve Results with	
	Demographic Predictors	254
4.19	Depression Data: Growth Curve Model with	
	Demographic and Time-Varying Predictors	257
4.20	Depression Data: Growth Curve Results with	
	Demographic and Time-Varying Predictors	258
5.1	Dental Data, Predicted Growth Curves	295
5.2	Rat Data, Predicted Growth Curves for 10 Rats	298
6.1	Overview of Markov Models	342
6.2	Simple Markov Model for Three Time Points	344
6.3	Example of a Transition Matrix F	345
6.4	Latent Markov Model for Three Time Points,	
	One Observed Variable	350
6.5	Example of a Matrix \mathbf{H}_t	351
6.6	Latent Markov Model for Three Time Points,	
	Two Observed Variables	353
6.7	Latent Markov Model for Three Time Points,	
	Two Observed Variables and Two Latent Variables	
	Set Equal	354
	-	

xiv List of Figures

6.8	Example of Transition Matrix for Stage-Sequential Model	369
7.1	Paths for Choice of Analysis Method	382

List of Tables

1.1	Schematic Representation of the Simultaneous	
	Cross-Sectional Design (After Keeves, 1997)	22
1.2	Schematic Representation of a Trend Study	23
1.3	Schematic Representation of a Time Series Study	23
1.4	Schematic Representation of Intervention Studies	28
1.5	Schematic Representation of a Longitudinal	
	Panel Study	29
2.1	Artificial Data: Subject Number, Raw Data,	
	Variables and Categories	57
2.2	Artificial Data: HOMALS Eigenvalues and	
	Discrimination Measures	58
2.3	Artificial Data: Variables, Categories, Frequencies	
	and HOMALS Category Quantifications	60
2.4	Artificial Data: Variables and Measurement	
	Levels used in PRINCALS Analysis	69
2.5	Artificial Data: Sets, Variables and Measurement	
	Levels used in OVERALS Analysis	78
2.6	Artificial Data: Summary of OVERALS Solution:	
	Loss per Set, Mean Loss, Fit and Eigenvalues	79
2.7	Care Substitution Data: Well-being and Care	
	Variables	94
2.8	Attachment Data: Mother and Child Behaviour	
	Variables	104
2.9	Blood Pressure Data: Correlations of Quantified	
	Input Variables and Output Variables with the	
	Latent State	137

xvi List of Tables

2.10	Blood Pressure Data: Category Quantifications	
	of Medication	138
2.11	Menstrual Distress Data: Concentration Complaints	
	and Menstrual Distress Variables	142
2.12	Menstrual Distress Data: Correlations of Quantified	
	Input Variables and Concentration Variable with	
	the Latent State	143
2.13	Quantification of Missing Data	150
3.1	Example of Split Plot Design with Data Vector	
	y and column c_1 through c_8 of the Matrix C of	
	Contrast Vectors	163
3.2	Analysis of Variance of the Data of Table 3.1	164
3.3	Example of Split Plot Design with Data Matrix	
	Y and Matrices H and C of Contrast Vectors	167
3.4	ANOVAs and MANOVA of the Transformed	
	Data of Table 3.3	168
3.5	Example of a One-Group/One-Variable/Two-	
	Waves Data Matrix	177
3.6	ANOVA of One-Group/One-Variable/Two-Waves	
	Data as an RB-2 Design	179
3.7	ANCOVA via Regression Analysis of One-Group/One-	
	Variable/ Two-Waves data	182
3.8	Example of a Two-Group/One-Variable/Two-	
	Waves Data Matrix	183
3.9	ANOVA of Two-Group/One-Variable/Two-Waves	
	Data as an SPF 2.2 Design	184
3.10	Tests of the Homogeneity of the Within-groups	
	Variances and Covariances	185
3.11	ANOVA of Two-Group/Two-Wave Difference	
	Scores as a CRF 2 Design	186
3.12	ANCOVA of Two-Group/One-Variable/Two-	
	Waves Data as a CR 2 Design	187
3.13	Example of a One-Group/One-Variable/Three-	
	Waves Data Matrix	191
3.14	ANOVA of One-Group/One-Variable/Three-	
	Wayes Data as an RR-3 Design	191

List of Tables xvii

3.15	MANOVA of Two-Groups/One-Variable/Three-	106
2.16	Waves Data	196
3.16	Data Matrix of Two-Groups/Three-Variables/Three- Waves Design	197
2 17	Transformation Matrix for Three-Variables/Three-	177
3.17	Waves Data Matrix	198
2 10	MANOVA of Two-Groups/Three-Variable/Three-	170
3.10	Waves Data	199
	Waves Data	
4.1	Depression Data: Variables in the Analysis	241
~ 1	D. A. D. A. Eine d Dougneston and Variance Component	
5.1	Dental Data, Fixed Parameter and Variance Component Estimates, Standard Errors and <i>t</i> -ratios for Linear	
	,	293
5 0	Growth Model Rat Data, Fixed Parameter and Variance Component	293
5.2	Estimates, Standard Errors and t-ratios for Linear	
	Growth Model	296
5 2	School Data, Results for Quadratic Growth Model	270
5.3	with Four Different Structures for Σ	300
	With Four Different Structures for 2	300
6.1	Example Data: Employment Status 1984 and 1985	323
6.2	Example Data: Employment Status 1984 and	
	Mobility 1985	323
6.3	Danish and British Social Mobility Data	328
6.4	Danish and British Social Mobility Data: Summary	
	of Test Results	331
6.5	Danish and British Social Mobility Data: Standardized	
	Residuals	332
6.6	Danish Social Mobility Data	333
6.7	Danish Social Mobility Data: Standardized Residuals	
	for the Independence Model	334
6.8	Danish Social Mobility Data: Standardized Residuals	
	for the Quasi-Independence Model	335
6.9	Danish Social Mobility Data: Standardized Residuals	
	for the Symmetry Model	337
6.10	Danish Social Mobility Data: Standardized Residuals	
	for the Quasi-Symmetry Model	338
6.11	Danish Social Mobility Data: Summary Table	
	of Goodness-of-Fit Tests for Respective Models	339

6.12	Los Angeles Panel Data for State of Depression	
	at Four Consecutive Time Points	343
6.13	Los Angeles Panel Data: Results for the Simple	
	Markov Model	348
6.14	Los Angeles Panel Data: Results for the Latent	
	Markov Model	355
6.15	Los Angeles Panel Data: Results for the Latent	
	Class Model	357
6.16	Los Angeles Panel Data: Results for the Mixed	
	Markov Model	360
6.17	Los Angeles Panel Data: Results for the Latent	
	Mixed Markov Model	363
6.18	Los Angeles Panel Data: Turnover Tables	364
6.19	Los Angeles Panel Data: Observed Transition	
	Proportions	365
7.1	Characteristics of Longitudinal Analysis Techniques	374