<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Die chemischen Prinzipien des Lebens</td>
<td>3</td>
</tr>
<tr>
<td>1.1</td>
<td>Blick in die Evolution</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Selektion der Biomoleküle</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Größe, Raum und Zeit</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>Nichtkovalente Bindungen</td>
<td>9</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Elektrostatische Anziehung</td>
<td>10</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Schwache elektrostatische Wechselwirkungen</td>
<td>10</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Wasserstoffbrückenbindungen</td>
<td>11</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Hydrophobe Wechselwirkungen</td>
<td>12</td>
</tr>
<tr>
<td>1.5</td>
<td>Bioenergetik</td>
<td>13</td>
</tr>
<tr>
<td>1.5.1</td>
<td>System, Gleichgewicht und Zustandsfunktion</td>
<td>13</td>
</tr>
<tr>
<td>1.5.2</td>
<td>Innere Energie, Enthalpie und der 1. Hauptsatz der Thermodynamik</td>
<td>13</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Entropie, freie Enthalpie und der 2. Hauptsatz der Thermodynamik</td>
<td>14</td>
</tr>
<tr>
<td>1.5.4</td>
<td>Biologische Bedeutung der Thermodynamik</td>
<td>16</td>
</tr>
<tr>
<td>1.6</td>
<td>Kinetische Kontrolle biologischer Reaktionen</td>
<td>17</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Reaktionsgeschwindigkeit und Ordnung von Reaktionen</td>
<td>17</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Aktivierungsentnergie von Reaktionen</td>
<td>18</td>
</tr>
<tr>
<td>1.6.3</td>
<td>Kinetik enzymatischer Reaktionen</td>
<td>19</td>
</tr>
<tr>
<td>1.7</td>
<td>Wechselspiel zwischen Monomer und Polymer</td>
<td>20</td>
</tr>
<tr>
<td>1.8</td>
<td>Epilog</td>
<td>21</td>
</tr>
<tr>
<td>1.9</td>
<td>Literatur</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>Struktur und Funktion von Proteinen</td>
<td>23</td>
</tr>
<tr>
<td>2.1</td>
<td>Chemie der Proteine</td>
<td>24</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Chemisch-physikalische Eigenschaften der Aminosäuren</td>
<td>24</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Chemische Reaktionen der Aminosäuren und Proteine</td>
<td>27</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Geometrie der Peptidbindung</td>
<td>29</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Raumstruktur von Proteinen</td>
<td>30</td>
</tr>
</tbody>
</table>
2.1.5 Stabilität und Dynamik der Proteinkonformation 33
2.2 Analytik von Proteinen 33
2.2.1 Gewinnung von definierten Peptidfragmenten 34
2.2.2 Bestimmung der Aminosäurezusammensetzung 35
2.2.3 Bestimmung der Primärstruktur 36
2.2.4 Bestimmung der Proteinkonformation mit physikalischen Methoden 37
2.3 Proteinfunktionen 38
2.4 Literatur 40

3 Chemie der Nucleinsäuren 41
3.1 RNA und DNA 42
3.2 Bausteine der Nucleinsäuren 43
3.3 Eigenschaften der heterocyclischen Basen 43
3.4 Konformation und Vielfalt der Nucleoside 45
3.5 Nucleotide 47
3.6 Nomenklatur der Nucleinsäuren 47
3.7 Dinucleotide 48
3.8 Raumstruktur von Nucleinsäuren 49
3.8.1 Historische Entwicklung 50
3.9 Topologie der DNA 52
3.9.1 DNA in vivo 52
3.9.2 Die topologischen Eigenschaften von DNA-Molekülen 53
3.10 Struktur und Funktionsvielfalt der RNA 54
3.11 Denaturierung von Nucleinsäuren 56
3.12 Literatur 58

4 Weitergabe der genetischen Information 59
4.1 Semikonservative DNA-Replikation 60
4.2 Das Replikon 60
4.3 Initiation der Replikation bei E. coli: Entwinding von oriC 63
4.4 Matrizenabhängige Kettenelongation durch DNA-Polymerasen 64
4.5 3'-5'-Exonucleaseaktivität der DNA-Polymerasen 65
4.6 5'-3'-Exonucleaseaktivität der E. coli-DNA-Polymerase I 67
4.7 E. coli-DNA-Polymerasen II und III 67
4.8 Eukaryotische DNA-Polymerasen 68
4.9 Synthese der beiden Tochterstränge 68
4.10 Elemente der Replikationsmaschine 69
4.10.1 Helicashen 69
4.10.2 Einzelstrang-Bindeproteine 70
4.10.3 RNA-Primasen 70
4.10.4 DNA-Polymerase I und DNA-Ligase 73
4.10.5 Akzessorische DNA-Polymerase-Moleküle 74
4.11 DNA-Topo-isomerasen 74
4.11.1 Topoisomerase I 75
4.11.2 Topoisomerase II 76
4.12 Entfernung eingebauten Uracils 77
4.13 Koordination der DNA-Synthese an der Replikationsgabel 79
4.14 Literatur 80

5 Genexpression und Organisation der genetischen Information 81
5.1 Genexpression: Von der Information zum Produkt 82
5.1.1 Funktion verschiedener RNA-Moleküle 82
5.1.2 Unterschiede zwischen pro- und eukaryotischen Genen 82
5.1.3 RNA-Polymerasen 83
5.1.3.1 Die bakterielle RNA-Polymerase besteht aus mehreren Untereinheiten 85
5.1.4 Die Initiation der Transkription: Erkennung von Promotorregionen 85
5.1.4.1 Promotorregionen enthalten konservierte Sequenzen 86
5.1.4.2 Die Initiation wird durch spezielle Sigmafaktoren kontrolliert 87
5.1.5 Elongation von RNA-Transkripten 87
5.1.6 Beenden der bakteriellen Transkription 88
5.1.7 Prozessierung von rRNA und tRNA nach der Transkription 89
5.1.8 Synthese eukaryotischer RNA-Moleküle durch verschiedene Polymerasen 91
5.1.9 Die posttranskriptionale Modifikation eukaryotischer mRNA 91
5.1.9.1 3'-Polyadenylierung 92
5.1.9.2 Das 5'-Ende eukaryotischer mRNA erhält eine Cap-Struktur 92
5.1.10 Splice der RNA 93
5.1.10.1 Die exakte Entfernung der Intron-Sequenzen 94
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.10.2 Der Mechanismus des Spießens</td>
<td>94</td>
</tr>
<tr>
<td>5.2 Organisation des Genoms</td>
<td>95</td>
</tr>
<tr>
<td>5.2.1 Genomgröße</td>
<td>95</td>
</tr>
<tr>
<td>5.2.2 Repetitive Sequenzen</td>
<td>96</td>
</tr>
<tr>
<td>5.2.2.1 Satelliten-DNA</td>
<td>97</td>
</tr>
<tr>
<td>5.2.2.2 Mittelrepetitive Sequenzen</td>
<td>98</td>
</tr>
<tr>
<td>5.2.2.3 Simple Sequenzen (Mikrosatelliten) und Minisatelliten</td>
<td>101</td>
</tr>
<tr>
<td>5.2.2.4 Genetische Fingerabdrücke</td>
<td>103</td>
</tr>
<tr>
<td>5.2.3 Genfamilien</td>
<td>104</td>
</tr>
<tr>
<td>5.2.4 Evolutionsmechanismen</td>
<td>105</td>
</tr>
<tr>
<td>5.2.4.1 Repetitive DNA: funktional, „selfish“ oder ignorant?</td>
<td>107</td>
</tr>
<tr>
<td>5.2.5 Molekulare Uhr</td>
<td>107</td>
</tr>
<tr>
<td>5.3 Organisation des Chondroms</td>
<td>108</td>
</tr>
<tr>
<td>5.3.1 Die mtDNA: Form, Größe und strukturelle Eigenschaften</td>
<td>108</td>
</tr>
<tr>
<td>5.3.2 Replikation der mtDNA</td>
<td>111</td>
</tr>
<tr>
<td>5.3.3 Sequenzierung und Codierungs-</td>
<td>111</td>
</tr>
<tr>
<td>kapazität der mtDNA</td>
<td></td>
</tr>
<tr>
<td>5.3.4 Spießvorgänge an mitochondrialer RNA: cis- und trans-Spieß</td>
<td>115</td>
</tr>
<tr>
<td>5.3.5 RNA-Editing in Mitochondrien</td>
<td>117</td>
</tr>
<tr>
<td>5.3.6 tRNA-Transport in die Mitochondrien (tRNA-trafficking)</td>
<td>120</td>
</tr>
<tr>
<td>5.3.7 Proteintransport in die Mitochondrien</td>
<td>120</td>
</tr>
<tr>
<td>5.3.8 Genetik der Mitochondrien</td>
<td>120</td>
</tr>
<tr>
<td>5.3.8.1 Atmungsdedefekte</td>
<td>121</td>
</tr>
<tr>
<td>5.3.8.2 Antibiotikaresistenzen und Protein(synthese)veränderungen</td>
<td>121</td>
</tr>
<tr>
<td>5.3.8.3 Mischung und Entmischung von Mitochondrien nach Kreuzung</td>
<td>121</td>
</tr>
<tr>
<td>5.3.8.4 Rekombination mitochondrialer Gene bei der Hefe</td>
<td>122</td>
</tr>
<tr>
<td>5.3.8.5 Physische Kartierung</td>
<td>124</td>
</tr>
<tr>
<td>5.3.8.6 Sequenzierung der mtDNA und Kartierung ihrer Gene</td>
<td>125</td>
</tr>
<tr>
<td>5.3.9 Mutationen in der mtDNA als Ursache menschlicher Erbkrankheiten</td>
<td>127</td>
</tr>
<tr>
<td>5.4 Organisation des Plastoms</td>
<td>127</td>
</tr>
<tr>
<td>5.4.1 Die ptDNA: Struktur, Restriktions- und physische Karten</td>
<td>127</td>
</tr>
<tr>
<td>5.4.1.1 ptDNA mit invertiertem Repeat</td>
<td>128</td>
</tr>
<tr>
<td>5.4.1.2 ptDNA ohne invertiertes Repeat</td>
<td>130</td>
</tr>
<tr>
<td>5.4.1.3 ptDNA mit anderer Struktur</td>
<td>130</td>
</tr>
<tr>
<td>5.4.2 Replikation der ptDNA</td>
<td>131</td>
</tr>
<tr>
<td>5.4.3 Sequenzierung und Codierungs-</td>
<td>131</td>
</tr>
<tr>
<td>kapazität der ptDNA</td>
<td></td>
</tr>
<tr>
<td>5.4.3.1 RNA-codierende Gene</td>
<td>133</td>
</tr>
<tr>
<td>5.4.3.2 Proteincodierende Gene</td>
<td>133</td>
</tr>
<tr>
<td>5.4.3.3 Aufgabenteilung der Gene</td>
<td>134</td>
</tr>
<tr>
<td>5.4.4 Transkription, RNA-Processing und Operonstruktur</td>
<td>135</td>
</tr>
<tr>
<td>5.4.5 Spießvorgänge an Plastiden-RNA</td>
<td>136</td>
</tr>
<tr>
<td>5.4.6 RNA-Editing in Plastiden</td>
<td>139</td>
</tr>
<tr>
<td>5.4.7 Plastidengenetik bei Chlamydomonas</td>
<td>140</td>
</tr>
<tr>
<td>5.4.7.1 Uniparentale Vererbung als Regelfall</td>
<td>140</td>
</tr>
</tbody>
</table>
5.4.7.2 Biparentale oder paternale Vererbung 140
5.4.7.3 Rekombination zwischen Plastidenorganen 142
5.4.7.4 Gentransfer in Plastiden 143
5.4.8 Plastidengenetik bei höheren Pflanzen 145
5.4.8.1 Uniparental mütterliche Vererbung 145
5.4.8.2 Biparentale Vererbung 145
5.4.8.3 Uniparental väterliche Vererbung 145
5.4.9 Cytologische Grundlagen der Plastidenvererbung bei höheren Pflanzen 145
5.4.9.1 Vier Typen der Verteilung väterlicher Plastiden 145
5.4.9.2 Cytologie der Plastidenverteilung bei der Bildung männlicher Gameten 146
5.4.9.3 Cytologie der Plastidenverteilung bei der Bildung weiblicher Gameten 148
5.4.10 Weitere Aspekte der Plastidengenetik bei höheren Pflanzen 149
5.5 Literatur 149

6 Translation: Die Übersetzung der mRNA in ein Protein 153
6.1 Der genetische Code 154
6.2 Struktur und Funktion der beteiligten Komponenten 154
6.2.1 Ribosomen 154
6.2.2 Transfer-Ribonucleinsäuren 156
6.2.3 mRNA: das Programm für die Proteinbiosynthese 158
6.2.4 Faktoren: Proteine als Enzyme, Carrier und als Modulatoren der tRNA-Konformation 159
6.3 Beladung der tRNA mit der richtigen Aminosäure 160
6.4 Überblick über die ribosomenabhängige Proteinbiosynthese 161
6.5 Initiation der Translation 163
6.5.1 Selektion des Genanfangs 163
6.6 Elongation 165
6.6.1 Selektion der richtigen Aminosäure-tRNA durch ein programmiertes 70S-Ribosom 165
6.6.2 Translokation: die energieabhängige Verschiebung der mRNA gegen das Ribosom 164
6.7 Termination: Codonerkennung durch Proteine 167
6.8 Besonderheiten der eukaryotischen Proteinbiosynthese 168
6.9 Zielsteuerung, Modifikation und Abbau der Proteine 170
6.10 Synthese von membrangebundenen und Sekretproteinen 170
6.11 Glykosylierung von Proteinen 171
6.12 Programmierter Abbau von Proteinen 173
6.13 Literatur 174
7 Genregulation bei Prokaryoten 175
7.1 Kontrolle durch Induktion im lac-System 176
7.2 Das Operon-Modell ... 177
7.3 Eigenschaften und Funktion des Repressors 179
7.4 Regulation des Lactose-Operons durch Katabolitrepres sion ... 181
7.5 Kontrolle im Arabinose-System: ein Regulon 184
7.6 Regulation durch Attenuation: das Tryptophan-Operon 185
7.7 Komplexe Kontrolle des Phagen Lambda 189
7.7.1 Die Regulation der lytischen Vermehrung durch Antitermination ... 189
7.7.2 Etablierung und Erhaltung der Lysogenie 191
7.7.3 Lyse oder Lysogenie 193
7.7.4 Eigenschaften der λ-Repressoren und des cro-Proteins 195
7.8 Literatur ... 197

8 Genregulation bei Eukaryoten 199
8.1 Genexpression durch RNA-Polymerasen I, II oder III 200
8.2 Regulatorische Elemente eukaryotischer Pol-II-Transkription ... 201
8.2.1 Der Promotor ... 201
8.2.2 Proximale Regulationselemente 202
8.2.3 Distale Regulationselemente 202
8.2.4 Terminationsregionen 202
8.3 Basale Transkriptionsmaschinerie 202
8.3.1 Der generelle Transkriptionsfaktor TFIID 202
8.3.2 Die generellen Transkriptionsfaktoren TFIIA, TFIIB, TFIIF, TFIIF und TFIJ ... 203
8.3.3 Der generelle Transkriptionsfaktor TFIH 204
8.3.3.1 Die Bedeutung von TFIH in der Transkription 204
8.3.3.2 Die Bedeutung von TFIH in der DNA-Reparatur 204
8.3.4 In-vitro-Aufbau der basalen Transkriptionsmaschinerie 205
8.4 Regulatorische Transkriptionsfaktoren 205
8.4.1 DNA-Bindungsdomänen 206
8.4.1.1 Das HTH-Motiv der Homöodomäne 207
8.4.1.2 Die POU-Domäne ... 207
8.4.1.3 Das Zink-Finger-Motiv 207
8.4.1.4 Das bZip-Motiv ... 207
8.4.1.5 Die ETS-Domäne ... 207
8.4.1.6 Die MADS-Box .. 207
8.4.2 Aktivierungsdomänen der Transkription 207
8.4.3 Adaptorproteine .. 208
8.4.4 Mechanismus der Aktivierung von Transkription durch RTF ... 208
8.5 Initiation der Transkription: Polymerase-II-Holoenzym und das Transkriptosom 208
8.6 Elongation und Termination der Transkription .. 210
8.7 Chromatin als Regulator der Transkription ... 211
8.8 Repression der Transkription ... 211
8.9 Stimulation von Transkriptionsfaktoren durch Signalkaskaden 212

Modellsysteme

9
9.1 Der Phage λ .. 221
9.1.1 Lebenszyklus ... 222
9.1.2 Vegetative Vermehrung 223
9.1.2.1 Lysogenisierung der Wirtszelle 223
9.2 Methoden zur Analyse von λ 224
9.2.1 Phagen-Phänotypen 224
9.2.2 Formalgenetik ... 224
9.2.3 Molekulargenetik ... 225
9.3 Biologische Fragestellungen an λ .. 226
9.3.1 Morphogenese der Phagenpartikel .. 226
9.3.2 λ als Klonierungsvektor .. 228
9.4 Literatur .. 229

10
10.1 Escherichia coli .. 231
10.2 Morphologie und Lebenszyklus von E. coli .. 232
10.3 Mutantensuche bei E. coli ... 234
10.4 Die Genkarte ... 235
10.5 Sexualität bei E. coli ... 236
10.5.1 Restriktion/Modifikation schützt die eigene DNA 237
10.6 E. coli – „ein Eukaryot honoris causa“ .. 238
10.6.1 Von Jacob-Monod zu RNA-Polymerase-assoziierten Proteinfaktoren 238
10.6.2 Regulationskaskaden ... 239
10.6.3 Enhancerabhängige Transkription .. 240
10.6.4 Ein Terminationscodon codiert für eine Aminosäure 241
10.6.5 Introns ... 241
10.7 Literatur ... 242

11
11.1 Hefe ... 243
11.2 Lebenszyklus .. 245
11.3 Methoden zur Analyse von S. cerevisiae .. 245
11.3.1 Formalgenetik ... 245
11.3.1.1 Tetradenanalyse .. 246
11.3.2 Molekulargenetik ... 247
11.3.2.1 2-µm-Plasmid ... 247
11.3.2.2 Transformation und Genklonierung .. 247
11.3.2.3 Künstliche Chromosomen .. 249
11.3.2.4 Heterologe Genexpression .. 250
13.2.1 Mutantenanalyse 285
13.2.2 Molekularbiologie 287
13.3 Biologische Fragestellungen am C. elegans-System 287
13.3.1 Zellteilung 287
13.3.2 Differenzierung einer räumlichen Struktur 288
13.3.3 Neurogenese und Muskelfunktion 289
13.3.4 Zeitliche Kontrolle der Entwicklung und Geschlechtsbestimmung 289
13.4 Perspektive des C. elegans-Systems 290
13.5 Literature 290

14 Drosophila melanogaster 293
14.1 Lebenszyklus 294
14.2 Methoden zur Analyse von Drosophila 294
14.3 Embryologie und Formalgenetik 296
14.4 Molekulare Genetik 299
14.4.1 Vom Phänotyp zum Gen 300
14.4.2 Von der DNA zur Funktion eines Gens 301
14.4.3 Das P-Element: Vom Gentransfer zur Enhancer-Falle 301
14.5 Biologische Fragestellungen 304
14.5.1 Festlegung der Polarität und des Segmentmusters 304
14.5.2 Zell-Zell-Interaktionen 306
14.6. Perspektiven des Drosophila-Systems 307
14.7 Literature 307

15 Maus 309
15.1 Einführung 310
15.1.1 Taxonomie 310
15.1.2 Embryonalentwicklung 311
15.1.3 Lebenszyklus 311
15.2 Methoden zur Analyse des Säugersystems 312
15.2.1 Embryologie 312
15.2.1.1 In-vitro-Kultur von Präimplantationsembryonen 312
15.2.1.2 Chimären, embryonale Stammzellen 312
15.2.2 Formalgenetik 313
15.2.2.1 Das Genom der Maus 313
15.2.2.2 Maus-Cytogenetik 313
15.2.2.3 Die genetische Karte der Maus 313
15.2.2.4 Mausmutanten 314
15.2.2.5 Maus-Inzuchtstämme 314
15.2.2.6 Methoden zur chromosomalen Lokalisation 314
15.2.3 Strategien zur Veränderung genetischer Information im Mausgenom 315
15.2.3.1 Klassische Mutagenese: chemisch-physikalische Veränderungen 315
15.2.3.2 Molekulargenetische Methoden: Einführung neuer genetischer Information in das Mausgenom (transgene Mäuse) 315
15.2.3.3 Expressionsanalyse in transgenen Mäusen .. 318
15.2.3.4 Funktionsanalyse in transgenen Mäusen .. 318
15.2.3.5 Enhancer- und Gen-Fallen ... 318
15.2.4 Molekulargenetik ... 318
15.2.4.1 Konservierte Sequenzen - konservierte Funktion? 318
15.3 Biologische Fragestellungen im Säugersystem ... 320
15.3.1 Tumorentstehung ... 320
15.3.2 Immunologie ... 320
15.3.3 Geschlechtsdetermination .. 321
15.3.4 Imprinting ... 321
15.4 Literatur ... 322

16 Mensch ... 323
16.1 Die Sonderstellung des Menschen ... 324
16.2 Der Karyotyp und die Genkarte des Menschen ... 325
16.2.1 Färbeleichterung erzeugte Bänderungen ... 326
16.2.2 Das Karyogramm ... 326
16.2.3 Die Genkarte des Menschen .. 328
16.3 Die Stammbaumanalyse .. 331
16.3.1 Vererbung kodominanter Merkmale ... 332
16.3.2 Vererbung dominanter Merkmale .. 332
16.3.3 Vererbung rezessiver Merkmale .. 332
16.3.4 Vererbungsrisiko bei Inzucht .. 333
16.3.5 Vererbung geschlechtsgekoppelter rezessiver Merkmale 333
16.3.6 Vererbung geschlechtsgekoppelter dominanter Merkmale 333
16.3.7 Die Wirkung autosomaler Gene kann einer Geschlechtsbegrenzung unterliegen ... 333
16.3.8 Mitochondriale Vererbung .. 333
16.3.9 Vererbung poly- und multifaktorieller Merkmale 334
16.3.10 Faktoren, die die Analyse eines Stammbaums erschweren können ... 334
16.4 Menschliche Zellen in Kultur .. 335
16.5 Genkartierung beim Menschen .. 335
16.5.1 Statistische Auswertung von Familiendaten ... 337
16.5.2 Mensch-Nager-Hybridzellen .. 338
16.5.3 In-situ-Hybridisierungen .. 340
16.6 Methoden zur Herstellung menschlicher Genbibliotheken 341
16.6.1 Fluoreszenz-aktivierte Chromosomensortierung (FACS) 341
16.6.2 Sprung-Bibliotheken (jumping libraries) ... 341
16.6.3 Mikrodissektions-Bibliotheken .. 342
16.6.4 Test auf phylogenetische Konserverung ... 342
16.7 Charakterisierung einiger wichtiger Genfunktionen beim Menschen 342
16.7.1 Die Rolle des SRY-Gens bei der Geschlechtsbestimmung 342
Das Dystrophin-Gen
Die Cystische Fibrose, eine der häufigsten Erkrankheiten
Das Waardenburg-Syndrom
Phenylketonurie (PKU)
Genetische Polymorphismen als Identifikationsmerkmale

Formalgenetik

17

Genetische Grundlagen
17.1 Die F1 ist uniform
17.2 Die F2 spaltet, sie mendelt
17.3 Die F3 erlaubt Rückschlüsse auf den Typ des F2-Elters
17.4 Rückkreuzungsnachkommenschaften reflektieren die Gametenverteilung
17.5 Mehrere Genpaare können unabhängig mendeln
17.5.1 Der einfachste Fall: 2 Genpaare
17.5.2 Ausweitung auf mehrere Genpaare und Verallgemeinerung
17.6 Literatur

18

Cytologische Grundlagen
18.1 Hauptträger der Gene sind die Chromosomen
18.2 Sichtbare Chromosomen bestehen aus besonders dicht gepackter DNA
18.2.1 Nucleosomen sind das wiederkehrende Motiv des Chromatins
18.2.2 Die Chromosomenstruktur der Vertebraten spiegelt genetisch unterschiedliche Chromatinkompartimente wider
18.3 Mitose
18.3.1 Ablauf
18.3.2 Organelle, die in der Mitose eine wichtige Funktion haben
18.3.3 Die Mitose wird genetisch gesteuert
18.4 Meiose
18.4.1 Ablauf
18.4.2 Der synaptonemale Komplex
18.4.3 Crossing over und Chiasmabildung
18.4.4 Gerichtete Meiose
18.4.5 Lampenbürstenchromosomen
18.5 Genotypische Geschlechtsdetermination
18.5.1 Der Chromosomensatz kann in beiden Geschlechtern verschieden sein
18.5.2 Zwitterigkeit
18.5.3 Genetische Steuerung der Geschlechtsdifferenzierung
18.5.3.1 Beispiel Drosophila
18.5.3.2 Beispiel Säugetiere
18.6 Sonderung von Keimbahn und Soma
16.8.1 Klassische Verfahren der Vaterschaftsanalyse .. 348
16.8.2 DNA-Fingerprinting .. 350
16.9 Das Genomprojekt Mensch ... 350
16.10 Richtlinien der genetischen Beratung .. 351
16.11 Somatische Gentherapie .. 352
16.12 Literatur .. 353

18.7 Auslösung der Meiose .. 420
18.8 Gametogenese ... 422
18.8.1 Spermatogenese .. 422
18.8.2 Oogenese .. 423
18.9 Besondere Chromosomenzyklen .. 424
18.9.1 Der Chromosomenzyklus bei den Orthocladiinae .. 424
18.9.2 Der Chromosomenzyklus bei den Sciariidae .. 425
18.10 Literatur .. 429

19 Erweiterungen der Mendelschen Genetik ... 431
19.1 Gene zeigen unterschiedliche Wirkungen ... 432
19.1.1 Es gibt unterschiedliche Arten der Dominanz .. 432
19.1.2 Gene können mehrfach mutieren .. 435
19.1.3 Gene können mehrere Merkmale beeinflussen .. 436
19.1.4 Gene können letal wirken ... 437
19.1.5 Die Manifestation der Gene kann unterschiedlich sein .. 440
19.2 Gene wirken nicht isoliert ... 442
19.2.1 Manche Gene wirken selbständig .. 442
19.2.2 Eine Reihe von Genen wirkt unselbständig ... 445
19.3 Haploide Zellen spalten anders als diploide .. 448
19.4 Polysomale Erbgänge weisen Besonderheiten auf .. 451
19.4.1 Manche Gene werden mit dem Centromer zusammen verteilt 451
19.4.2 Einige Gene sind vom Centromer mehr oder minder unabhängig 453
19.5 Literatur .. 456

20 Meiotische Rekombination bei Eukaryoten .. 457
20.1 Nachweis der Koppelung .. 458
20.1.1 X-chromosomaler Erbgang .. 458
20.1.2 Autosomaler Erbgang ... 464
20.1.2.1 Absolute Koppelung ... 465
20.1.2.2 Unvollständige Koppelung .. 466
20.2 Genkarteierung bei Diploiden .. 467
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.2.1</td>
<td>2-Faktor-Kreuzungen</td>
<td>468</td>
</tr>
<tr>
<td>20.2.2</td>
<td>3-Faktor-Kreuzungen</td>
<td>469</td>
</tr>
<tr>
<td>20.2.3</td>
<td>Kartierungsfunctionen</td>
<td>470</td>
</tr>
<tr>
<td>20.3</td>
<td>Zuordnung zu Koppelungsgruppen</td>
<td>472</td>
</tr>
<tr>
<td>20.3.1</td>
<td>Balancer-Stämme</td>
<td>472</td>
</tr>
<tr>
<td>20.3.2</td>
<td>Somatica Zellhybridisierung</td>
<td>475</td>
</tr>
<tr>
<td>20.4</td>
<td>Deletionskartierung</td>
<td>476</td>
</tr>
<tr>
<td>20.5</td>
<td>Komplementationskartierung</td>
<td>477</td>
</tr>
<tr>
<td>20.6</td>
<td>Genkartierung bei Haplonten</td>
<td>480</td>
</tr>
<tr>
<td>20.6.1</td>
<td>Tetradenanalysen</td>
<td>480</td>
</tr>
<tr>
<td>20.6.1.1</td>
<td>Geordnete Tetraden</td>
<td>481</td>
</tr>
<tr>
<td>20.6.1.2</td>
<td>Ungeordnete Tetraden</td>
<td>484</td>
</tr>
<tr>
<td>20.6.1.3</td>
<td>Interferenz</td>
<td>485</td>
</tr>
<tr>
<td>20.6.2</td>
<td>Genkonversion</td>
<td>486</td>
</tr>
<tr>
<td>20.7</td>
<td>Literatur</td>
<td>488</td>
</tr>
<tr>
<td>21</td>
<td>Mitotische Rekombination bei Eukaryoten</td>
<td>489</td>
</tr>
<tr>
<td>21.1</td>
<td>Nachweis bei Drosophila</td>
<td>490</td>
</tr>
<tr>
<td>21.2</td>
<td>Nachweis bei Aspergillus</td>
<td>493</td>
</tr>
<tr>
<td>21.2.1</td>
<td>Vergleich zwischen mitotischer und meiotischer Karte</td>
<td>494</td>
</tr>
<tr>
<td>21.3</td>
<td>Literatur</td>
<td>495</td>
</tr>
<tr>
<td>22</td>
<td>Rekombination bei Prokaryoten</td>
<td>497</td>
</tr>
<tr>
<td>22.1</td>
<td>Genetische Transformation</td>
<td>498</td>
</tr>
<tr>
<td>22.1.1</td>
<td>Kompetenz</td>
<td>499</td>
</tr>
<tr>
<td>22.1.2</td>
<td>Bindung und Aufnahme der Donor-DNA</td>
<td>500</td>
</tr>
<tr>
<td>22.1.3</td>
<td>Integration der Donor-DNA</td>
<td>501</td>
</tr>
<tr>
<td>22.1.4</td>
<td>Cotransformation</td>
<td>502</td>
</tr>
<tr>
<td>22.2</td>
<td>Transfektion</td>
<td>504</td>
</tr>
<tr>
<td>22.3</td>
<td>Transduktion</td>
<td>505</td>
</tr>
<tr>
<td>22.3.1</td>
<td>Allgemeine Transduktion</td>
<td>506</td>
</tr>
<tr>
<td>22.3.2</td>
<td>Spezielle Transduktion</td>
<td>511</td>
</tr>
<tr>
<td>22.4</td>
<td>Konjugation</td>
<td>515</td>
</tr>
<tr>
<td>22.4.1</td>
<td>F-Plasmide</td>
<td>516</td>
</tr>
<tr>
<td>22.4.2</td>
<td>Hfr-Stämme</td>
<td>516</td>
</tr>
<tr>
<td>22.4.3</td>
<td>F-Duktion</td>
<td>520</td>
</tr>
<tr>
<td>22.4.4</td>
<td>Andere Plasmide</td>
<td>520</td>
</tr>
<tr>
<td>22.5</td>
<td>Literatur</td>
<td>525</td>
</tr>
<tr>
<td>23</td>
<td>Rekombination bei Phagen</td>
<td>527</td>
</tr>
<tr>
<td>23.1</td>
<td>Phagenphänotyp</td>
<td>528</td>
</tr>
<tr>
<td>23.2</td>
<td>Phänotypische Maskierung</td>
<td>528</td>
</tr>
<tr>
<td>23.3</td>
<td>Replikation des Phagengenosoms</td>
<td>529</td>
</tr>
<tr>
<td>23.4</td>
<td>Genkariertung</td>
<td>531</td>
</tr>
<tr>
<td>23.4.1</td>
<td>Der Phage T4</td>
<td>531</td>
</tr>
<tr>
<td>23.4.2</td>
<td>Der Phage λ</td>
<td>534</td>
</tr>
<tr>
<td>23.4.3</td>
<td>Der Phage φX174</td>
<td>536</td>
</tr>
<tr>
<td>23.5</td>
<td>Feinstrukturanalyse eines Gens</td>
<td>539</td>
</tr>
<tr>
<td>23.6</td>
<td>Literatur</td>
<td>544</td>
</tr>
<tr>
<td>24</td>
<td>Rekombinationsmechanismen</td>
<td>545</td>
</tr>
<tr>
<td>24.1</td>
<td>Homologe Rekombination</td>
<td>546</td>
</tr>
<tr>
<td>24.1.1</td>
<td>2-Strang- oder 4-Strang austausch</td>
<td>550</td>
</tr>
<tr>
<td>24.1.2</td>
<td>Crossing over und Chiasmata</td>
<td>551</td>
</tr>
<tr>
<td>24.2</td>
<td>Sitespezifische Rekombination</td>
<td>553</td>
</tr>
</tbody>
</table>
25 Genetik quantitativer Merkmale
25.1 Grundlagen
25.1.1 Kontinuierliche Variation, genetisch oder umweltbedingt?
25.1.2 Umwelt- und Dominanzeffekte
25.1.3 Ein klassisches Beispiel
25.2 Schätzverfahren
25.2.1 Skalierung
25.2.2 Zerlegung der Varianzkomponenten
25.2.3 Heritabilität
25.3 Experimentelle Ansätze
25.3.1 Ein Simulationsmodell
25.3.2 Verwendung von Markern
25.4 Literatur

26 Gene in Populationen
26.1 Grundbegriffe
26.1.1 Allelfrequenz
26.1.2 Genpool
26.2 Panmixie
26.2.1 Autosomaler Erbgang
26.2.1.1 Ein Locus mit 2 Allelen
26.2.1.2 Multiple Allelie und Dominanz
26.2.1.3 Zwei Loci
26.2.2 Geschlechtsgekoppelter Erbgang
26.2.3 Polysomaler Erbgang
26.3 Inzucht
26.3.1 Selbstbefruchtung
26.3.2 Paarungssysteme und Inzucht-Koeffizient
26.3.3 Pfadkoeffizienten
26.4 Assortative Paarung
26.4.1 Positiv assortative Paarung
26.4.2 Negativ assortative Paarung
26.5 Selektion
26.5.1 Vollständige Selektion
26.5.2 Partielle Selektion
26.6 Mutation
26.6.1 Mutation und Selektion
26.7 Kleine Populationen
26.7.1 Effektive Populationsgröße
26.7.2 Abnahme der Heterozygotie
26.7.3 Zufällige genetische Drift
26.8 Isolation und Migration
26.9 Literatur
Genommutationen

27.1 Euploidie
27.1.1 Hiploidie
27.1.2 Polyploidie
27.1.2.1 Autopolyploidie
27.1.2.2 Allopolyploidie
27.1.3 Polytäne Chromosomen
27.1.3.1 Polytäne Chromosomen können Puffs ausbilden
27.1.3.2 Die Polytänie erleichtert strukturelle Untersuchungen
27.1.3.3 Lokal begrenzte differentielle Polytänisierung
27.2 Aneuploidie
27.2.1 Non-Disjunction erzeugt Mono- und Trisomie
27.2.2 Dosiseffekte bei der Genexpression
27.2.3 Dosiskompensation bei Heterosomen
27.2.3.1 Erhöhung der Expressionsrate X-chromosomaler Loci im heterogametischen Geschlecht
27.2.3.2 Inaktivierung von X-Chromosomen im homogametischen Geschlecht
27.2.3.3 Steuerung der Dosiskompensation
27.3 Literatur

Chromosomenmutationen

28.1 Endständige Deletionen sind instabil
28.2 Defizienzen und Duplikationen können die Genbalance stören
28.3 Inversionen haben kreuzungsgenetische Konsequenzen
28.4 Reziproke Translokationen verursachen unbalancierte Gameten
28.5 Chromosomenumlagerungen können zu Positionseffekten führen
28.5.1 Der Variegationseffekt ist modifizierbar
28.6 Literatur

Spontane Mutationsmechanismen

29.1 Punktmutationen
29.1.1 Basenaustausch
29.1.2 Deletionen und Insertionen
29.1.3 Besonders mutationsanfällige Punkte in der DNA (hot spots)
29.1.4 Die spontane Mutationsrate ist genetisch kontrolliert
29.2 Spontane Mutationen durch springende Gene
29.2.1 Transponierbare Elemente bei Prokaryoten
29.2.2 Transponierbare Elemente bei Eukaryoten
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.2.3</td>
<td>686</td>
</tr>
<tr>
<td>29.3</td>
<td>687</td>
</tr>
<tr>
<td>30</td>
<td>691</td>
</tr>
<tr>
<td>30.1</td>
<td>692</td>
</tr>
<tr>
<td>30.2</td>
<td>694</td>
</tr>
<tr>
<td>30.3</td>
<td>695</td>
</tr>
<tr>
<td>30.3.1</td>
<td>696</td>
</tr>
<tr>
<td>30.3.2</td>
<td>698</td>
</tr>
<tr>
<td>30.3.3</td>
<td>699</td>
</tr>
<tr>
<td>30.3.4</td>
<td>700</td>
</tr>
<tr>
<td>30.4</td>
<td>703</td>
</tr>
<tr>
<td>30.5</td>
<td>704</td>
</tr>
<tr>
<td>31</td>
<td>705</td>
</tr>
<tr>
<td>31.1</td>
<td>706</td>
</tr>
<tr>
<td>31.2</td>
<td>707</td>
</tr>
<tr>
<td>31.3</td>
<td>707</td>
</tr>
<tr>
<td>31.4</td>
<td>709</td>
</tr>
<tr>
<td>31.5</td>
<td>709</td>
</tr>
<tr>
<td>31.6</td>
<td>711</td>
</tr>
<tr>
<td>31.7</td>
<td>712</td>
</tr>
<tr>
<td>32</td>
<td>713</td>
</tr>
<tr>
<td>32.1</td>
<td>714</td>
</tr>
<tr>
<td>32.1.1</td>
<td>714</td>
</tr>
<tr>
<td>32.1.2</td>
<td>715</td>
</tr>
<tr>
<td>32.1.3</td>
<td>715</td>
</tr>
<tr>
<td>32.1.3.1</td>
<td>715</td>
</tr>
<tr>
<td>32.1.3.2</td>
<td>718</td>
</tr>
<tr>
<td>32.1.3.3</td>
<td>718</td>
</tr>
<tr>
<td>32.2</td>
<td>719</td>
</tr>
<tr>
<td>32.2.1</td>
<td>719</td>
</tr>
<tr>
<td>32.2.2</td>
<td>719</td>
</tr>
<tr>
<td>32.2.3</td>
<td>719</td>
</tr>
<tr>
<td>32.2.3.1</td>
<td>720</td>
</tr>
<tr>
<td>32.2.3.2</td>
<td>721</td>
</tr>
<tr>
<td>32.3</td>
<td>722</td>
</tr>
</tbody>
</table>
Die genetische Analyse der Entwicklung

33.1 Entwicklungsmutanten ... 726
33.1.1 Gene für die embryonale Musterbildung bei Drosophila 727
33.1.2 Zygotische Gene ... 727
33.1.3 Maternal exprimiert Gene ... 728
33.1.4 Abschätzung der Genzahl .. 729
33.1.5 Mutantenanalyse .. 730

33.2 Die Festlegung der Körperachsen durch vier maternal exprimierte Gengruppen ... 731

33.2.1 Polarisation durch Interaktionen zwischen Oocyte und Follikelzellen 733

33.2.2 Transkriptionsfaktorgradien entlang der Längsachse ... 736

33.2.3 Regionalisierung durch Signaltransduktion: die Terminalbereiche 737

33.2.4 Signaltransduktion und Kerntransport: die Dorsoventralachse 738

33.3 Vom Ei zum Blastoderm: Die Blaupause des Körpers entsteht 739

33.3.1 Zygotische Segmentierungsgene unterteilen die Längsachse 739

33.3.2 Grobunterteilung durch Gap-Gene .. 740

33.3.2.1 Kontrolle der Gap-Genexpression: ein genetischer Regelkreis 742

33.3.2.2 Räumliches Muster durch Synergie: hunchback 742

33.3.2.3 Räumliches Muster durch Kompetition: Krüppel 744

33.3.2.4 Räumliches Muster durch Quenching und Silencing: knirps 745

33.3.3 Aus Gradienten werden periodische Paarregelgen-Streifen 747

33.3.3.1 Modulare und kompaktes cis-regulatorische Streifen-Elemente 748

33.3.3.2 Kontrolle der Streifenexpression im anterioren Bereich des Blastoderms 748

33.3.3.3 Kontrolle der Streifenexpression im posterioren Bereich des Embryos 748

33.3.4 Zygotische Gene unterteilen die Dorsoventralachse 750

33.3.4.1 Unterteilung entlang der Dorsalhälfte .. 751

33.3.4.2 Unterteilung entlang der Ventralhälfte ... 751

33.3.5 Blastoderm und Anlagenplan .. 753

33.4 Segmentpolaritätsgene: von der Blaupause über das Parasegment zum Compartment ... 754

33.4.1 Segmentpolaritätsgene stabilisieren Parasegmentgrenzen 754

33.4.2 Parasegmentgrenzen als Organisationszentren ... 755

33.4.3 engrailed definiert Compartments .. 756

33.4.4 Die Entdeckung der Compartments ... 757
33.5 Segmentidentität durch homöotische Selektorgene
33.5.1 Genaktivität im Bithorax-Komplex bewirkt Diversifizierung der posterioren Segmente
33.5.2 Genaktivität im Antennapedia-Komplex bewirkt Diversifizierung der anterioren Segmente
33.5.3 Organisation und Expression der homöotischen Selektorgene: das Kolinearitätsprinzip
33.5.4 Die regionsspezifischen homöotischen Gene *spalt* und *forkhead*
33.5.5 Kopfsegmentierung: Wer macht die Segmente?
33.6 Imaginalscheiben: vom Embryo zur Fliege
33.6.1 Entstehung der Vorläufer der Imaginalscheiben
33.6.2 Homöotische Gene legen die Identität der Imaginalscheiben fest
33.6.3 Transdetermination
33.6.4 Musterbildung in der Flügelmaginalscheibe
33.6.4.1 Etablierung der anterioren/posterioren Achse: Decapentaplegic als Morphogen
33.6.4.2 Etablierung der Dorsoventralachse
33.6.5 Die proximodistale Achse: aus zwei mach drei
33.6.6 Differenzierung in der Imaginalscheibe: vom Epithel zum Auge
33.7 Bildung von Keimblättern und Organen
33.7.1 Mesoderm
33.7.2 Muskelentwicklung und Muskelmuster
33.7.3 Ektoderm
33.7.3.1 Epidermisdifferenzierung und Apodembildung
33.7.3.2 Etablierung neurogener Zellareale
33.7.3.3 Tracheen: Invagination, Verästelung und Fusion
33.7.4 Entoderm und Darmentwicklung
33.7.4.1 Morphogenese im Darmrohr
33.7.4.2 Das Stomatagastrische Nervensystem
33.7.4.3 Hinterdarmdifferenzierung und Organogenese an den Darmgrenzen
33.8 Keimzellenentwicklung und Festlegung des Geschlechts
33.8.1 Keimbahn versus Soma
33.8.2 Genetik der Geschlechtsbestimmung
33.8.3 Molekulare Mechanismen
33.9 Faktoren und Module wirken kombinatorisch
33.9.1 Modularer Aufbau der Enhancer
33.9.2 Modularer Aufbau der Proteine
33.9.3 Genduplikation und Redundanz .. 797
33.9.4 Entwicklung und Evolution ... 798
33.10 Vertebraten: Die Entwicklungsgenetik trägt Früchte ... 802
33.10.1 Genetische Analyse der Fischentwicklung .. 803
33.10.2 Molekulargenetik bei Amphibien: Induktion .. 804
33.10.3 Entwicklungsgenetik bei der Maus: \textit{Hox, Pax} und humane Syndrome 809
33.10.4 Vom Modell zum Prinzip zur Perspektive ... 811
33.10.5 Vom Genom zum „Phänomen“: ein Ausblick .. 812
33.11 Krebsentstehung als entwicklungsbiologisches Problem 814
33.11.1 Genetische Faktoren der Krebsentstehung: Melanomentwicklung bei \textit{Xiphophorus} ... 814
33.11.2 Onkogene spezifizieren den neoplastischen Phänotyp: Retroviren und ihre zellulären Homologe ... 815
33.11.2.1 Mechanismen der Onkogenaktivierung .. 818
33.11.2.2 Kooperativität von Onkogenen ... 821
33.11.3 Tumorsuppressorgene ... 824
33.12 Literatur .. 828

34 Neurogenetik ... 831
34.1 Themenkreis und Fragestellungen ... 832
34.1.1 „Forward genetics“: vom Phänotyp zum Genotyp .. 833
34.1.2 „Reverse genetics“: vom Protein zum Phänotyp ... 833
34.1.3 Signalkaskaden und genetische Wirkzüge .. 834
34.1.4 Neurogenetik als Mittel zum Zweck: das genetische Skalpell 834
34.1.5 Neurogenetisch wird nur mit wenigen Modellorganismen gearbeitet 835
34.2 Die Struktur des Nervensystems unterliegt genetischer Kontrolle 836
34.2.1 Das Ausmaß der genetischen Kontrolle ist eine Funktion des Genotyps 838
34.3 Die genetische Analyse der Entwicklung des Nervensystems 839
34.3.1 Die genetischen und epigenetischen Spielregeln der Neurogenese in Insekten ... 839
34.3.1.1 Proneurale Gene legen das neuronale Differenzierungsfeld fest 840
34.3.1.2 Die Flügelimaginalscheibe als Modellsystem der proneuralen Genexpression ... 840
34.3.1.3 Proneurale Gene und die genomische Organisation des \textit{achaete-scute}-Komplexes ... 842
34.3.1.4 Downstream-Regulation der proneuralen Gene durch HLH-Proteine 842
34.3.1.5 Proneurale Mustenanlage: Transkriptionskontrolle des AS-K durch pannier und iroquois 843
34.3.1.6 Die neurogenen Gene kontrollieren den Eintritt in den neuronalen oder epidermalen Entwicklungspfad 843
34.3.1.7 Epistatische Wechselwirkungen decken eine funktionelle Hierarchie der neurogenen Gene auf 844
34.3.1.8 Die Produkte von Notch und E(spl) sind an der Transduktion und Interpretation des inhibitorischen Signals in den Epidermoblasten beteiligt 845
34.3.1.9 Die molekulare Architektur von Notch und Delta und ihre Strukturverwandtschaft zum epidermalen Wachstumsfaktor der Vertebraten 845
34.3.1.10 Die intrazelluläre Notch-Domäne ist der Signalträger zum Nucleus 847
34.3.1.11 Der E(spl)-Genkomplex codiert für verschiedene Elemente einer intranucleären Signalkette 848
34.3.1.12 Regulation des Notch-Signals durch laterales Feedback 849
34.3.1.13 Differenzierung durch Induktion 849
34.3.1.14 Genetische Interaktionen von Notch und wingless: Kontrolle der Notch-Signaltransduktion 849
34.3.1.15 Laterale Inhibition durch Notch-Signalübertragung ist ein allgemein verbreitetes Prinzip in der Entwicklung von Organen 851
34.3.1.16 Proneurale und neurogene Gene in Vertebraten 851
34.3.1.17 Vertebraten-Myogenese und Drosophila-Neurogenese sind mechanistisch vergleichbar 853
34.3.2 Die genetischen und epigenetischen Mechanismen der Augenentwicklung 854
34.3.2.1 Ein Spielfeld für Neurogenetiker: das Komplexauge von Drosophila 854
34.3.2.2 Die morphogenetischen Furchen markieren den Beginn der Zell- differenzierung im Auge 856
34.3.2.3 Master-Regulator-Gene: viele Solisten oder ein Orchester? 856
34.3.2.4 Die Mechanismen der Initiation der morphogenetischen Furchen 858
34.3.2.5 Die Wanderung der Furchen: eine La-Ola-Welle im Auge 859
34.3.2.6 Die Synchronisation der Zellteilung und die Induktion der neuronalen Differenzierung 859
34.3.2.7 Von der Mustenanlage zur Musterbildung: proneurale kontra neurogene Gene 859
34.3.2.8 Die Regulation der atonal-Expression beim Übergang von der Mustenanlage zur Musterbildung
34.3.2.9 Selektion durch laterale Inhibition: Variationen eines Themas
34.3.2.10 Ein Ommatidium stammt nicht von einem Zellklon ab
34.3.2.11 Die Entwicklung der R7-Zelle: ein Klassiker der Signaltransduktionsforschung
34.3.2.12 Sevenless aktiviert den Receptor-Tyrosinkinase-Signalweg
34.3.2.13 Gene für die Differenzierung der peripheren Retinulazellen
34.3.2.14 Die Frage nach der Spezifität des R7-Pathways
34.3.2.15 Den Feinschliff zum „biologischen Kristall“ erhält das Komplexauge durch Zellumlagerungen und Apoptose
34.3.2.16 Augenentwicklung bei Vertebraten: ein kurzer Vergleich
34.3.3 Regionalisierung des Nervensystems
34.3.3.1 Cephalisierung in Arthropoden
34.3.3.2 Das Gehirn der Insekten ist metamer aufgebaut
34.3.3.3 Otd und ems haben Doppelfunktion als Gap-Gene und homöotische Selektorgene der Kopfregion
34.3.3.4 Wie erhalten Gehirnbezirke ihre segmentale Identität?
34.3.3.5 Regionale Expressionsdomänen von Homöobox-Genen im Wirbeltier-Gehirn
34.3.3.6 Die Mittelhirn-Hinterhirn-Grenze: ein regionales Organisationszentrum
34.3.3.7 Genetische und epigenetische Mechanismen der Weg- und Zielfindung wachsender Axone
34.3.3.8 Exploratorische Wachstumskegel suchen dem Axon den besten Weg
34.3.3.9 Straßenbau für Axone
34.3.3.10 Differentielles Spleifen verleiht Adhäsionsmolekülen eine große Vielfalt
34.3.3.11 Nullmutationen in Genen für Adhäsionsmoleküle können überraschend geringe Auswirkungen haben
34.3.3.12 Mehrfachmutanten decken die redundante Absicherung axonalen Wegfindens auf
34.3.3.13 Kontaktinhibitoren stoppen axonales Wachstum
34.3.3.14 Wachstumskegel können sich auch chemotaktisch orientieren
34.3.3.15 Tropfische Interaktionen mit Zellen der Zielregion regulieren die Zellzahl
34.3.3.16 Genetische Analyse sensorischer Systeme
Photorezeption und die Genetik der Farbverwahrung 889

Die genetische Basis der Rot-Grün-Farbenblindheit 891

Opsine in Invertebraten ... 892

Chemorezeption und Geruchswahrnehmung 892

Geruchsrezeptoren gehören zur Familie der G-Protein bindenden Transmembranproteine ... 893

Einzelne sensorische Neurone exprimieren nur einen oder wenige Geruchsrezeptoren ... 893

Selektive Genexpression durch Allelinaktivierung 893

Pheromonwahrnehmung in Säugetieren: andere Moleküle – verschiedene Mechanismen ... 895

Genetische Analysen identifizieren Kandidaten für Chemorezeptoren in *C.elegans* ... 895

Die Kontrolle der gewebespezifischen Genexpression in *C.elegans* ist noch ungeklärt ... 898

Ein verhaltensbiologisches Paradigma führt zur Entdeckung von liganden-spezifischen Rezeptoren ... 898

Drosophila-Genetik zeigt überlappende Elemente zwischen visueller und olfaktorischer Signaltransduktion 899

G-Proteine oder Ionenkanäle – eine Geschmacksfrage 899

Mechanorezeption .. 900

Verhaltensgenetik .. 901

Genetik und Verhalten: Grauzone zwischen Naturwissenschaft, Politik und Philosophie ... 901

Einige wichtige Begriffe .. 902

„Angeborenes“ Verhalten .. 902

„Erblichkeit“ von Verhaltensunterschieden 903

Komplexe Verhaltensmerkmale, quantitative Vererbung und selektierte Beispiele für den Einfluß bekannter Gene 904

Neuigier, Neurosen und Dopaminrezeptoren 905

Sexualverhalten von *Drosophila* .. 905

In *fosB*-knock-out-Mäusen ist das Brutpflegeverhalten gestört 907

Die genetische Analyse der biologischen Rhythmik 908

Das Design von molekularen Oszillatoren: autoregulatorische Feedback Loops ... 909

Mutationen führen zu einer Veränderung der Periodizität von definierten Verhaltensweisen ... 909
34.5.4.3 Es gibt unabhängige Oszillatoren unterschiedlicher Frequenz 911
34.5.4.4 Kandidaten für molekulare Schrittmacher in Drosophila: period und timeless 911
34.5.4.5 Nur wenige Neurone im Gehirn von Metazoen enthalten eine „innere Uhr“ 913
34.5.4.6 Endogene Oszillatoren in anderen Organismen 916
34.5.4.7 Synchronisation circadianer Rhythmen durch Licht 918
34.5.4.8 Liegt der evolutionäre Ursprung der inneren Uhr in photorezeptiven Prozessen? 919
34.5.5 Die genetische Analyse von Lernmechanismen 919
34.5.5.1 Lernmutanten bei Drosophila 921
34.5.5.2 cAMP und Lernprozesse bei Aplysia 922
34.5.5.3 CREB-Aktivatoren erhöhen die Lernleistung 923
34.5.5.4 Genetische Trennung struktureller und funktioneller Plastizität 924
34.5.5.5 Der NMDA-Rezepor und das Prinzip der Hebbsschen Synapse 926
34.5.5.6 Lernen ist lebenslange Entwicklung 926
34.6 Literatur 927

35 Immungenetik 933
35.1 Was ist das Immunsystem? 934
35.1.1 Das Immunsystem unterscheidet „Selbst“ von „Nicht-Selbst“ 934
35.1.2 Antikörper können alle Varianten unterscheiden 934
35.1.3 Die Differenzierung von Zellen des Immunsystems findet das ganze Leben über statt 935
35.2 Struktur und Funktion von Antikörpern 935
35.2.1 Antikörper haben konstante und variable Domänen 935
35.2.2 Antikörper binden Antigene 938
35.2.2.1 Die Bindungsstärke zwischen Antikörper und Antigen wird durch die Anzahl der Bindungsstellen bestimmt 939
35.2.2.2 Antiseren können die Spezifität eines monoklonalen Antikörpers übertreffen 939
35.2.3 Unterschiedliche Antikörperklassen haben verschiedene Funktionen 939
35.3 Immunglobulingene 941
35.3.1 Es gibt eine Vielzahl von Immunglobulingenen 941
35.3.2 Antikörperdiversität entsteht durch Neukombination von Gensegmenten 941
35.3.3 Entstehung von Diversität in λ-Ketten 942
Entstehung von Diversität in H-Ketten
Ein B-Lymphocyt prägt durchallele Exklusion nur einen der beiden parentalen Loci für H- und L-Ketten aus

Die Zahl der V-Gensegmente ist eine wichtige Grundlage der keimbahn- codierten Antikörperdiversität

Somatische Mutationen erhöhen die Antikörperdiversität

Ein IgM-produzierender B-Lymphocyt schaltet beim Klassenwechsel auf die Produktion von IgG, IgE oder IgA um

Antigenspezifische T-Zell-Rezeptoren (TCR)

T-Zell-Rezeptoren sind mit B-Zell-Rezeptoren verwandt

Diversität von TCR-Ketten

Der Haupthistokompatibilitäts-komplex (MHC)

Der Haupthistokompatibilitäts-komplex bewirkt Tumorresistenz und Abstoßung von Transplantaten

Struktur und Expression von
MHC-Molekülen

MHC-Genorganisation

MHC-Gene sind hochgradig polymorph

MHC-Moleküle präsentieren Antigene an T-Lymphocyt en

T-Zellen erkennen Fremdes nur zusammen mit körpereigenen MHC-Molekülen: Sie sind „selbst-restringiert“

T-Zell-Rezeptoren binden Komplexe aus Antigen-Peptiden und einem MHC-Molekül

T-Zellen werden durch antigenpräsentierende Zellen aktiviert

Cytotoxische T-Zellen töten virus-infizierte Zellen

Regulation der Immunantwort

Lymphocyt en kooperieren

Jeder Lymphocy t ist Bestandteil eines regulatorischen Netzwerkes

Körpereigene und fremde Antigene selektieren das Rezeptor-Repertoire

Antigene selektieren Lymphocyt en mit dem passenden Rezeptor (klonale Selektion)

Entwicklung des T-Zell-Repertoires im Thymus: Selektion „nützlicher“ und Entfernung „schädlicher“

T-Lymphocyt en

An Erkrankungen mit MHC-Assoziation sind Autoimmunreaktionen beteiligt

Literatur
Methoden der Molekulargenetik

A

Isolierung von Nucleinsäuren:
DNA und RNA .. 967
A.1 Präparation von DNA 968
A.1.1 Chromosmale DNA aus Eukaryotenzellen 968
A.1.2 Plasmid-DNA aus Bakterien 969
A.1.3 Phagen-DNA aus Bakterien 969
A.1.4 DNA-Fragmente aus Trenngelen 970
A.2 Präparation von RNA 970
A.2.1 Gesamt-RNA ... 970
A.2.2 Isolierung poly(A)-haltiger RNA 970

B

Trennung von Makromolekülen 973
B.1 Zentrifugation .. 974
B.1.1 Differentielle Sedimentation 974
B.1.2 Dichtegradientenzentrifugation 974
B.1.2.1 Lineare Dichtegradienten 974
B.1.2.2 Dichtestufengradienten 974
B.2 Elektrophoresetecniken 975
B.2.1 Acrylamid .. 975
B.2.2 Agarose .. 975
B.2.3 Elektrophoretische Auftrennung von Proteinien 975
B.2.3.1 Gelelektrophorese nativer Proteinien 975
B.2.3.2 SDS-Gelelektrophorese 976
B.2.3.3 Diskontinuierliche Gelelektrophorese 976
B.2.3.4 Isoelektrische Fokussierung 977
B.2.3.5 Zweidimensionale Gelelektrophorese 977
B.2.3.6 Nachweis von Proteinien im Trenngel 977
B.2.3.7 Silberfärbung 978
B.2.3.8 Autoradiografie 978
B.2.4 Elektrophoretische Auftrennung von Nucleinsäuren 978
B.2.4.1 Agarose-Gelelektrophorese 978
B.2.4.2 Puls-Feld-Elektrophorese 978
B.2.4.3 Polyaamid-Gelelektrophorese 979
B.2.4.4 Denaturierende Polyaacrylamidgele 979
B.2.4.5 Anfärben von Nucleinsäuren im Trenngel 979

C

Enzyme für molekularbiologisches Arbeiten 981
C.1 Katabolische Enzyme: Nucleasen 982
C.1.1 Nucleasen mit unspezifischen Schnittstellen 982
C.1.1.1 DNase I ... 982
C.1.1.2 Bal 31 .. 982
C.1.1.3 S1 .. 982
C.1.1.4 RNA-Endonucleasen 982
C.1.2 Basenpaarspezifische Endonucleasen: Restriktionsenzyme 982
C.2 Anabolische Enzyme: vom Einzelstrang zum Doppelstrang 983
C.2.1 DNA-Polymerasen 983
C.2.2	RNA-abhängige DNA-Polymerase	984
C.2.3	Einzelstrangsynthesisierende Polymerasen	984
C.2.4	DNA-abhängige RNA-Polymerasen	985
C.2.5	DNA-modifizierende Enzyme	985
C.2.5.1	Eco-RI-Methylase	985
C.2.5.2	Phosphatasen	985
C.2.5.3	Kinasen	985
C.2.6	DNA-verbindende Enzyme	986

D

Vektoren für die Klonierung von DNA

D.1	Phagenvektoren	988
D.1.1	Insertionsvektoren	989
D.1.2	Substitutionsvektoren	989
D.2	Plasmidvektoren	990
D.2.1	pBR322-Klonierung	990
D.2.2	Ligation und Negativ-Selektion	990
D.2.3	Selektion durch Verhindern der Selbstligation	991
D.2.4	Amplifikation von Plasmiden	991
D.3	M13-Vektoren: Doppel- und Einzelstrang-DNA	992
D.4	Phagemide, Cosmide und YAC: „unnatürliche“ Vektoren	992
D.4.1	Phagemide	992
D.4.2	Cosmide	993
D.4.3	YACs	993
D.5	Bifunktionelle Vektoren	993
D.6	Vektoren zur Transformation von Eukaryotenzellen	993
D.6.1	Vektoren für Säugerzellen	994
D.6.2	Vektoren für Pflanzenzellen	994
D.6.2.1	Protoplasten	995
D.7	Expression klonierter Gene	995
D.7.1	Expressionsvektoren und Expression in E. coli	995
D.7.1.1	β-Galactosidase-Vektoren	996
D.7.1.2	T7-Expressionsvektoren	996
D.7.2	Eukaryotische Expressionsvektoren	996
D.7.2.1	Baculoviren	996
D.7.3	Einfache Reinigung rekombinanter Plasmide	998

E

Klonierungstechniken

<p>| E.1 | Herstellung von DNA-Bibliotheken | 1000 |
| E.1.1 | Genbanken von genomischer DNA | 1000 |
| E.1.2 | Isolierung von Klonen aus einer Genbibliothek | 1002 |
| E.1.2.1 | Wandern entlang des Chromosomes | 1002 |
| E.1.2.2 | Springen auf dem Chromosom | 1002 |
| E.1.3 | cDNA-Klonierung und Herstellung von cDNA-Bibliotheken | 1003 |
| E.1.4 | Herstellung und Verwendung von Expressionsbibliotheken | 1004 |</p>
<table>
<thead>
<tr>
<th>F</th>
<th>Nachweis von DNA, RNA und Protein</th>
<th>1005</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.1</td>
<td>Sonden zum Nachweis spezifischer Nucleinsäuren</td>
<td>1006</td>
</tr>
<tr>
<td>F.1.1</td>
<td>Herstellung doppelstrangmarkierter DNA-Sonden</td>
<td>1006</td>
</tr>
<tr>
<td>F.1.1.1</td>
<td>Nick-Translation</td>
<td>1006</td>
</tr>
<tr>
<td>F.1.1.2</td>
<td>Endmarkierung</td>
<td>1006</td>
</tr>
<tr>
<td>F.1.1.3</td>
<td>Markierung durch Auffüllverfahren</td>
<td>1006</td>
</tr>
<tr>
<td>F.1.1.4</td>
<td>Polymerase-Austauschreaktion</td>
<td>1007</td>
</tr>
<tr>
<td>F.1.1.5</td>
<td>Random primed Synthese</td>
<td>1007</td>
</tr>
<tr>
<td>F.1.2</td>
<td>Herstellung strangspezifisch markierter DNA-Sonden</td>
<td>1008</td>
</tr>
<tr>
<td>F.1.2.1</td>
<td>Einzelstrang-DNA-Sonden</td>
<td>1008</td>
</tr>
<tr>
<td>F.1.2.2</td>
<td>Oligonucleotidsynthese</td>
<td>1008</td>
</tr>
<tr>
<td>F.1.3</td>
<td>Herstellung strangspezifischer RNA-Sonden</td>
<td>1008</td>
</tr>
<tr>
<td>F.1.3.1</td>
<td>cDNA-Synthese</td>
<td>1010</td>
</tr>
<tr>
<td>F.2</td>
<td>Nachweis spezifischer Nucleinsäuren</td>
<td>1010</td>
</tr>
<tr>
<td>F.2.1</td>
<td>Southern-Blot</td>
<td>1011</td>
</tr>
<tr>
<td>F.2.2</td>
<td>Northern-Blot</td>
<td>1011</td>
</tr>
<tr>
<td>F.3</td>
<td>Herstellung von Antikörpern</td>
<td>1011</td>
</tr>
<tr>
<td>F.3.1</td>
<td>Herstellung polyklonaler Antikörper</td>
<td>1012</td>
</tr>
<tr>
<td>F.3.2</td>
<td>Herstellung monoklonaler Antikörper</td>
<td>1013</td>
</tr>
<tr>
<td>F.3.3</td>
<td>Reinigung der Antikörper</td>
<td>1013</td>
</tr>
<tr>
<td>F.4</td>
<td>Nachweis von Proteinen mittels Antikörper</td>
<td>1014</td>
</tr>
<tr>
<td>F.4.1</td>
<td>Jodmarkierung von Antikörper</td>
<td>1014</td>
</tr>
<tr>
<td>F.4.2</td>
<td>Enzymgekoppelte Antikörper</td>
<td>1014</td>
</tr>
<tr>
<td>F.4.3</td>
<td>Immunpräzipitation</td>
<td>1014</td>
</tr>
<tr>
<td>F.4.4</td>
<td>Western-Blot-Analyse</td>
<td>1015</td>
</tr>
<tr>
<td>F.4.5</td>
<td>Enzym-Immuonassays</td>
<td>1016</td>
</tr>
<tr>
<td>F.4.5.1</td>
<td>Sandwich-Test</td>
<td>1016</td>
</tr>
<tr>
<td>F.4.5.2</td>
<td>Kompetitiver ELISA-Test</td>
<td>1017</td>
</tr>
<tr>
<td>F.4.6</td>
<td>Nachweis spezifischer Proteinprodukte in situ Antikörperfärbung von Zellen und Geweben</td>
<td>1017</td>
</tr>
<tr>
<td>F.4.6.1</td>
<td>Protein-A-Gold-Methode</td>
<td>1017</td>
</tr>
</tbody>
</table>

G | Nachweis und Kartierung von Genen auf der Ebene der DNA | 1019 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>G.1</td>
<td>Kartierung von DNA-Fragmenten und ihr Nachweis im Genom</td>
<td>1020</td>
</tr>
<tr>
<td>G.1.1</td>
<td>Restriktionskarten</td>
<td>1020</td>
</tr>
<tr>
<td>G.1.2</td>
<td>Nachweis von DNA-Sequenzen im Genom</td>
<td>1021</td>
</tr>
<tr>
<td>G.1.3</td>
<td>Polymerase-Kettenreaktion (PCR)</td>
<td>1021</td>
</tr>
<tr>
<td>G.2</td>
<td>Zuordnung klonierter DNA-Abschnitte zu Chromosomen</td>
<td>1023</td>
</tr>
<tr>
<td>G.2.1</td>
<td>Hybridzell-Technik</td>
<td>1023</td>
</tr>
<tr>
<td>G.2.2</td>
<td>Maschinelle Trennung von Chromosomen</td>
<td>1025</td>
</tr>
<tr>
<td>G.2.3</td>
<td>In-situ-Lokalisierung von DNA-Fragmenten im Chromosom</td>
<td>1025</td>
</tr>
<tr>
<td>G.3</td>
<td>Von der Lokalisierung im Chromosom zur Koppelungsgruppe</td>
<td>1026</td>
</tr>
</tbody>
</table>
G.4 Von der Koppelungsgruppe zur molekularen Genkarte 1027
G.5 Systematische Genkartierung eines einfachen Genoms 1028
G.6 Genom-Diagnostik 1029
G.6.1 Nachweis spezifischer Gene 1029
G.6.2 Nachweis kleiner Deletionen und Punktmutationen 1029
G.6.3 Genetischer Fingerabdruck 1030

H Vom Gen zum Transkript 1031
H.1 Transkribierte Regionen der DNA 1032
H.1.1 Reverse Southern-Blots 1032
H.1.2 RNA-Detection auf Northern-Blots 1032
H.1.2.1 Die „dot-slot“-Hybridisierungsmethode 1032
H.2 Struktur der Transkripte 1033
H.2.1 Nuclease-S1-Technik 1033
H.2.2 Primer-Extension-Methode 1033
H.3 Nachweis seltener Transkripte 1033
H.3.1 RNase-Protection-Methode 1034
H.4 Visueller Nachweis von Transkripten in Zellpräparaten 1035

I Vom Protein zur DNA und zurück 1037
I.1 Bestimmung der Aminosäuresequenz eines Proteins 1038
I.1.1 Edman-Abbau 1038
I.2 Von der DNA-Sequenz zum Protein 1039
I.2.1 RNA-Sequenzierung mit spezifischen Ribonucleasen 1039
I.2.2 DNA-Sequenzierung 1040
I.2.2.1 Maxam-Gilbert-Methode 1040
I.2.2.2 Sanger-Methode 1042
I.2.3 Sequenzinformation - ohne Computer geht nichts mehr! 1044
I.3 In-vitro-Transkription und -Translation 1045

K Funktionale Analyse der Gene 1047
K.1 Transgene Organismen 1048
K.2 Eingrenzung cis-regulatorischer Elemente eines Gens 1049
K.3 Bindenstellen für Proteine in der DNA 1050
K.3.1 Bandshift-Assay 1050
K.3.2 DNA-Protection-Experimente 1051
K.3.3 Immunpräzipitation 1052
K.3.4 Southwestern-Analyse 1053
K.4 Transiente und permanente Zelltransformation 1053
K.4.1 Einschleusen von rekombinanter DNA in Eukaryotenzenellen 1053
K.4.1.1 Elektroporation 1053
K.4.1.2 Mikroinjektion klonierter DNA 1054
K.4.1.3 CAT-Assay 1054
K.4.2 In-vitro-Mutagenese 1055
K.4.2.1 PCR-Mutagenese 1056
K.4.2.2 Site-directed Mutagenese 1056
K.5 Regulatorische Genbereiche und Chromatinstruktur 1057
L Funktion → Gen → DNA-Klon: ein Kompendium 1059
L.1 Vom Phänotyp zum Gen 1060
L.1.1 Formalgenetische und molekulare Kartierung von Genen 1060
L.1.2 Klonierung segmentspezifischer DNA-Abschnitte 1061
L.1.3 Insertionsmutagene 1062
L.1.4 Von der Enhancer-Detection zum Gen .. 1062
L.1.5 Wo liegt das Gen innerhalb der klonierten DNA? 1064
L.1.6 Welches DNA-Segment umfasst die gewünschte Genfunktion? 1064
L.1.7 Wo liegen transkribierte Sequenzbereiche? 1064
L.1.8 Ist das Kandidatengen von Mutationen betroffen? 1064
<table>
<thead>
<tr>
<th>L.2</th>
<th>Vom Protein zum Gen</th>
<th>1065</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.2.1</td>
<td>Die Antigen-Antikörper-Reaktion</td>
<td>1065</td>
</tr>
<tr>
<td>L.2.2</td>
<td>Vom „Proteinfleck“ zum Gen</td>
<td>1065</td>
</tr>
<tr>
<td>L.2.3</td>
<td>Vom Antikörper zum Gen</td>
<td>1066</td>
</tr>
<tr>
<td>L.3</td>
<td>Vom Genprodukt zum Phänotyp</td>
<td>1066</td>
</tr>
<tr>
<td>L.3.1</td>
<td>Spezifische Inaktivierung von Proteinen</td>
<td>1066</td>
</tr>
<tr>
<td>L.3.2</td>
<td>Spezifische Inaktivierung von Transkripten</td>
<td>1067</td>
</tr>
<tr>
<td>L.4</td>
<td>Von der DNA zum Phänotyp</td>
<td>1067</td>
</tr>
<tr>
<td>L.4.1</td>
<td>Klonierung funktionsäquivalenter Gene in heterologen Systemen</td>
<td>1068</td>
</tr>
<tr>
<td>L.4.2</td>
<td>Austausch homologer DNA-Sequenzen in vivo</td>
<td>1068</td>
</tr>
<tr>
<td>L.4.3</td>
<td>Genetik am Menschen</td>
<td>1069</td>
</tr>
<tr>
<td>L.5</td>
<td>Gesetz zur Regelung der Gentechnik</td>
<td>1070</td>
</tr>
<tr>
<td>L.6</td>
<td>Literatur zu den Methodenkapiteln</td>
<td>1071</td>
</tr>
</tbody>
</table>

Register ... 1073

Abkürzungen ... 1091