PART I
Foundations

Chapter 1 Introduction and Core Philosophy ... 3
 1.1 Landmarks: Memory Is Distributed, Memory is a Dynamic Property 3
 1.1.1 Lashley's Equipotentiality ... 3
 1.1.2 Hebb's Rules of Cooperativity ... 3
 1.1.3 Hayek: Perceiving is Classification of Objects by Activation of Associative Nets 4
 1.2 New Trends in Neuroscience .. 5
 1.3 Copernican Changes in Memory Research ... 5
 1.3.1 Distributed Networks .. 5
 1.3.1.1 Distributed Memory: Findings with Functional Magnetic Resonance Imaging ... 6
 1.4 EEG-Brain Dynamics ... 7
 1.4.1 Importance of EEG Studies .. 7
 1.5 Pioneering Studies of Brain Macrodynamics and Whole Brain Approach 9
 1.5.1 Griffith: Statistical Mechanics in Biology and Physics 9
 1.5.2 Rosen: Global Neurodynamics ... 10
 1.5.3 Fessard: General Transfer Functions of the Brain 10
 1.5.4 Edelman: Reentrant Signalling Theory of Higher Brain Function 11
 1.6 Freeman, Katschalsky, and Haken: Preliminary Steps in Introducing Macrodynamics of Electrical Activity .. 11
 1.7 Application of Principles of Biological System Analysis to Brain Research 13
 1.7.1 Reasons for Establishing Programs for Brain Research 13
 1.7.1.1 Program Steps .. 14
 1.7.1.2 Mathematical Methods of Program ... 15
 1.8 New Approaches to Brain Functioning at Macroscopic Level 15
 1.8.1 Sherrington's Neuron Doctrine Revisited ... 15
 1.8.2 Renaissance of EEG Use in Search of Integrative Brain Functions 16
 1.9 Neurons-Brain Theory: An Approach that Includes Whole Brain Organization 17
 1.9.1 Topography of Cognition and Elements of Neurons–Brain Theory 17
 1.10 Significance of EEG Brain Dynamics in Memory States and Integrative Brain Functions .. 19

Chapter 2 Concepts and Theories .. 21
 2.1 Memory Machineries ... 21
 2.1.1 Dynamic Memory and APLR Alliance ... 21
 2.1.2 Steps of Memory Processing ... 21
 2.1.3 Encoding and Retrieval .. 21
 2.2 Fractionation of Memory .. 22
PART II
Experiments and Their Interpretation

Chapter 3 Shaping Dynamic and Evolving Memories by Reciprocal Activation of Attention, Perception, Learning, and Remembering

3.1 Essential Experiments Involving Dynamic Memory and Top-Down Activity

3.2 Dynamic Memory Manifested by Induced Alpha Activity

3.2.1 Selective Attention

3.2.2 APLR Alliance

3.2.3 Importance of Internal Event-Related Oscillations

3.2.4 Coherent and Ordered States of EEG due to Cognitive Tasks

3.2.4.1 Preliminary Experiments

3.2.4.2 Preliminary Results

3.4.3 Global Trends of Pretarget Event-Related Rhythms: Subject Variability

3.2.5 Paradigms with Increasing Occurrence Probability

3.2.5.1 3.5- to 8-Hz Range

3.2.5.2 8- to 13-Hz Range

3.2.5.3 40-Hz Range

3.2.6 Experiments with Light Stimulation

3.2.6.1 Experiments with Varied Probabilities of Stimulus Occurrence

3.2.7 Experiments with Subject A.F.

3.2.8 Quasideterministic EEGs, Cognitive States, and Dynamic Memories

3.3.8.1 Dynamics of Time-Locked EEG Patterns

3.3 Relations between Memory States and P300 Responses: EROs
3.3.2 Frequency Analysis of ERPs: Preliminary Results ..50
3.3.2.1 Comparison of EPs and ERPs ..50
3.3.2.2 Comparative Analysis of Poststimulus Frequency Changes under
 Different Conditions and Their Contributions to Different Latency
 Peaks ...52
3.3.2.3 Formation of Peaks ...53
3.3.2.4 Comparison of ERP Responses to Regular and Random Infrequent
 Target Stimuli ..54
3.3.3 Orientation Reaction and Learning during Repetitive Stimulation56
3.4 Requirement of Preparation Rhythms for Activation of Working Memory: Analysis
 of Pre- and Poststimulus Activity in Single Sweeps57
3.4.1 Event-Related Theta Oscillations ...57
3.4.2 Event-Related 10-Hz Oscillations ..57
3.4.2.1 Interim Summary ...59
3.4.3 Modulation of P300 Activity by Preparation Rhythms59
3.4.4 Control of Learnable Sequences by Prestimulus EEG Activity or Building
 of Memory Templates ..60
3.4.5 Varied Degrees of Augmentation and Prolongation: Gamma Oscillations
 in Memory Tasks ...61
3.4.6 Action of APLR Alliance and Hypothosis Concerning Reentrant Circuits ...63
3.4.7 Habituation ..63
3.4.8 Augmentation of Knowledge or Learned Material Is Reflected by Regular
 and Increased Alpha Activities ...63

Chapter 4 Perception and Memory-Related Oscillations in Whole Brain65

Canan Başar-Eroğlu and Erol Başar

4.1 Relevance of Chapter ...65
4.2 Theta and Alpha Responses in Cat Brains during Cognitive and Memory-Related
 Tasks ..65
4.2.1 Introduction ...65
4.2.2 Methods and Paradigms Utilized for Obtaining P300 Responses from Freely
 Moving Cats ..66
4.2.3 Systematic Analysis of Effects of Repetition Rate of Omitted Tones on ERPs
 Recorded from Cat Hippocampi ..67
4.2.4 Utility of Analysis in Frequency Domain ...68
4.2.5 Multiple Electrodes in Hippocampus ..68
4.2.6 Hippocampal P300 and Cognitive Correlates: Theta Components in CA3
 Layer ...73
4.3 Compound P300–40-Hz Response of Cat Hippocampus75
4.3.1 P300–40-Hz Compound Potential ..75
4.4 Event-Related Oscillations in Cat Hippocampus, Cortex, and Reticular Formation
 during States of High Expectancy: Comparison with Human Data77
4.4.1 Unit Activity and Behavior ..78
4.4.2 Event-Related Potentials in Cortex and Hippocampus in a P300-Like Paradigm79
4.4.3 Selectively Distributed Theta System: Involvement of Limbic, Frontal, and
 Parietal Areas ..79
4.4.3.1 Integrative Analysis of Increased Theta Response80
4.4.4 Interpretation of Changes in ERPs ..80
4.4.4.1 Comparison with Human Responses ..81
Chapter 5 Causal Factors Controlling Brain Responsiveness and Memory: Prestimulus EEG Activity, Entropy, and Genetics

5.1 Introduction ... 87
5.2 Relationship of EEG and ERP .. 88
5.3 Algorithm for Selective Averaging ... 88
 5.3.1 Dependence of EP Amplitudes and Waveforms on Prestimulus EEG:
 Vertex Recordings .. 88
 5.3.1.1 Auditory-Evoked Potentials .. 88
 5.3.1.2 Visual-Evoked Potentials .. 89
 5.3.1.3 Topographic Aspects ... 90
 5.3.2 Frontal Visual-Evoked Potentials .. 91
 5.3.3 Inverse Relations of EEGs and Visual Responses .. 92

5.4 Frequency Content of EROs from Different Locations: Major Operating Rhythms 93
 5.4.1 Major Operating Rhythm (MOR) of Frontal Lobe: Theta?............................ 93
 5.4.2 MORs of Occipital and Central Region (Vertex) .. 94
 5.4.3 Functional Significance of EEG–EP Interrelations ... 94

5.5 Barry: Preferred States in Brain Activity .. 95
 5.5.1 Creation of Preferred Brain States by APLR Alliance 95

5.6 Causality of Brain Responses According to Changes in Oscillatory Networks 96
5.7 Entropy as Causal Factor in Responses and Mechanisms of Super-Synergy 96
5.8 Genetics as a Causal Factor in Delta and Theta Responses and Beta Rhythms 98

Chapter 6 Correlation of Multiple Oscillations with Integrative Functions and Memory

6.1 Introduction ... 101
 6.1.1 Aim of Chapter ... 101
 6.1.1.1 Emphasis on Multiple Oscillations in Brain Research 101
 6.1.1.2 Role of Oscillations in Memory Processing 101
 6.1.1.3 Steps for New Synthesis and Binding Problem 102

6.2 Survey of EEG Oscillations .. 102
 6.2.1 Alpha Activity .. 102
 6.2.1.1 Survey by Andersen and Andersson (1968) and Başar (1999) 102
 6.2.1.2 Toward a Renaissance of Alphas ... 103
 6.2.2 Earlier Experiments on Induced or Evoked Theta Oscillations 103
 6.2.3 Gamma Frequency Range .. 104

6.3 Selectively Distributed Oscillatory Systems: Distributed Multiple Oscillations 104
 6.3.1 Concept, Definitions, and Methods .. 104
 6.3.2 Oscillatory Responses in Invertebrate Ganglia .. 106
 6.3.3 Gamma Oscillations in Sensory, Cognitive, and Motor Processes 107
 6.3.3.1 Multiple Functions in Gamma Band .. 113
 6.3.3.2 Important Causality Factor for Human Gamma Response 114
6.3.4 Alpha Oscillations in Perception and Cognition: The Alphas
6.3.4.1 Sensory Components
6.3.4.2 Cognitive Components
6.3.4.3 Resonance in Brain Responses
6.3.4.4 Multiple Functions in Alpha Frequency Window
6.3.5 Theta Oscillations in Perception and Cognition
6.3.6 Delta Oscillations in Cognition
6.3.7 Klimesch: Multiple Oscillatory Activities in Alpha Band
6.3.8 Oscillations in Highest Frequency Window
6.4 Superposition Principle and Superimposed Multiple Oscillations in Theta and Delta
Frequency Windows in Cognitive Processes: Examples
6.5 Selectively Distributed and Selectively Coherent Oscillatory Networks
6.6 Interim Conclusions
6.7 Distributed Oscillatory Systems and Distributed Memory
6.7.1 Event Processing in Distributed Systems
6.7.2 Multiple Functions of EROs and Multiple Functions of Memory:
Convergence of Concepts
6.7.3 Human Memory Performance and Time-Locked Theta Responses
6.8 EEGs and EROs as Information Codes
6.8.1 Frequency Coding at Different Levels
6.8.2 Most General Transfer Functions and Multiple Oscillations

Chapter 7 Are Integrative Brain Functions Shaped by Superbinding and Selectively
Distributed Oscillations?
7.1 Rationale and Usefulness of this Chapter
7.2 Binding Problem in Memory Processing and Gestalt
7.3 Neurons–Brain Theory and Oscillatory Codes
7.4 Description of Function–Memory Table
7.5 Super-Synergy: A Spatio-Temporal and Functional Organization of Multiple and
Distributed Oscillations
7.6 Gedanken Model: Involvement of Selectively Distributed and Coherent Activities of
Neural Populations in Grandmother Percept
7.7 Neural Populations and “Feature” Cells
7.7.1 Sokolov: Feature Detectors

Chapter 8 Grandmother Experiments in Perception of Memory: Recognition of Gestalts

Erol Başar and Murat Özgören
8.1 Introductory Remarks
8.2 Klimesch: Role of Theta and Alpha Oscillations in Memory and Attention Functions
8.3 Grandmother Paradigm and Gestalt Experiments
8.3.1 Experimental Strategy
8.3.1.1 Electrophysiological Recording
8.3.1.2 First Data Recording (Random) Set
8.3.1.3 Second Data Recording (Regular) Set
8.3.2 Event-Related Oscillations Arising from Light, Anonymous Face, and
Grandmother Face Stimulations
8.3.2.1 Topologies of Delta Responses
8.3.2.2 Topologies of Theta Responses
8.3.2.3 Topologies of Alpha Responses
8.3.2.4 Distributed Beta and Gamma Responses ..160
8.3.3 Differentiation of Responses in Delta, Theta, and Lower and Upper Alpha
Frequency Bands: Preliminary Statistics ...161
8.4 Recognition Memory and Gamma Oscillations ..161
8.5 What Does the Grandmother Paradigm Mean? Are Oscillations Distributed
Templates in Memory Activation? ..161
 8.5.1 Selectively Distributed Enhancements in Whole Cortex164
 8.5.2 Efficiency of Grandmother Paradigm for Differentiation of Memory
Components or States ...165
 8.5.3 Does Activation of Larger Neural Populations Indicate Reactivation of
Episodic Memory? ..165
 8.5.4 Transition from Semantic to Episodic Memory: Distinctions between
Semantic and Episodic Memories ...165
 8.5.5 Importance of Frontal Lobes and Other Brain Areas for Memory Processing
and Perception ..167
 8.5.5.1 fMRI Experiments Related to Distributed Memory in Cortex167
 8.5.5.2 Critique of Experiments of Fernandez and Fell167
 8.5.5.3 Major Activation Areas of Semantic and Episodic Memories168
 8.5.5.4 Superbinding and Stryker's Question about Oscillations168
 8.5.6 Do Grandmother Experiments Favor Hebb's Hypothesis?168
8.6 Are the Descriptions of Gestalts and Emotions Related to More Complex Percepts
Possible? ..169

PART III
Memory Function: Models and Theories

Chapter 9 EEG-Related Models of Memory States and Hierarchies173

 9.1 Introduction of a New Construct on Memory Categorization173
 9.2 Physiology of Selectively Distributed Oscillatory Processes173
 9.2.1 Connections of Sensory–Cognitive Systems174
 9.2.2 Activation of Alpha System with Light ...175
 9.2.3 Activation of Alpha System with Auditory Stimulation176
 9.2.4 Activation of Theta and Delta Systems Following Cognitive Inputs176
 9.2.5 Nonspecific Interactions ...178
 9.3 Hierarchical Categorization of Different Levels of Memory181
 9.3.1 Fuster's View of Memory Networks: A Milestone in Neuroscience181
 9.3.2 Tentative Model Related to EEG Activation ...181
 9.3.3 Inborn (Built-In) Networks (Level I) ..181
 9.3.3.1 Reflexes ...183
 9.3.3.2 Stereotypic Fixed Action Patterns ...183
 9.3.3.3 Phyletic Memory and Oscillatory Response Codes183
 9.3.3.4 Feature Detectors ..184
 9.3.3.5 Living System Settings ..184
 9.3.4 Physiological or Fundamental Memory ...185
 9.3.4.1 Changes of Sensory Memory: Spontaneous and Evoked Alpha
Activity at Occipital Sites in Three Age Groups ...186
 9.3.5 Working Memory (Level II) ...186
 9.3.5.1 Perceptual Memory ..187
Chapter 10 New Trends in Memory Dynamics: Concluding Remarks

10.1 The Emphasis of this Book: From a Research Program to a Theory on Whole-Brain Work

10.2 Distributed Memory in the Whole Brain

10.3 Correlation of Brain Oscillations with Multiple Brain Functions

10.4 Gestalts and the Grandmother Percept

10.5 Activated Memory Manifested by EEG Oscillations

10.6 Model Related to Memory States

10.7 Importance of EEG Analysis

Chapter 11 Memory and Whole-Brain Work: Draft of a Theory Based on EEG Oscillations

Erol Başar and Sirel Karakaş

11.1 Integration of Proposals Related to Whole-Brain Work

11.2 Whole-Brain Work Theory: How to Approach Brain Functions by Means of EEG Oscillations

11.2.1 Level A: Transition from Single Neurons to Oscillatory Dynamics

11.2.2 Level B: Superbinding of Neural Assemblies (Supersynergy)