Table of Contents | Co | ONTRIBUTORS TO VOLUME 251 | | i | |-----|---|--|-----| | PF | REFACE | | xii | | V | DLUMES IN SERIES | | хv | Overview | | | | 1 | . Glutathione Metabolism | Alton Meister | 3 | | 2. | . Thiol/Disulfide Exchange Equilibria and Disulfide Bond Stability | HIRAM F. GILBERT | 8 | | | | | | | | | | | | | Section I. Thiyl Ra | dicals | | | 3. | Kinetic Factors That Control the Fate of Thiyl Radicals in Cells | Peter Wardman and
Clemens von Sonntag | 31 | | 4. | Kinetics of Thiol Reactions | Christian Schöneich | 45 | | 5. | Perthiols as Antioxidants: Radical-Scavenging and Pro-oxidative Mechanisms | Steven A. Everett and
Peter Wardman | 55 | | 6. | Thiyl (Sulfhydryl/Thiol) Free Radical Reactions, Vitamins, β-Carotene, and Superoxide Dismutase in Oxidative Stress: Design and Interpretation of Enzymatic Studies | SUBHAS C. KUNDU AND
ROBIN L. WILLSON | 69 | | 7. | Reaction of Superoxide with Glutathione and Other Thiols | CHRISTINE C. WINTERBOURN AND DIANA METODIEWA | 81 | | 8. | Quantitative Determination of Thiol Groups in
Low and High Molecular Weight Compounds
by Electron Paramagnetic Resonance | LEV M. WEINER | 87 | | 9. | Thiyl Radical Formation during Thiol Oxidation by Ferrylmyoglobin | Enrique Cadenas | 106 | | 10. | In Vivo Toxicity of Thiols: Relationship to Rate of One-Electron Oxidation by Oxyhemoglobin | REX MUNDAY | 117 | | Section II. Chemical Basis of Thiol/Disulfide Measurements | | | | | |--|---|--|------|--| | 11. | Diamide: An Oxidant Probe for Thiols | NECHAMA S. KOSOWER AND EDWARD M. KOSOWER | 123 | | | 12. | Bromobimane Probes for Thiols | Edward M. Kosower and
Nechama S. Kosower | 133 | | | 13. | Determination of Biothiols by Bromobimane Labeling and High-Performance Liquid Chromatography | GERALD L. NEWTON AND
ROBERT C. FAHEY | 148 | | | 14. | Reagents for Rapid Reduction of Disulfide Bonds | RAJEEVA SINGH,
GUY V. LAMOUREUX,
WATSON J. LEES, AND
GEORGE M. WHITESIDES | 167 | | | 15. | 1,3-Bis(2-chloroethyl)-1-nitrosourea as Thiol-Carbamoylating Agent in Biological Systems | KATJA BECKER AND
R. HEINER SCHIRMER | 173 | | | | Section III. Monothiols: Measurement in Organs, Cells,
Organelles, and Body Fluids | | | | | 16. | Noninvasive Measurement of Thiol Levels in Cells and Isolated Organs | Hans Nohl,
Klaus Stolze, and
Lev M. Weiner | 191 | | | 17. | Measurement of Thiols in Cell Populations from Tumor and Normal Tissue | JOHN A. COOK AND
JAMES B. MITCHELL | 203 | | | 18. | Measurement of Glutathione Redox State in Cytosol and Secretory Pathway of Cultured Cells | CHRISTOPHER HWANG,
HARVEY F. LODISH, AND
ANTHONY J. SINSKEY | 212 | | | 19. | Assay of Thiols and Disulfides in Intestinal Lymph | Tak Yee Aw | 221 | | | | Assay for Thiols Based on Reactivation of Papain | WALTER A. BLÄTTLER, AND ALBERT R. COLLINSON | 229 | | | 21. | Assay of Blood Glutathione Oxidation during Physical Exercise | José Viña,
Juan Sastre,
Miguel Asensi, and
Lester Packer | 237. | | | 22. | X-Ray Structure Methods for Glutathione Binding | PETER REINEMER,
HEINI W. DIRR, AND
ROBERT HUBER | 243 | | | 23. | | WULF DRÖGE, RALF KINSCHERF, SABINE MIHM, DAGMAR GALTER, STEFFEN ROTH, HELMUT GMÜNDER, THOMAS FISCHBACH, AND MICHAEL BOCKSTETTE | 255 | | | 24 | Flow Cytometry Technique for Assessing Effects
of N-Acetylcysteine on Apostosis and Cell Via-
bility of Human Immunodeficiency Virus-In-
fected Lymphocytes | | 270 | |-----|---|--|-----| | 25 | . Use of p-Nitrophenyl Disulfide to Measure Reductive Capacity of Intact Cells | Carlos Gitler and
Mauricio Londner | 279 | | 26. | . Trypanothione and N^1 -Glutathionylspermidine: Isolation and Determination | R. L. Krauth-Siegel,
E. M. Jacoby, and
R. H. Schirmer | 287 | | 27. | Estimation of Tissue Cysteamine by Quantitative Thin-Layer Chromatography | D. M. Ziegler and
L. L. Poulsen | 294 | | | Section IV. Dithiols: α -L | ipoic Acid | | | 28. | Reaction of Lipoic Acid with Ebselen and Hypochlorous Acid | GERREKE P. BIEWENGA AND
AALT BAST | 303 | | 29. | Analysis of Reduced and Oxidized Lipoic Acid in
Biological Samples by High-Performance Liq-
uid Chromatography | Derick Han,
Garry J. Handelman,
and Lester Packer | 315 | | 30. | Reaction of (R,S) -Dihydrolipoic Acid and Homologs with Iron | Teruyuki Kawabata,
Hans-Jürgen Tritschler,
and Lester Packer | 325 | | 31. | ATP Synthesis and ATPase Activities in Heart Mitoplasts under Influence of R- and S-Enantiomers of Lipoic Acid | Guido Zimmer,
Luise Mainka, and
Heinz Ulrich | 332 | | 32. | Assay for Protein Lipoylation Reaction | Kazuko Fujiwara,
Kazuko Okamura-Ikeda,
and Yutaro Motokawa | 340 | | | Section V. Protein Thiols a | and Sulfides | | | 33. | Chemical Modification of Protein Thiols: Formation of Mixed Disulfides | RICHARD WYNN AND
FREDERIC M. RICHARDS | 351 | | 34. | Reversible Introduction of Thiol Compounds into Proteins by Use of Activated Mixed Disulfides | Heinz Faulstich and
Daniela Heintz | 357 | | 35. | | Carlos Gitler,
Batia Zarmi, and
Edna Kalef | 366 | | 36. | Measuring Thiol-Disulfide Exchange Equilibrium
Constants for Single Cysteine-Containing Pro-
teins | RICHARD WYNN AND
FREDERIC M. RICHARDS | 375 | | 37. | Structure, Properties, Mechanisms, and Assays of
Cysteine Protease Inhibitors: Cystatins and
E-64 Derivatives | Nobuhiko Katunuma and
Eiki Kominami | 382 | | 38. | Protein Disulfide-Isomerase | Robert B. Freedman,
Hilary C. Hawkins, and
Stephen H. McLaughlin | 397 | |-----|--|---|-----| | 39. | Glucocorticoid Receptor Thiols and Steroid Binding Activity | S. Stoney Simons, Jr. and
William B. Pratt | 406 | | 40. | Analysis of Cells and Tissues for S-Thiolation of Proteins | James A. Thomas,
Wei Zhao,
Suzanne Hendrich, and
Peter Haddock | 423 | | 41. | Tertiary Structure-Selective Characterization of
Protein Dithiol Groups by Phenylarsine Oxide
Modification and Mass Spectrometric Peptide
Mapping | Martin Kussmann and
Michael Przybylski | 430 | | 42. | Structure and Posttranslational Modification of Lipoyl Domain of 2-Oxo-Acid Dehydrogenase Multienzyme Complexes | RICHARD N. PERHAM | 436 | | 43. | Plasma Protein Sulfhydryl Oxidation: Effect of
Low Molecular Weight Thiols | Albert van der Vliet,
Carroll E. Cross,
Barry Halliwell, and
Charles A. O'Neill | 448 | | 44. | Analysis of Methionine Sulfoxide in Proteins | Konrad L. Maier,
Anke-G. Lenz,
Ingrid Beck-Speier, and
Ulrich Costabel | 455 | | 45. | cation | NATHAN BROT, M. ATIQUR RAHMAN, JACKOB MOSKOVITZ, HERBERT WEISSBACH, JEFFREY STRASSMAN, STEPHANIE O. YANCEY, AND SIDNEY R. KUSHNER | 462 | | 46. | Thiol Coenzymes of Methanogens | KENNETH M. NOLL | 470 | | Auı | THOR INDEX | | 402 | | Sub | JECT INDEX | • | 483 |