CONTENTS

List of Variables			
Fo	Foreword Preface		xix
Pr			xxii
1	Intro	duction	1
	1.1	Chapter Overview 1	
	1.2	The System Approach 2	
	1.3	The Item Approach 3	
	1.4	Repairable vs. Consumable Items 4	
	1.5	The "Physics" of the Problem 6	
	1.6	Multi-Item Optimization 7	
	1.7	Multi-Echelon Optimization 7	
	1.8	Multi-Indenture Optimization 8	
	1.9	Field Test Experience 9	
	1.10	The Item Approach Revisited 12	
	1.11	The System Approach Revisited 14	
	1.12	Summary 17	
	1.13	Problems 18	
2	Singl	le-Site Inventory Model for Repairable Items	19
	2.1	Chapter Overview 19	
	2.2	Mean and Variance 20	
	2.3	Poisson Distribution and Notation 20	

2.4	Paim's Theorem 21	
2.5	Justification of Independent Repair Times 22	
2.6	Stock Level 23	
2.7	Item Performance Measures 24	
2.8	System Performance Measures 27	
2.9	Single-Site Model 28	
2.10	Marginal Analysis 29	
2.11	Convexity 32	
2.12	Mathematical Solution of Marginal Analysis 34	
2.13	Separability 36	
2.14	Availability 36	
2.15	Summary 40	
2.16	Problems 40	
MIC	PDIC. A M. W. P. J. B. C. B.	
	FRIC: A Multi-Echelon Model	45
3.1	Chapter Overview 45	
3.2	METRIC Model Assumptions 46	
3.3	METRIC Theory 47	
	Numerical Example 49	
	Convexification 52	
3.6	of the M211de Optimization Flocedure 33	
	Availability 54	
3.8	Summary 55	
3.9	Problems 55	
Dem	and Processes and Demand Prediction	57
4.1	Chapter Overview 57	
4.2	Poisson Process 59	
4.3	Negative Binomial Distribution 60	
4.4	Multi-Indenture Problem 62	
4.5	Multi-Indenture Example 64	
4.6	Variance of the Number of Units in the Pipeline 65	
4.7	Multi-Indenture Example Revisited 68	
4.8	Demand Rates That Vary with Time 69	

4.9	Bayesian Analysis /1
4.10	Objective Bayes 73
4.11	James-Stein Estimation 78
4.12	Comparison of Bayes and James-Stein Estimators 79
4.13	Demand Prediction Experiment Design 79
4.14	Demand Prediction Experiment Results 81
4.15	Random Failure Processes versus Wear-out 83
4.16	Goodness-of-Fit Tests 86
4.17	Summary 89
4.18	Problems 90
VARI	-METRIC: A Multi-Echelon, Multi-Indenture Model
5.1	Chapter Overview 95
5.2	Mathematical Preliminary: Multi-Echelon Theory 97
5.3	Definitions 99
5.4	Demand Rates 100
5.5	Mean and Variance for the Number of LRUs in Depot
	Repair 102
5.6	Mean and Variance for the Number of SRUs in Base Repair or Resupply 102
5.7	Mean and Variance for the Number of LRUs in Base Repair or Resupply 103
5.8	Availability 104
5.9	Optimization 105
5.10	Generalization of the Resupply Time Assumptions 105
5.11	Generalization of the Poisson Demand Assumption 106
5.12	Common Items 107
5.13	Consumable and Partially Repairable Items 107
5.14	Numerical Example 112
5.15	Item Essentiality Differences 115
5.16	Availability Degradation Due to Maintenance 118
5.17	No Resupply: Flyaway Kits 119
5.18	Summary 120
5.19	Problems 121

A	w	11 11	CIA	IJ

6		-Echelon, Multi-Indenture Models with Periodic Resupply Redundancy	123
	6.1	Space Station Description 123	
	6.2	Chapter Overview 124	
	6.3	Maintenance Concept 125	
	6.4	Availability as a Function of Time During the Cycle 125	
	6.5	Probability Distribution of Backorders for an ORU 126	
	6.6	Probability Distribution for Number of Systems Down for an ORU 130	
	6.7	Probability Distribution for Number of Systems Down 133	
	6.8	Availability 134	
	6.9	Optimization 135	
	6.10	Multiple Resource Constraints 135	
	6.11	Redundancy Block Diagrams 136	
	6.12	Numerical Examples 138	
	6.13	Other Redundancy Configurations with 50% ORUs Operating 145	
	6.14	Summary of the Theory 149	
	6.15	Application of the Theory 151	
	6.16	Problems 152	
7	Speci	al Topics in Periodic Models	155
	7.1	Chapter Overview 155	
	7.2	Availability Over Different Cycle Lengths 156	
	7.3	Availability Degradation Due to Remove and Replace in Orbit 157	
	7.4	Failures Due to Wear-out 159	
	7.5	Numerical Example 162	
	7.6	Multiple Wear-out Failures at One Location During a Cycle 163	
	7.7	Common Items 167	
	7.8	Condemnations 169	
	7.9	Dynamic Calculations 170	

	7.11	Problems 171	
8	Mode	ling of Cannibalization	173
	8.1	Chapter Overview 173	
	8.2	Single-Site Model 174	
	8.3	Multi-Indenture Model 178	
	8.4	Optimization of Availability 179	
	8.5	Comparison of Objective Functions for Cannibalization 181	
	8.6	Generalizations 183	
	8.7	Dyna-METRIC and the Aircraft Sustainability Model 184	
	8.8	DRIVE (Distribution and Repair in Variable	
		Environments) 185	
	8.9	Purpose of DRIVE 185	
	8.10	Model Assumptions with DRIVE 187	
	8.11	Implementation Problems with DRIVE 189	
	8.12	Distribution Algorithm for DRIVE 190	
	8.13	Repair Algorithm for DRIVE 192	
	8.14	Summary 192	
	8.15	Problems 193	
9	Impl	ementation Issues	195
	9.1	Chapter Overview 195	
	9.2	Use of Standards versus Measured Quantities 196	
	9.3	Robust Estimation 197	
	9.4	Assessment of Alternative Support Policies 198	
	9.5	Air Force Model Implementation 199	
	9.6	Army Model Implementation 200	
	9.7	Navy Model Implementation 200	
	9.8	Worldwide Model Implementation 201	
	9.9	Model Hierarchies 202	
	9.10	System Approach Revisited One More Time 203	
	9.11		

7.10 Summary 171

Appendi	x A Palm's Theorem	207
A.1	Appendix Overview 207	
A.2	Preliminary Mathematics 208	
A.3	Proof of Palm's Theorem 209	
A.4	Extension of Palm's Theorem to Finite Populations 210	
A.5	Dynamic Form of Palm's Theorem 211	
A.6	Problems 212	
Appendi	x B Multi-Echelon Systems with Lateral Supply	213
B.1	Appendix Overview 213	
B.2	Introduction 213	
B.3	Simulation Description 215	
B.4	Parameter Values 217	
B.5	Depot-Repairable-Only Items 218	
B.6	Base-Repairable Items 225	
B .7	Number of Lateral Shipments 226	
B.8	Summary 226	
Appendi	ix C Demand Prediction Studies	227
C.1	Background 227	
C.2	Appendix Overview 229	
C.3	Description of the Demand Prediction Experiment 230	
C.4	Results of the Demand Prediction Experiment for C-5 Airframe 234	
C.5	Results of the Demand Prediction Experiment for A-10 Airframe 239	
C.6	Results of the Demand Prediction Experiment for F-16 240	
C.7	Demand Prediction for F-16 Using Flying-Hour Data 241	
C.8	Correlations 246	
C.9	Lower Smoothing Constant for Low-Demand Items 250	
C.10	Summary 250	

	CONTENTS	xiii
	x D Preprocessor for the Optimization Model with Resupply	255
D.1	Appendix Overview 255	
D.2	Program Logic 256	
D.3	Input 256	
D.4	Output 259	
D.5	Utilization of Preprocessor Output 263	
Reference	ces	265
Index		269