CONTENTS

Preface .. vii

PART I QUANTITATIVE MODELS FOR PORTFOLIO ANALYSIS

Chapter 1 Quantitative Approach to Asset Allocation 1
 1. The aim of this book (1) 2. Demand for variability
 and for quants portfolio construction system (3)
 3. Modern portfolio theory (MPT) and quants (9)

Chapter 2 Empirical Features of Financial Returns 15
 1. Introduction (15) 2. Random walk and
 nonnormality (19) 3. Nonindependent and
 nonlinear features of a return process (24)

Chapter 3 Univariate Financial Time Series Models 33
 1. Modelling financial time series (33)
 2. Stationarity, trend and return (35)
 3. Taylor model (41) 4. ARCH model (44)
 5. Some other nonlinear models (51)

Chapter 4 Multivariate Financial Time Series Models 58
 1. Multifactor models (58) 2. A review on some
 basic multivariate time series models (59)
 3. State space approach and Kalman Filter model (65)
 4. Some special multifactor models (75)

Chapter 5 MTV Model and Its Applications 83
 1. Introduction (83) 2. Theoretical foundation
 of MTV model (84) 3. How to use the MTV model and
 estimation (90) 4. MTV exchange rate analysis (95)
 5. Prediction of stock prices (101)

PART II QUANTITATIVE ASSET ALLOCATION SYSTEMS

Chapter 6 Quantitative Portfolio Construction Procedures 108
 1. A comprehensive asset allocation (108)
 2. Basic notation and concept (113)
 3. Markowitz theory and its implications (116)
 4. Mathematical structure of asset allocation (123)

Chapter 7 Multifactor Models and their Applications 130
 1. Introduction (130) 2. CAPM (131) 3. APT
 (Arbitrage pricing theory) (139) 4. Two multifactor
 models in Japan (146) 5. Regression-MTV model (152)

Chapter 8 B. Rosenberg Models and their Applications 159
 1. Market model portfolio (159) 2. Time-varying
 coefficient models (162) 3. Prediction of future
 returns and risk (164) 4. A model in Japan (169)
 5. Convergent parameter model (174)
Chapter 9 Selection of Portfolio Population 177
1. Introduction (177) 2. Information coefficient
 (IC) for selection of a portfolio population (179)
3. Classification procedure (181) 4. Robust
 classification analysis (189)

Chapter 10 Optimal MTV Market Portfolio 195
1. MTV-MP system (195) 2. Extraction of
 common market components and selection of a target
 population (196) 3. Optimal MTV portfolio (200)
4. Prediction errors in MTV model (203)

Chapter 11 Index Portfolio and Canonical
 Correlation Portfolio .. 205
1. Basic concept of index portfolio (205)
2. MTV Index portfolio (207) 3. Cluster analysis
 for grouping (209) 4. Index plus α premium minus
 β risk historical portfolio (212) 5. Canonical
 correlation portfolio (215)

PART III STATISTICAL APPROACH TO OPTION PRICING AND BOND PRICING

Chapter 12 Black-Scholes Option Theory and
 Its Applications ... 220
1. Introduction (220) 2. Black-Scholes option
 pricing formula (224) 3. Basic formulae for BS
 option portfolios (231) 4. Portfolio insurance (235)
5. Estimation of volatilities (239)

Chapter 13 Practical Option Pricing and Related Topics 242
1. Practical option pricing (242) 2. Gram-Charlier
 option pricing (245) 3. Practical option pricing
 under a Taylor model and under an ARCH model (249)
4. Fractional Brownian motion and option pricing (254)
5. Asian options (260)

Chapter 14 Statistical Bond Pricing Models 263
1. Introduction (263) 2. Basic structure of bond
 analysis (264) 3. Market spot rate function (266)
4. Market spot rate function of zero coupon bond (270)
5. Statistical model for market discount function of
 coupon bonds (275) 6. Prediction of market discount
 function (278) 7. Duration in our statistical models (278)

Appendix .. 283
References ... 295
Index ... 305