Contents

Pı	eface			page xiii
Pı	ologi	ıe		1
1	Intr	oductio	on	7
	1.1		cellularity and cellular differentiation have evolved	
	1.2	many		8
	1.2		volutionary origins of most forms of cellularity are obscure	10
	1.3		able features of a model system for studying the	10
			s of multicellularity	13
2	The	Volvo	cales: Many Multicellular Innovations	16
	2.1	The g	reen algae: an ancient and inventive group	17
	2.2		nydomonas and its relatives: master colony-formers	22
	2.3	The v	olvocine algae: a linear progression in organismic	
			exity?	26
	2.4	, 11		20
		•	icated branching pattern	30
		2.4.1	A single volvocacean species name can mask extensive genetic diversity	31
		2.4.2		31
		۷,4,2	patterns within the genus Volvox	33
				vii

viii CONTENTS

		2.4.3	Molecular evidence indicates that most	
			volvocacean taxa, including Volvox,	
			are polyphyletic	39
		2.4.4	There may have been several separate pathways	
			leading from Chlamydomonas to Volvox	42
	2.5	The g	enetic program for cellular differentiation in	
		Volvo	x should be amenable to analysis	44
3	Eco	logical	Factors Fostering the Evolution of Volvox	45
	3.1		ocaceans compete for resources in transitory,	
		-	phic waters	46
	3.2		in permanent bodies of water, the volvocaceans	
			sh only briefly each year	47
	3.3		rent aspects of the environment favor green algae	
		of dif	ferent body sizes	52
		3.3.1	Smaller organisms have an intrinsic advantage	
			under "optimum" conditions	52
		3.3.2	Predation favors organisms above a threshold	
			size	54
		3.3.3	The larger the colony, the more efficient the	
			uptake and storage of essential nutrients	56
		3.3.4	,	
			eutrophic conditions has been found to be	
			correlated with size	60
	3.4		rophic environments, differentiation of soma and	
		-	is reproductively advantageous	61
		3.4.1		
			nutrients, and germ cells act as a sink	61
		3.4.2	Test: Gonidia produce larger progeny in the	
			presence of an intact soma and rich medium	62
	3.5		major forms of source-sink relationship between	
		soma	and germ have evolved in Volvox	64
4	Cyte	_	Features Fostering the Evolution of Volvox	68
	4.1 The need to find a place in the sun imposes a rigid			
		constraint on the structure of green flagellate cells		
		4.1.1	The photoreceptor uses calcium to signal light	
			direction and intensity	71
		4.1.2		
			oppositely to changes in calcium concentration	74

	4.1.3	The difference between the two flagella is due to	
		a difference in basal-body age	76
	4.1.4	Proper orientation of the eyespot and the BBs	
		must be maintained in each generation	78
4.2	Three	kinds of cytoskeletal elements in the basal	
	appara	atus link BBs to other organelles	79
	4.2.1	Microtubular rootlets link the BBs to the cortical	
		cytoskeleton and the eyespot	81
	4.2.2	Centrin-rich fibers connect the BBs to one	
		another and to the nucleus	83
	4.2.3	Assemblin-rich fibers connect the two halves of	
		the BA to one another	86
4.3	Cell d	ivision in Chlamydomonas and related green algae	
	has so	me unusual features	87
4.4	The B	A plays a key role in segregation of organelles	
	during	division of C. reinhardtii	89
	4.4.1	BBs are essential for coordination of	
		karyokinesis with cytokinesis	89
	4.4.2	The NBBCs couple the movements of the BBs	
		to that of the mitotic spindle	93
	4.4.3	MTRs maintain the spatial relationship between	
		old and new BBs and define the cleavage plane	94
	4.4.4	The role of the BA in cytokinesis assures	
		orderly segregation of organelles	95
	4.4.5	A new eyespot forms next to the new 4MTR	
		emanating from the younger BB	97
4.5	The B	A and cell wall established the conditions that led	
	to gen	m-soma differentiation	98
	4.5.1	A coherent cell wall created a dilemma for green	
		flagellates: "the flagellation constraint"	99
	4.5.2	Small algae with coherent walls exhibit three	
		solutions to the flagellation constraint	99
	4.5.3	The presence of a <i>Chlamydomonas</i> -type wall is	
		also accompanied by multiple fission	102
	4.5.4	Multiple fission facilitates colony formation	102
	4.5.5	Larger algae circumvent the flagellation	
		constraint in a new way: with sterile somatic	
		cells	103
4.6	The ex	stent of germ-soma differentiation increases with	
	increas	sing size	104

X CONTENTS

	4.7	Enviro	onment provided the stimulus and cytology				
		provid	led the mechanism for germ-soma differentiation	107			
5	Volvox carteri: A Rosetta Stone for Deciphering the						
	Ori	gins of	Cytodifferentiation	109			
	5.1	Some	features recommending V. carteri f. nagariensis				
		as a d	evelopmental model	110			
	5.2	germe, and a second					
		accessibility					
	5.3	and reproduction		115			
		5.3.1	Somatic cells are polarized, but gonidia are				
			radial in organization	116			
		5.3.2	The BA is arranged very differently in somatic				
			cells and gonidia	117			
		5.3.3	An asymmetric BA in somatic cells is essential				
			for motility	121			
		5.3.4	A complex ECM holds the organism together	122			
		5.3.5	The asexual reproductive cycle is simple and				
			rapid	124			
		5.3.6	The sexual cycle begins with a modified asexual				
			cycle	126			
	5.4	Asexu	al morphogenesis and cytodifferentiation	127			
		5.4.1	Cleavage: creating two cell lineages from one	128			
		5.4.2	Inversion: turning the best side out	151			
		5.4.3	Cytodifferentiation: converting the germ-soma				
			dichotomy from potential to actual	159			
		5.4.4	ECM deposition: architectural dexterity by				
			remote control	165			
		5.4.5	Hatching: breaking up the old family homestead	177			
		5.4.6	Phototaxis: 4,000 oars responding to the				
			commands of a single coxswain	180			
		5.4.7	Programmed somatic-cell suicide: the last full				
			measure of devotion	186			
	5.5	Sexual	induction and differentiation	188			
		5.5.1	The sources(s) of the sex-inducing pheromone	189			
		5.5.2	The nature of the sex-inducing pheromone	193			
		5.5.3	Developmental consequences of exposure to the				
			pheromone	196			
		5.5.4	Biochemical effects of the pheromone and the				
			riddle of its mechanism of action	200			
		5.5.5	Zygote formation and germination	211			

6	Mut	tational	Analysis of the V. carteri Developmental	
		gram		218
	6.1	Forma	al genetic analysis	219
	6.2	Drug-	resistant mutants	221
	6.3	Morpl	nogenetic mutants	224
		6.3.1	Cleavage mutants	225
		6.3.2	Inversion mutants	232
		6.3.3	ECM mutants	234
		6.3.4	Cell-orientation mutants	237
	6.4	Mutat	ions affecting sexual reproduction	239
		6.4.1	Constitutive sexuality	239
		6.4.2	Reduced fertility and sterility	241
		6.4.3	Male potency	242
		6.4.4	Female hypersensitivity	244
		6.4.5	Gender reversal	244
	6.5	Mutat	ions disrupting the normal germ-soma dichotomy	246
		6.5.1	Somatic-regenerator mutants	247
		6.5.2	Late-gonidia mutants	251
		6.5.3	Gonidialess mutants	252
		6.5.4	Modifiers and suppressors	254
	6.6	The g	enetic program for germ-soma differentiation: a	
		worki	ng hypothesis	255
7	Mol	ecular	Analysis of V. carteri Genes and Development	258
	7.1	Some general features of the V. carteri genome and		
		its rep	olication	259
		7.1.1	A curious uncertainty: Is nuclear DNA	
			replication tied to the mitotic cycle?	262
		7.1.2	Is all chloroplast DNA of somatic cells of	
			gonidial origin?	265
	7.2	Progre	ess in establishing a DNA-based map of the	
		V. car	rteri nuclear genome	266
		7.2.1	Strains used for mapping DNA polymorphisms	266
		7.2.2	DNA modifications complicate analysis of some	
			V. carteri polymorphisms	268
		7.2.3	RAPDs provide many additional markers	276
	7.3	Gener	al features of <i>V. carteri</i> protein-coding genes	277
		7.3.1	Exon-intron structure and the question of intron	
		•	origins	277
		7.3.2	The role of introns in regulating gene expression	281
		7.3.3	Codon bias and its evolutionary implications	282

xii CONTENTS

	7.3.4	Putative regulatory signals	286
	7.3.5	Volvox genes: plant-like or animal-like?	294
	7.3.6	Gene duplication and/or homogenization	296
7.4	Devel	lopment of molecular-genetic tools	298
	7.4.1	Transformation	299
	7.4.2	Reporter genes, inducible promoters, and	
		anti-sense constructs	300
	7.4.3	Introduction and expression of foreign	
		transgenes	301
	7.4.4	Gene modification by homologous recombination	302
	7.4.5	Transposon trapping	304
7.5	Trans	poson tagging of developmentally important genes	305
	7.5.1	Tagging and cloning of the regA locus	307
	7.5.2	Tagging and cloning of a gls locus	310
7.6	Patterns of differential gene expression accompanying		
	germ-	-soma differentiation	313
	7.6.1	Early and late gene-expression patterns in	
		somatic cells	313
	7.6.2	Two patterns of gene expression in gonidia	317
	7.6.3	Additional embryo-specific genes are readily	
		identified	318
7.7		ns of gene expression in a mutant lacking germ-	
		differentiation	319
7.8	Control of the germ-soma dichotomy: a new molecular-		
	geneti	c hypothesis	320
Epilogu	Epilogue		
Referen	ces		331
Index			375