Brief Table of Contents

1	Introduction to the Study of Cell Biology	
2	The Chemical Basis of Life	32
3	Bioenergetics, Enzymes, and Metabolism	8
4	The Structure and Function of the Plasma Membrane	12:
5	Aerobic Respiration and the Mitochondrion	18
6	Photosynthesis and the Chloroplast	218
7	Interactions Between Cells and Their Environment	24
8	Cytoplasmic Membrane Systems: Structure, Function, and Membrane Trafficking	279
9	The Cytoskeleton and Cell Motility	33:
10	The Nature of the Gene and the Genome	39
11	Expression of Genetic Information: From Transcription to Translation	43
12	The Cell Nucleus and the Control of Gene Expression	49
13	DNA Replication and Repair	55
14	Cellular Reproduction	58
15	Cell Signaling: Communication Between Cells and Their Environment	62
16	Cancer	67
17	The Immune Response	70
18	Techniques in Cell and Molecular Biology	73
	Glossary	G-
	Answers to Odd-Numbered Analytic Questions	A
	Index	I

Contents

1	Int	roduction to the Study of Cell Biology	1
	1.1		2
	1.2	Basic Properties of Cells	3
		Cells are Highly Complex and Organized, 3	
		Cells Possess a Genetic Program and the Means to Use It, 3	
		Cells Are Capable of Producing More of Themselves, 5	
		Cells Acquire and Utilize Energy, 5	
		Cells Carry Out a Variety of Chemical Reactions, 5	
		Cells Engage in Numerous Mechanical Activities, 5	
		Cells Are Able to Respond to Stimuli, 5	
		Cells Are Capable of Self-Regulation, 6	
	1.3	Classes of Calle	7
		Characteristics That Distinguish Prokaryotic and Eukaryotic Cells, 7	
		Types of Prokaryotic Cells, 12	
		Types of Eukaryotic Cells: Cell Specialization, 14	
		THE HUMAN PERSPECTIVE: REPLACING DAMAGED CELLS AND ORGANS, 17	
		The Sizes of Cells and Their Components, 20	
	1.4	Viruses 2:	2
		Viroids, 25	
		■ EXPERIMENTAL PATHWAYS: THE ORIGIN OF EUKARYOTIC CELLS, 25	
2	The	Chemical Basis of Life 3:	2
		Covalent Bonds 3	
		Polar and Nonpolar Molecules, 34	_
		Ionization, 34	
		■ THE HUMAN PERSPECTIVE: FREE RADICALS AS A CAUSE OF AGING, 35	

	2.2	Noncovalent Bonds	36
		Ionic Bonds: Attractions	
		Between Charged Atoms, 36	
		Hydrogen Bonds, 36	
		Hydrophobic Interactions and van der Waals Forces, 37	
		The Life-Supporting Properties of Water, 3	8
	2.3	Acids, Bases, and Buffers	39
	2.4	The Nature of Biological Molecules	41
		Functional Groups, 42	
		A Classification of Biological Molecules by Function, 42	
	2.5	Four Types of Biological Molecules	43
		Carbohydrates, 43	
		Lipids, 49	
		Proteins, 51	
		■ THE HUMAN PERSPECTIVE: PROTEIN MISFOLDING CAN HAVE	
		DEADLY CONSEQUENCES, 67	
		Nucleic Acids, 71	
	2.6	The Formation of Complex	
		Macromolecular Structures	74
		The Assembly of Tobacco Mosaic Virus	
		Particles and Ribosomal Subunits, 74	
		EXPERIMENTAL PATHWAYS: CHAPERONES	5:
		HELPING PROTEINS REACH THEIR PROPER FOLDED STATE, 75	
		101010 317(11, 75	
3	Bio	energetics, Enzymes,	
		Metabolism	83
	3.1	Bioenergetics	84
		The Laws of Thermodynamics and	
		the Concept of Entropy, 84	
		Free Energy, 87	
	3.2	Enzymes as Biological Catalysts	92
		The Properties of Enzymes, 93	
		Overcoming the Activation Energy Barrier,	94

	The Active Site and Molecular Specificity,	95
	Mechanisms of Enzyme Catalysis, 96	
	Enzyme Kinetics, 100	
	■ THE HUMAN PERSPECTIVE: THE GROWIN	G
	PROBLEM OF ANTIBIOTIC RESISTANCE, 104	
3.3	Metabolism	105
	An Overview of Metabolism, 106	
	Oxidation and Reduction:	
	A Matter of Electrons, 106	_
	The Capture and Utilization of Energy, 10	/
	Metabolic Regulation, 112	
	■ EXPERIMENTAL PATHWAYS: DETERMINING THE MECHANISM OF LYSOZYME ACTION, 11	
	THE MECHANISM OF ETSOZIME ACTION, 11	•
1.		
The of t	Structure and Function he Plasma Membrane	122
	An Overview of Membrane Functions	123
•	A Brief History of Studies	
4	on Plasma Membrane Structure	124
4.3		
	of Membranes	127
	Membrane Lipids, 127	
	Membrane Carbohydrates, 131	
4.4	The Structure and Functions	422
	of Membrane Proteins	132
	Integral Membrane Proteins, 133	
	Studying the Structure and Properties of Membrane Proteins, 134	
	Peripheral Membrane Proteins, 138	
	Lipid-Anchored Membrane Proteins, 139	
4.5	Membrane Lipids and	
4.3	Membrane Fluidity	140
	The Importance of Membrane Fluidity, 14	1
	Maintaining Membrane Fluidity, 141	
	The Asymmetry of Membrane Lipids, 142	2
4.6	The Dynamic Nature of the Plasma Membrane	143
	The Diffusion of Membrane Proteins	
	After Cell Fusion, 143	
	Patterns of Protein Mobility, 144	
	The Red Blood Cell: An Example	
	of Plasma Membrane Structure, 147	
4.7	The Movement of Substances Across Cell Membranes	150
	The Energetics of Solute Movement, 150	150
	Diffusion of Substances	
	Through Membranes, 151	
	Facilitated Diffusion, 157	
	Active Transport, 158	

	Contents	xvii
IN ION CHAP	IAN PERSPECTIVE: DEFECTS NNELS AS A CAUSE ED DISEASE, 162	
	Potentials and	165
•	g Potential, 166	
The Action	Potential, 167	
Propagatior as an Impul	n of Action Potentials se, 168	
	mission: Jumping c Cleft, 170	
	ENTAL PATHWAYS: CHOLINE RECEPTOR, 173	
5 Aerobic Respir	ation and	183
	rial Structure and Function	184
J	rial Membranes, 185	-04
	nondrial Matrix, 186	
	Metabolism in the	187
The Tricarl	boxylic Acid (TCA) Cycle, 189	
The Importing the Form	tance of Reduced Coenzymes ation of ATP, 189	
5.3 The Role o Formation	f Mitochondria in the of ATP	192
	Reduction Potentials, 192	
	MAN PERSPECTIVE: THE ROLE OBIC AND AEROBIC METABOLISM E, 193	١
Electron T	ransport, 195	
• •	lectron Carriers, 195	
	tion of Protons and the nent of a Proton-motive Force	202
	nery for ATP Formation	203
	ure of ATP Synthase, 204	
	of ATP Formation According to g Change Mechanism, 205	
Other Role	es for the Proton-motive Force ir to ATP Synthesis 210	1
5.6 Peroxison	nes	211
RESULT FR	MAN PERSPECTIVE: DISEASES TH OM ABNORMAL MITOCHRONDRI SOMAL FUNCTION, 212	
6 Photosynthes	is and the Chloroplast	218
6.1 Chloropla	st Structure and Function	219
6.2 An Overvi		221

xviii	Contents	
6.	3 The Absorption of Light	222
	Photosynthetic Pigments, 223	
6.	Photosynthetic Units and Reaction Centers	224
	Oxygen Formation: Coordinating the Action of Two Different Photosynthetic Systems,	
	Killing Weeds by Inhibiting Electron Transport, 231	
6.	5 Photophosphorylation	233
	Noncyclic Versus Cyclic Photophosphorylation, 233	
6.6	6 Carbon Dioxide Fixation and the Synthesis of Carbohydrate	234
	Carbohydrate Synthesis in C ₃ Plants, 234	
	Carbohydrate Synthesis in C ₄ Plants, 237	
	Carbohydrate Synthesis in CAM Plants, 2	38
	Photoinhibition, 239	
	Peroxisomes and Photorespiration, 239	
7		
_	teractions Between Cells and	
	neir Environment	243
7.1	• •	244
-	The Extracellular Matrix, 244 Interactions of Cells with Noncellular	
7.2	Substrates	252
	Integrins, 252	
	Focal Contacts and Hemidesmosomes: Anchoring Cells to Their Substratum, 255	
7.3		257
	Selectins, 258	-3,
	Immunoglobulins and Integrins, 259	
	Cadherins, 260	
	Linking Cells to Other Cells: Synapses,	
	Adherens Junctions, and Desmosomes, 26	1
	■ THE HUMAN PERSPECTIVE: THE ROLE	
	OF CELL ADHESION IN INFLAMMATION AND METASTASIS, 264	
	The Role of Cell-Adhesion Receptors	
	in Transmembrane Signaling, 266	
7.4	the Extracellular Space	268
7.5	Mediating Intercellular Communication	270
	Plasmodesmata, 272	
7.6	Cell Walls	273
8	toniasmis Nombrano Sustano Stantono	
_Eu	toplasmic Membrane Systems: Structure nction, and Membrane Trafficking	, 279
8.1	An Overview of the Endomembrane System	280

8.2	A Few Approaches to the Study of Cytomembranes	281
	Insights Gained from Autoradiography, 28	32
	Insights Gained from the Use of the Green Fluorescent Protein, 283	
	Insights Gained from the Biochemical Ana of Subcellular Fractions, 284	lysis
	Insights Gained from the Use of Cell-Free Systems, 286	
	Insights Gained from the Study of Genetic Mutants, 286	
8.3	The Endoplasmic Reticulum	288
	The Smooth Endoplasmic Reticulum, 288	
	Functions of the Rough Endoplasmic Reticulum, 289	
	From the ER to the Golgi Complex: The First Step in Vesicular Transport, 298	
8.4	The Golgi Complex	299
	Glycosylation in the Golgi Complex, 301	
	The Movement of Materials	
	Through the Golgi Complex, 302	
8.5	Types of Vesicle Transport and Their Functions	303
	COPII-Coated Vesicles: Transporting Care	go
	from the ER to the Golgi Complex, 304	
	COPI-Coated Vesicles: Transporting Escap Proteins Back to the ER, 305	•
	Clathrin-Coated Vesicles: Targeting Protei at the TGN, 307	ns
	Targeting Vesicles to a Particular Compartment, 309	
8.6	Lysosomes	311
8.7	Plant Cell Vacuoles	313
8.8	Cellular Uptake of Particles and	
	Macromolecules	314
	Phagocytosis, 314	
	THE HUMAN PERSPECTIVE: DISORDERS RESULTING FROM DEFECTS IN LYSOSOMAL FUNCTION, 315	
	Endocytosis, 317	
8.9	Posttranslational Uptake of Proteins by Peroxisomes, Mitochondria, and Chloroplasts	323
	Uptake of Proteins into Peroxisomes, 323	
	Uptake of Proteins into Mitochondria, 323	
	Uptake of Proteins into Chloroplasts, 325	
	■ EXPERIMENTAL PATHWAYS: RECEPTOR-MEDIATED ENDOCYTOSIS, 326	

0		
ブ <u>The</u>	Cytoskeleton and Cell Motility	333
9.1	Overview of the Major Functions of the Cytoskeleton	334
9.2	The Study of the Cytoskeleton	335
9.2	The Use of Fluorescence Microscopy, 335	ررر
	The Use of Video Microscopy and Focused	
	Laser Beams for In Vitro Motility Assays,	
	The Use of Genetically Engineered Cells,	337
9.3	Microtubules	338
	Structure and Composition, 338	
	Microtubule-Associated Proteins, 339	
	Microtubules as Structural Supports and Organizers, 340	
	Microtubules as Agents of Intracellular Motility, 342	
	Motor Proteins That Traverse the Microtubular Cytoskeleton, 342	
	Microtubule-Organizing Centers (MTOCs), 347	
	The Dynamic Properties of Microtubules,	350
	Cilia and Flagella: Structure and Function,	354
	The Structure of Cilia & Flagella, 355	
9.4	Intermediate Filaments	363
	Intermediate Filament Assembly and	
	Disassembly, 364	
	Types and Functions	
	of Intermediate Filaments, 364	366
9.5	Microfilaments	-
	Microfilament Assembly and Disassembly,	300
	Myosin: The Molecular Motor for Actin Filaments, 368	
9.6	Muscle Contractility	372
9.0	The Sliding Filament Model of Muscle	<i>31</i> –
	Contraction, 375	
	■ THE HUMAN PERSPECTIVE: THE MOLEC	ULAR
	BASIS OF MUSCULAR DYSTROPHY, 380	_
9.7		382
	Actin-Binding Proteins, 382	
	Examples of Nonmuscle Motility and Contractility, 384	
10	The Nature of the Gene and	
	The Nature of the Gene and e Genome	397
	The Company II with	371
10.1	of Inheritance	398
10.2	Chromosomes: The Physical Carriers	
	of the Genes	399
	The Discovery of Chromosomes, 399	
	Chromosomes as the Carriers of Genetic	
	Information, 400	

	Genetic Analysis in Drosophila, 401	
	Crossing Over and Recombination, 401	
	Mutagenesis and Giant Chromosomes, 40)3
10.3	The Chemical Nature of the Gene	404
	The Structure of DNA, 404	
	The Watson-Crick Proposal, 406	
10.4	The Structure of the Genome	411
	The Complexity of the Genome, 411	
	■ THE HUMAN PERSPECTIVE: DISEASES	
	THAT RESULT FROM EXPANSION	
	OF TRINUCLEOTIDE REPEATS, 418 10.5, The Stability of the Genome	420
	Duplication and Modification	4 -4
	of DNA Sequences, 420	
	Mobile Genetic Elements, 422	
10.6	Molecular Maps of the Genome	426
	Restriction Endonucleases, 427	
	■ THE HUMAN PERSPECTIVE: SEQUENCIN	IG
	THE HUMAN GENOME, 430	
	■ EXPERIMENTAL PATHWAYS:	
	THE CHEMICAL NATURE OF THE GENE, 431	
11		
1 1	Expression of Genetic Information: m Transcription to Translation	/20
11.1		439
11.1	Proteins	440
	An Overview of the Flow of Information	
	Through the Cell, 441	
11.2	Transcription: The Basic Process	442
	Transcription in Prokaryotes, 445	
11.3		
	in Eukaryotic Cells	447
	Ribosomal RNAs, 447	
	Transfer RNAs, 453	
	Messenger RNAs, 454	
	Evolutionary Implications of Split Genes a RNA Splicing, 468	and
	Creating New Ribozymes in the Laboratory, 470	
11.4	Encoding Genetic Information	471
	The Properties of the Genetic Code, 471	
	■ THE HUMAN PERSPECTIVE:	
	CLINICAL APPLICATIONS OF RIBOZYMES	
	AND ANTISENSE OLIGONUCLEOTIDES, 47	'2
11.5	Decoding the Codons: The Role of Transfer RNAs	<i>1.71</i> .
	The Structure of tRNAs, 475	474
44 E	Translating Genetic Information	479
11.0	Initiation, 470	4/7
	IIIIIIauvii, T/V	

Elongation, 482

хх	Contents
	Termin

Termination, 484
■ EXPERIMENTAL PATHWAYS: THE ROLE OF RNA AS A CATALYST, 487

	OF KNAASACATALIST, 407	
12	The Cell Nucleus and the Control Gene Expression	494
12.1	The Nucleus of a Eukaryotic Cell	495
	The Nuclear Envelope, 495	
	Chromosomes, 501	
	■ THE HUMAN PERSPECTIVE: CHROMOSOMAL ABERRATIONS, 513	
	The Nucleus as an Organized Organelle,	515
12.2	Control of Gene Expression in Prokaryotes	517
	The Bacterial Operon, 517	,
12.3	•	es 521
	Transcriptional-Level Control, 522	•
	Processing-Level Control, 540	
	Translational-Level Control, 540	
12.4	Posttranslational Control: Determining Protein Stability	545
13_	DNA Replication and Repair	551
13.1	DNA Replication	552
	Semiconservative Replication, 552	
	Replication in Bacterial Cells, 554	
	The Structure and Functions of DNA Polymerases, 561	
	Replication in Eukaryotic Cells, 565	
13.2	DNA Repair	572
	Nucleotide Excision Repair, 572	
	Base Excision Repair, 573	
	Mismatch Repair, 574	
	Double-Strand Breakage Repair, 574	
13.3	Between Replication and Repair	575
	THE HUMAN PERSPECTIVE:	

13.3	Between Replication and Repair	575
	■ THE HUMAN PERSPECTIVE:	
	THE CONSEQUENCES OF DNA REPAIR	
	DEFICIENCIES, 576	
14	Cellular Reproduction	_ 580
	The Cell Cycle	- 581 581
	Cell Cycles in Vivo, 582	J O.
	Control of the Cell Cycle, 582	
14.2	M Phase: Mitosis and Cytokinesis	590
	Prophase, 590	
	Prometaphase, 596	
	Metaphase, 598	

Anaphase, 600

	Telophase, 602	
	Forces Required for Mitotic Movements,	602
	Cytokinesis, 604	
14.3	Meiosis	609
	The Stages of Meiosis, 610	
	Genetic Recombination During Meiosis,	615
	■ THE HUMAN PERSPECTIVE:	
	MEIOTIC NONDISJUNCTION AND	
	ITS CONSEQUENCES, 616	/CDV
	■ EXPERIMENTAL PATHWAYS: THE DISCOVAND CHARACTERIZATION OF MPF, 619	VERT
5	Cell Signaling: Communication	
Bet	ween Cells and Their Environment	628
15.1	Basic Characteristics	
	of Cell-Signaling Systems	629
15.2	Second Messengers and G Protein–Coupled Receptors	624
	The Discovery of a Second Messenger:	631
	Cyclic AMP, 631	
	Glucose Mobilization: An Example of a	
	Response Induced by cAMP, 632	
	The Structure and Function of G	
	Protein—Coupled Receptors, 635	
	THE HUMAN PERSPECTIVE: DISORDERS ASSOCIATED WITH G PROTEIN—COUPLED	•
	RECEPTORS, 639	
	Lipid-Derived Second Messengers, 641	
15.3	The Role of Calcium as an	
	Intracellular Messenger	644
	Regulating Calcium Concentrations in Plant Cells, 646	
15.4	Receptor Tyrosine Kinases: A Second	
- ,	Major Type of Signaling Pathway	648
	The Mechanism of Action of Insulin:	
	Signaling by an RTK, 648	
	The Role of RTKs	
<i>-</i>	in Other Cellular Activities, 651	
15.5	Signals That Originate from Contacts Between the Cell Surface and	
	the Substratum	654
	Controlling the Assembly of Focal	
	Adhesions, 657	
15.6	Convergence, Divergence, and Crosstalk Among Different Signaling Pathways	658
	Examples of Convergence, Divergence, and Crosstalk Among Signaling Pathways, 658	
15.7	Other Signaling Pathways	660
	The Role of NO	
	as an Intercellular Messenger, 660	<u>.</u>
	The Role of Phosphatases in Cell Signaling,	662

Pathways That Lead to Cell Death, 662 Signaling Pathways in Plants, 665

16	Cancer	67:
	The Biology of Cancer	672
	The Phenotype of a Cancer Cell, 672	•
16.2	The Causes of Cancer	67
16.3	The Genetics of Cancer	670
	Tumor-Suppressor Genes and Oncogenes: Brakes and Accelerators, 679	
16.4	New Strategies for Combating Cancer	69
	Immunotherapy, 692	
	Gene Therapy, 692	
	Inhibiting the Activity of Cancer-Promoting Proteins, 693	
	Inhibiting the Formation	
	of New Blood Vessels (angiogenesis), 693	
	■ EXPERIMENTAL PATHWAYS:	
	THE DISCOVERY OF ONCOGENES, 695	
17		
1 7	The Immune Response	70
17.1	An Overview of the Immune Response	70
	Innate Immune Responses, 704	
	Acquired Immune Responses, 706	
17.2	The Clonal Selection Theory as It Applies to B Cells	70
	Vaccination, 709	
17.3		74
·	Mechanism of Action	71
17.4	Selected Topics on the Cellular and Molecular Basis of Immunity	71
	The Modular Structure of Antibodies, 712	-
	DNA Rearrangement of Genes Encoding	
	B- and T-Cell Antigen Receptors, 716	
	Membrane-Bound Antigen Receptor Complexes, 719	
	The Major Histocompatibility Complex,	719
	Distinguishing Self from Nonself, 724	
	Lymphocytes Are Activated by Cell-Surface Signals, 725	
	Signal Transduction Pathways Used	
	in Lymphocyte Activation, 727	
	■ THE HUMAN PERSPECTIVE: AUTOIMMUNE DISEASES, 728	
	■ EXPERIMENTAL PATHWAYS: THE ROLE OF THE MAJOR HISTOCOMPATIBILITY COMP	PLEX
	IN ANTIGEN PRESENTATION, 730	

18.1	The Light Microscope	738
	Resolution, 738	
	Visibility, 739	
	Phase-Contrast Microscopy, 740	
	Fluorescence Microscopy, 741	
	Polarized Light Microscopy, 742	
	Video Microscopy and Image Processing,	743
	Confocal Scanning Light Microscopy, 743	
	Preparation of Specimens for Light Microscopy, 774	
18.2	Transmission Electron Microscopy	744
	Specimen Preparation for Electron Microscopy, 747	
18.3	Scanning Electron Microscopy	751
18.4	The Use of Radioisotopes	752
	Autoradiography, 754	
18.5	Cell Culture	754
18.6	The Fractionation of a Cell's Contents by Differential Centrifugation	757
18.7	Isolation, Purification, and Fractionation of Proteins	758
	Selective Precipitation, 758	
	Liquid Column Chromatography, 759	
	Polyacrylamide Gel Electrophoresis, 762	
18.8	Determination of Protein Structure	-6.
40.0	by X-Ray Diffraction Analysis Purification and Fractionation	764
18.9	of Nucleic Acids	765
	Separation of DNAs by Gel	, - ,
	Electrophoresis, 765	
18.10	Measurements of Protein and Nucleic Ac	
	Concentration by Spectrophotometry	766
18.11	Ultracentrifugation	767
	Sedimentation Behavior of Nucleic Acids,	767
18.12	Nucleic Acid Hybridization	769
18.13	Recombinant DNA Technology DNA Cloning, 771	770
	Chemical Synthesis and Site-Directed Mutagenesis, 776	
	Gene Transfer into Eukaryotic Cells and Mammalian Embryos, 777	
	Enzymatic Amplification of DNA by PCR, 781	
	DNA Sequencing, 781	