Contents

PREFACE TO THE SERIES ii
PREFACE TO VOLUME 38 v
CONTRIBUTORS xiii
CONTENTS OF PREVIOUS VOLUMES xvii
HANDBOOK ON TOXICITY OF INORGANIC COMPOUNDS xlvii
HANDBOOK ON METALS IN CLINICAL AND ANALYTICAL CHEMISTRY xlviii
HANDBOOK ON METALLOPROTEINS xlviii

Chapter 1
PEPTIDE BOND CHARACTERISTICS 1
R. Bruce Martin
1. Background 2
2. Proton Binding and Loss 2
3. Metal Ion Binding at the Peptide Bond 3
4. Free Energies of Peptide Bond Hydrolysis and Formation 7
5. Equilibrium Constants for Peptide Bond Formation in the Presence of Metal Ions 12
6. Peptide Oxygen Basicity Determined by Amide Amino Group Basicity 16
7. Metal Ion Effects on Rates of Peptide Bond Hydrolysis 19
References 21

Chapter 2
LANTHANIDE ION-MEDIATED PEPTIDE HYDROLYSIS 25
Makoto Komiyama
1. Introduction 26
2. Amide Hydrolysis by Lanthanide Ions 27
3. Mechanism of Ce(IV) Catalysis 31
4. Cyclodextrin Complexes of Lanthanide Ions for Homogeneous Hydrolysis of Amides 35
5. Relevance of the Lanthanide-Mediated Amide Hydrolysis to DNA Hydrolysis 37
6. Conclusion 38
 Acknowledgment 39
 Abbreviations 39
 References 39

Chapter 3
Co(III)-PROMOTED HYDROLYSIS OF AMIDES AND SMALL PEPTIDES 43
David A. Buckingham and Charles R. Clark
1. Introduction 44
2. Early Studies and Scope 47
3. Co(III) Linkage Isomers and Isomerization 58
4. Hydrolysis by Direct Polarization 63
5. Bimolecular Reactions of Co-OH₂/OH 72
6. Intramolecular Reactions of CoOH₂/OH 75
7. Kinetic Parameters and Reaction Mechanism 87
8. Related Nonmetal Hydrolysis Reactions 95
 Abbreviations 97
 References 98

Chapter 4
SYNTHETIC Cu(II) AND Ni(II) PEPTIDASES 103
Gregory M. Polzin and Judith N. Burstyn
1. Introduction 104
2. Hydrolysis of Simple Peptides by Cu(II) and Ni(II) Ions in Solution 105
3. Cleavage of Substrates Containing a Metal Binding Site by Cu(II) and Ni(II) Ions 109
4. Cleavage of Amides, Peptides, and Proteins by Defined Metal Complexes 121
5. Conclusions 140
 Abbreviations 140
 References 141
Abbreviations
References

Chapter 8
ARTIFICIAL IRON-DEPENDENT PROTEASES
Saul A. Datwyler and Claude F. Meares
1. Introduction: Historical Background and Concepts
2. Principles and Practical Aspects
3. Methodology
4. Transcription Complexes in *Escherichia coli*
5. Conclusions
Acknowledgments
Abbreviations
References

Chapter 9
HYDROXYL RADICAL FOOTPRINTING OF PROTEINS USING METAL ION COMPLEXES
Tomasz Heyduk, Noel Baichoo, and Ewa Heyduk
1. Introduction
2. Experimental Methodology of Protein Footprinting
3. Applications of Protein Footprinting Methodology
4. Future Directions
 Abbreviations and Definitions
 References

Chapter 10
NICEL- AND COBALT-DEPENDENT OXIDATION AND CROSS-LINKING OF PROTEINS
Steven E. Rokita and Cynthia J. Burrows
1. Introduction
2. Determinants of Nickel- and Cobalt-Dependent Oxidation
3. Intrinsic Sensitivity of Native Proteins
4. Mapping Tertiary and Quaternary Structure of Proteins
5. Conclusions
Abbreviations
References
Chapter 11
EFFECTS OF METAL IONS ON THE OXIDATION AND NITROSATION OF CYSTEINE RESIDUES IN PROTEINS AND ENZYMES 313
Ann M. English and Dean E. Wilcox
1. Introduction 314
2. Background: Properties and Biological Roles of Cysteine Residues 315
3. Oxidation of Cysteines 316
4. Nitrosation of Cysteines 331
5. Conclusions 340
Acknowledgments 341
Abbreviations 341
References 343

Chapter 12
PROTEIN CROSS-LINKING MEDIATED BY METAL ION COMPLEXES 351
Kathlynn C. Brown and Thomas Kodadek
1. Introduction 352
2. Small-Molecule Cross-Linking Reagents Used Free in Solution 356
3. Development of Affinity Cross-Linking Reagents: Use of Peptides or Proteins to Deliver a Cross-Linking Reagent Site-Specifically 368
4. Conclusions 379
Abbreviations 379
References 380

Chapter 13
FERROCENOYL AMINO ACIDS AND PEPTIDES: PROBING PEPTIDE STRUCTURE 385
Heinz-Bernhard Kraatz and Marek Galka
1. Introduction: Organometallic Probes in Biological Systems 386
2. Synthetic Studies of Ferrocenoyl Amino Acids and Peptides 387
3. Structural and Theoretical Studies 390
4. Electrochemistry of Ferrocenoyl Amino Acids and Peptides 398
5. Summary 404
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgment</td>
</tr>
<tr>
<td>Abbreviations</td>
</tr>
<tr>
<td>References</td>
</tr>
<tr>
<td>Chapter 14</td>
</tr>
<tr>
<td>SYNTHETIC ANALOGS OF ZINC ENZYMES</td>
</tr>
<tr>
<td>Gerard Parkin</td>
</tr>
<tr>
<td>1. Introduction</td>
</tr>
<tr>
<td>2. Structural and Functional Models of Zinc Enzymes as Classified by Active Site Composition</td>
</tr>
<tr>
<td>3. Use of Metal Ion Substitution to Provide Insight into the Structures and Mechanisms of Action of Zinc Enzymes</td>
</tr>
<tr>
<td>4. Perspectives</td>
</tr>
<tr>
<td>Acknowledgments</td>
</tr>
<tr>
<td>Abbreviations</td>
</tr>
<tr>
<td>References</td>
</tr>
<tr>
<td>Chapter 15</td>
</tr>
<tr>
<td>MIMICKING BIOLOGICAL ELECTRON TRANSFER AND OXYGEN ACTIVATION INVOLVING IRON AND COPPER PROTEINS: A BIO(IN)ORGANIC SUPRAMOLECULAR APPROACH</td>
</tr>
<tr>
<td>Martinus C. Feiters</td>
</tr>
<tr>
<td>1. Introduction</td>
</tr>
<tr>
<td>2. Mimics for Iron-Sulfur Proteins</td>
</tr>
<tr>
<td>3. Mimics for Blue Copper Proteins</td>
</tr>
<tr>
<td>4. Cytochrome P450 Mimics</td>
</tr>
<tr>
<td>5. Mimics for Oxygen Binding and Activation by Copper Proteins</td>
</tr>
<tr>
<td>6. Concluding Remarks</td>
</tr>
<tr>
<td>Acknowledgments</td>
</tr>
<tr>
<td>Abbreviations</td>
</tr>
<tr>
<td>References</td>
</tr>
<tr>
<td>SUBJECT INDEX</td>
</tr>
</tbody>
</table>