CONTENTS

Preface v
List of Figures xiv
List of Tables xvii

INTRODUCTION

1 New Directions in Spatial Econometrics: Introduction
Luc Anselin and Raymond J.G.M. Florax

1.1 Introduction 3
1.2 Spatial Effects in Regression Models 6
 1.2.1 Specification of Spatial Dependence 6
 1.2.2 Spatial Data and Model Transformations 9
1.3 Spatial Effects in Limited Dependent Variable Models 10
1.4 Heterogeneity and Dependence in Space-Time Models 12
1.5 Future Directions 15
References 16

PART I-A: Spatial Effects in Linear Regression Models
Specification of Spatial Dependence

2 Small Sample Properties of Tests for Spatial Dependence in Regression Models: Some Further Results
Luc Anselin and Raymond J.G.M. Florax

2.1 Introduction 21
2.2 Tests for Spatial Dependence 23
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4.2 AR GLM Models for the Repeated Measures Case</td>
<td>287</td>
</tr>
<tr>
<td>12.4.3 A Spatially Adjusted Canonical Correlation Analysis of the Milk Production Data</td>
<td>289</td>
</tr>
<tr>
<td>12.5 Conclusions</td>
<td>293</td>
</tr>
<tr>
<td>References</td>
<td>294</td>
</tr>
<tr>
<td>Appendix 1: SAS Computer Code to Compute the Popular Spatial Autocorrelation Indices</td>
<td>296</td>
</tr>
<tr>
<td>Appendix 3: SAS Code for 1969 USDA Data Analysis</td>
<td>299</td>
</tr>
</tbody>
</table>

13
Econometric Models and Spatial Parametric Instability:
Relevant Concepts and an Instability Index
Emilio Casetti and Jessie Poon

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Introduction</td>
<td>301</td>
</tr>
<tr>
<td>13.2 The Expansion Method</td>
<td>303</td>
</tr>
<tr>
<td>13.3 Parametric Instability</td>
<td>306</td>
</tr>
<tr>
<td>13.3.1 Example</td>
<td>308</td>
</tr>
<tr>
<td>13.4 Conclusions</td>
<td>315</td>
</tr>
<tr>
<td>13.4.1 Instability Measures: Scope</td>
<td>315</td>
</tr>
<tr>
<td>13.4.2 Instability Measures: Significance</td>
<td>316</td>
</tr>
<tr>
<td>References</td>
<td>318</td>
</tr>
</tbody>
</table>

14
Bayesian Hierarchical Forecasts for Dynamic Systems:
Case Study on Backcasting School District Income Tax Revenues
George T. Duncan, Wilpen Gorr and Janusz Szczypula

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 Introduction</td>
<td>322</td>
</tr>
<tr>
<td>14.2 Literature Review</td>
<td>324</td>
</tr>
<tr>
<td>14.3 The C-MSKF Model: Time Series Prediction with Spatial Adjustments</td>
<td>326</td>
</tr>
<tr>
<td>14.3.1 Multi-State Kalman Filter</td>
<td>326</td>
</tr>
<tr>
<td>14.3.2 Spatial Adjustment via Hierarchical Random Effects Model</td>
<td>330</td>
</tr>
<tr>
<td>14.3.3 CIHM Method</td>
<td>332</td>
</tr>
<tr>
<td>14.3.4 C-MSKF</td>
<td>334</td>
</tr>
<tr>
<td>14.4 Case Study and Observational Setting</td>
<td>336</td>
</tr>
<tr>
<td>14.4.1 Data</td>
<td>336</td>
</tr>
<tr>
<td>14.4.2 Treatments</td>
<td>339</td>
</tr>
<tr>
<td>14.5 Results</td>
<td>340</td>
</tr>
<tr>
<td>14.6 Conclusions</td>
<td>344</td>
</tr>
<tr>
<td>References</td>
<td>344</td>
</tr>
<tr>
<td>Appendix 1: Poolbayes Program</td>
<td>347</td>
</tr>
</tbody>
</table>
15 A Multiprocess Mixture Model to Estimate Space-Time Dimensions of Weekly Pricing of Certificates of Deposit
James P. LeSage

15.1 Introduction 359
15.2 A Dynamic Targeting Model of CD Rate-Setting Behavior 361
15.2.1 The Model 361
15.2.2 The Decision Rule 363
15.3 The Spatial Econometric Model 365
15.3.1 Spatial Time-Varying Parameters 365
15.3.2 Parameter Estimation 368
15.3.3 Testing Hypotheses with the Model 370
15.4 Implementing the Model 372
15.4.1 The Data 373
15.4.2 Prior Information 373
15.4.3 Empirical Results 379
15.5 Conclusions 380
Acknowledgements 380
References 381
Appendix 1: FORTRAN Program for the Spatial Mixture 382
PART I-B: Spatial Effects in Linear Regression Models
Spatial Data and Model Transformations

5 The Impacts of Misspecified Spatial Interaction in Linear Regression Models
Raymond J.G.M. Florax and Serge Rey

5.1 Introduction
5.2 Aggregation and the Identification of Spatial Interaction
5.3 Experimental Design
 5.3.1 Sample Size
 5.3.2 Spatial Interaction Structures
 5.3.3 Spatial Models and Parameter Space
 5.3.4 Test Statistics and Estimators
 5.3.5 Forms of Misspecification
5.4 Empirical Results
 5.4.1 Size of Tests Under the Null
 5.4.2 Power of Tests
 5.4.3 Misspecification Effects on the Power of Tests for Spatial Dependence
 5.4.4 Sensitivity of Parameter Estimation to Specification of Weight Matrix
 5.4.5 Impact of Misspecification of Weight Matrix on Estimation
5.5 General Inferences
References

6 Computation of Box-Cox Transform Parameters:
A New Method and its Application to Spatial Econometrics
Reinaud A.J.J. van Gastel and Jean H.P. Paelinck

6.1 Introduction
6.2 The Elasticity Method: Further Elaboration
 6.2.1 Linearization Bias
 6.2.2 Discretization Bias
 6.2.3 Specification Bias
6.3 The One Exogenous Variable Test
6.4 An Application to Spatial Econometrics
6.5 The Multiple Exogenous Variable Computation
6.6 Conclusions
References
7 Data Problems in Spatial Econometric Modeling
Robert P. Haining

7.1 Introduction 156
7.2 Data for Spatial Econometric Analysis 157
7.3 Data Problems in Spatial Econometrics 158
7.4 Methodologies for Handling Data Problems 162
 7.4.1 Influential Cases in the Standard Regression Model 162
 7.4.2 Influential Cases in a Spatial Regression Model 164
 7.4.3 An Example 166
7.5 Implementing Methodologies 169
References 170

8 Spatial Filtering in a Regression Framework: Examples Using Data on Urban Crime, Regional Inequality, and Government Expenditures
Arthur Getis

8.1 Introduction 172
8.2 Rationale for a Spatial Filter 172
8.3 The G_i Statistic 173
8.4 The Filtering Procedure 174
8.5 Filtering Variables: Three Examples 176
 8.5.1 Example 1: Urban Crime 176
 8.5.2 Example 2: Regional Inequality 178
 8.5.3 Example 3: Government Expenditures 182
8.6 Conclusions 184
Acknowledgments 184
References 185

PART II: Spatial Effects in Limited Dependent Variable Models

9 Spatial Effects in Probit Models: A Monte Carlo Investigation
Daniel P. McMillen

9.1 Introduction 189
9.2 Sources of Heteroscedasticity 191
9.3 Heteroscedastic Probit 192
9.4 Monte Carlo Design 194
9.5 Tests 198
9.6 Monte Carlo Results 199
9.7 Conclusions 205
References 206
Appendix 1: Monte Carlo Results 209
Appendix 2: Heteroscedastic Probit Computer Programs 219
Appendix 3: Monte Carlo Computer Programs 221

10 Estimating Logit Models with Spatial Dependence
Robin Dubin

10.1 Introduction 229
10.1.1 Model 230
10.2 Simulation Example 233
10.3 Conclusions 237
References 237
Appendix 1: Gauss Program for Finding ML Estimates 239
Appendix 2: Gauss Program to Estimate Asymptotic Variances of ML Estimates 241

11 Utility Variability within Aggregate Spatial Units and its Relevance to Discrete Models of Destination Choice
Mark R. Ferguson and Pavlos S. Kanaroglou

11.1 Introduction 243
11.2 Theoretical Background 245
11.3 Estimation of the Maximum Utility Model 251
11.4 Model Specifications and Simulations 254
11.4.1 Specification Issues 254
11.4.2 Description of Simulation Method 257
11.4.3 Results 261
11.5 Conclusions 266
Acknowledgement 267
References 267

PART III: Heterogeneity and Dependence in Space-Time Models

12 The General Linear Model and Spatial Autoregressive Models
Daniel A. Griffith

12.1 Introduction 273
12.2 The GLM 275
12.3 Data Preprocessing 276
12.3.1 Analysis of the 1964 Benchmark Data 277
12.3.2 Evaluation of Missing USDA Values Estimation 280
12.4 Implementation of the Spatial Statistical GLM 285
12.4.1 Preliminary Spatial Analysis of Milk Yields: AR Trend Surface GLMs 286