Contents

Tiet/	of figures	vi	
	List of tables		
	List of contributors		
Prefe		хi	
1	Introduction and outline	1	
PAR 2	The strange attraction of chaos in economics	7	
3	John Creedy and Vance L. Martin Fractal geometry	30	
4	Vance L. Martin The logistic family of discrete dynamic models	44	
5	Robert Dixon Towards a theory of non-linear models	70	
6	Jenny Lye and Vance L. Martin Multiple equilibria in simple exchange models	87	
7	John Creedy and Vance L. Martin A model of the distribution of prices John Creedy and Vance L. Martin	100	
	THE THEOTETING OF MON LINEAR MODE	ELS	
PAI 8	Statistical techniques for modelling non-linearities	113	
9	Vance L. Martin and Kim Sawyer Non-linear time series modelling and distributional flexibility	135	
10	Jenny Lye and Vance L. Martin Robust estimation with the generalized exponential family Jenny Lye and Vance L. Martin	151	
DA.	RT III CHAOS AND FINANCIAL MARKETS		
11	Forecasting in financial markets	169	
12	David Elms Non-linearities and chaos in exchange rates	187	
13	Jenny Ellis Non-linearities and the long-run real exchange rate distribution John Creedy, Jenny Lye and Vance L. Martin	196	
•	References		

Figures

2.1	Fixed point properties of the logistic model	10
2.2	Period doubling in the logistic model	11
2.3	Odd order cycles and chaos in the logistic model	12
2.4	Bifurcation properties of the logistic model	14
2.5	Sensitive dependence on initial conditions	15
2.6	The Henon attractor	19
2.7	The Kaldor business cycle model	21
2.8	The Lorenz attractor in the time domain	23
2.9	The Lorenz attractor in the space domain	24
	Period doubling in the Rossler attractor	26
2.11		27
3.1	Dimensional properties of deterministic and stochastic processes	34
3.2	Attractors of the unit circle	36
3.3	The Julia set: c=0	37
3.4	Alternative Julia sets	38
3.5	The Mandelbrot set	40
3.6	A Julia set with a three-period cycle	42
4.1	An example of monotonic convergence	49
4.2	Various dynamic paths	50
4.3	Time paths for the stock-adjustment model	52
4.4	A four-period cycle	54
4.5	Boundary values of b and K necessary for chaos	59
5.1	A model of intra-industry trade	79
5.2	Models of the expected exchange rate	85
5.3	The generalized beta distribution	85
6.1	Linear demand curves	89
6.2	Offer curves	91
6.3	Equilibrium properties: relationships between τ_0 and w	94
6.4	Equilibrium properties: relationships between τ_0 and τ_1	90
6.5	Demonstration of hysteresis	91
7.1	Transitional price distributions	104
72	Stationary price distributions: the generalized gamma distribution	10

	List of figures	vii
8.1	Comparison of alternative time series	114
8.2	Phase portrait properties of the logistic model	117
8.3	The Lyapunov exponents of the logistic equation	125
9.1	The generalized student t distribution	139
9.2	Temporal distributions of the rate of growth of the exchange rate	148
9.3	Conditional moments of the GENTS model	149
10.1	Comparison of GT and GET residuals	161
	Crude birth rates	162
11.1	The Lorenz attractor	170
11.2	Local structure of the Ikeda attractor	172
11.3	Alternative predictor surfaces	
	(a) and (b)	175
	(c) and (d)	178
11.4	Comparison of local and global models: the Ikeda attractor	181
11.5	Selection of embedding dimensions of data sets	183
11.6	Comparison of prediction methods of data sets	184
11.7	Forecast error properties of data sets	185
12.1	The exchange rate equation $e_t = f(e_{t-1})$	191
	Simulated time series: iterations $4850-4950$	193
	A small change in the starting value	194
	Perturbation of the parameter α	194
12.7	1 orthodron of the parameter w	
13.1	Equilibrium real exchange rate distributions	202
	Comparison of model predictions	203
	Properties of θ_1	211
	Properties of θ_2	211
	Properties of δ ²	212

Tables

3.1	Construction of the Cantor set	32
4.1	A comparison of the mathematical properties of the five models	51
4.2	Estimates of the rate of acceptance	63
4.3	Heteroscedastic-consistent estimates of various parameters	
	of diffusion on profitability variables	64
4.4	Estimates of the parameters in the CT scanner diffusion	
	Equation (4.32)	67
4.5	Estimates of the parameters in the CT scanner diffusion	
	Equation (4.32) allowing for an AR(1) process	67
8.1	Calculation of the Lyapunov exponent for the logistic	
	equation $\mu = 4$	124
8.2	Lyapunov exponents of attractors	125
9.1	Selected parameter estimates of the GENTS model	146
10.1	Parameter estimates of the Martin Marietta data	160
10.2	Parameter estimates for crude birth rates	163
	Augmented Dickey–Fuller unit root test	208
	Estimates of the real exchange rate model, 1948(1) to 1989(12)	209
13.3	Diagnostics of the real exchange rate model, 1984(1) to 1989(12)	210