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ABSTRACT Functions of a single variable that are simultaneously band-
and space-limited are useful for spectral estimation, and have also been pro-
posed as reasonable models for the sensitivity profiles of receptive fields of
neurons in primary visual cortex. Here we consider the two-dimensional ex-
tension of these ideas. Functions that are simultaneously space- and band-
limited in circular regions form a natural set of families, parameterized
by the “hardness” of the space- and band- limits. For a Gaussian (“soft”)
limit, these functions are the two-dimensional Hermite functions, with a
modified Gaussian envelope. For abrupt space and spatial frequency limits,
these functions are the two-dimensional analogue of the Slepian (prolate
spheroidal) functions (Slepian and Pollack [1961]; Slepian [1964]). Between
these limiting cases, these families of functions may be regarded as points
along a 1-parameter continuum. These families and their associated oper-
ators have certain algebraic properties in common. The Hermite functions
play a central role, for two reasons. They are good asymptotic approxima-
tions of the functions in the other families. Moreover, they can be decom-
posed both in polar coordinates and in Cartesian coordinates. This joint
decomposition provides a way to construct profiles with circular symmetries
from superposition of one-dimensional profiles. This result is approximately
universal: it holds exactly in the “soft” (Gaussian) limit and in good ap-
proximation across the one-parameter continuum to the “hard” (Slepian)
limit. These properties lead us to speculate that such two-dimensional pro-
files will play an important role in the understanding of visual processing
in cortical areas beyond primary visual cortex. Comparison with published
experimental results lends support to this conjecture.
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1 Introduction

The understanding of the structure of neural computations, and how they
are implemented in neural hardware, are major goals of neuroscience. The
visual system often is used as a model for this purpose. For visual neu-
rons, characterization of the spatial weighting of their various inputs is an
important concrete step in this direction. For an idealized linear neuron,
this spatial weighting—the sensitivity profile of the receptive field—fully
describes the spatial integration performed by that neuron. Real neurons,
including those of the retina and primary visual cortex, exhibit nonlinear
combination of their inputs, but their receptive field profiles nevertheless
provide a useful qualitative description of these neurons’ response prop-
erties. For example, the circularly symmetric center/surround antagonism
that characterizes typical retinal output neurons suggests a filtering pro-
cess that removes overall luminance and other long-range correlations in
the retinal image. The strongly oriented receptive field profiles encountered
in primary visual cortex suggest extraction of one-dimensional features, ori-
ented in corresponding directions.

The nervous system’s design must represent a balance among multiple,
often conflicting, demands. Efficiency (that is, representation of the spa-
tiotemporal visual input with as few cells as possible, and with a firing
rate that is, on average, as low as possible) may appear to be a main crite-
rion for fitness. However, efficient schemes have hidden costs. These include
the metabolic and morphological requirements of creating or decoding “effi-
cient” representations (Laughlin, de Ruyter, and Anderson [1998]), the lack
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of robustness of “efficient” representations in the face of damage to the net-
work, the length and complexity of connections that may be required to
implement an efficient scheme, and the burden of specifying these connec-
tions in genetic material. Nevertheless, views that consider a biologically
motivated notion of efficiency, along with general aspects of the statistics of
natural visual images as factors in shaping the nervous system, can provide
a successful account of receptive field properties, both in the retinal out-
put (Atick and Redlich [1990]) and in primary visual cortex (Field [1994]).
Regardless of whether efficiency plays a dominant role in shaping recep-
tive fields in primary visual cortex, the empirical observation remains that
to a good approximation, many receptive field profiles are well-described
by a Gabor function (Daugman [1985]; Jones and Palmer [1987]; Marcelja
[1980]), namely, a Gaussian multiplied by a sinusoid. Because the period
of the sinusoid and the width of the Gaussian envelope of neurons encoun-
tered in primary visual cortex are comparable, these Gabor functions also
can be well approximated by a Gaussian multiplied by a low-order oscilla-
tory polynomial, such as a Hermite polynomial. Consequently, it may be
that simultaneous confinement in space and in spatial frequency suffices to
account for the shape of receptive field profiles in primary visual cortex,
and that orientation plays no special role. Without recourse to detailed
analyses of coding strategy and image statistics, one can argue that such
receptive fields are good choices (Marcelja [1980]) to minimize wiring length
and connectivity (by their confinement in space) and to analyze textures,
features, and images at a particular spatial scale (by their confinement in
spatial frequency).

It is not clear how to pursue the above line of inquiry beyond primary
visual (striate) cortex. In extrastriate visual areas, neuronal properties be-
come progressively less stereotyped, receptive fields are less well localized,
and characterization methods based on standard systems-analysis proce-
dures appear to be progressively less useful. We do not propose to solve
this problem here. However, it is striking to note that within primary vi-
sual cortex, receptive field profiles appear suited for processing primarily
along a single spatial dimension. On the other hand, many aspects of visual
processing are essentially two-dimensional. These include extraction of low-
level features such as T-junctions (Rubin [2001]), curvature (Wolfe, Yee,
and Friedman-Hill [1992]), texture (Victor and Brodie [1978]) and shape
(Wilkinson, Wilson, and Habak [1998]; Wilson and Wilkinson [1998]), as
well as higher-level processes such as letter and face identification. More-
over, recordings from individual neurons beyond striate cortex reveal ev-
idence of fundamentally two-dimensional processing (Gallant, Braun, and
Van Essen [1993]; Gallant, Connor, Rakshit, Lewis, and Van Essen [1996];
Tanaka, Saito, Fukada, and Moriya [1991]). Gallant’s work (Gallant, Braun,
and Van Essen [1993]; Gallant, Connor, Rakshit, Lewis, and Van Essen
[1996]) is particularly provocative in that it suggests that some of these
neurons are tuned to various kinds of circular symmetry.
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These considerations motivate exploration of the consequences of simul-
taneous space- and band-limitation in two dimensions. As elaborated in the
Discussion, our notion of “confinement” is distinct from that of Daugman
[1985], whose analysis, based on a quantum-mechanical notion of “uncer-
tainty,” led to the Gabor functions as playing an optimal role. Our notion
of confinement has several parametric variations, and the family of func-
tions that optimally achieve simultaneous confinement in space and spatial
frequency depends on them. However, these families of functions also have
algebraic properties and qualitative behavior that are independent of these
details. Each family includes functions that are good models for receptive
field profiles in primary visual cortex (that is, they resemble Gabor func-
tions), but also functions that are intrinsically two-dimensional. One such
family of functions is the Hermite functions. These functions serve as good
asymptotic approximations for the other families. Their properties suggest
how circularly symmetric receptive fields can be built out of simple combi-
nations of the receptive fields encountered in primary visual cortex, V1.

2 Results

2.1 Definitions

Following the general notation of Slepian and Pollack [1961], we consider
space-limiting operators D and band-limiting operators B. Both are linear
operators on functions f on the plane. We define a general space-limiting
operator D with shape parameter a and scale parameter d by

Da,df(x, y) = exp
[
−

( |x|2 + |y|2
d2

) 1
2 a]

f(x, y) . (2.1)

The corresponding band-limiting operators B are most readily defined
in the frequency domain, by

Ba,b f̃(ωx, ωy) = exp
[
−

( |ωx|2 + |ωy|2
b2

) 1
2 a]

f̃(ωx, ωy) , (2.2)

where

f̃(ωx, ωy) =
1
2π

∫∫
f(x, y) exp [−i(ωxx + ωyy)]dx dy , (2.3)

whence

f(x, y) =
1
2π

∫∫
f̃(ωx, ωy) exp [i(ωxx + ωyy)] dωx dωy . (2.4)

Note that in the limit a → ∞ that D∞,d sets f to 0 outside of |x|2+|y|2 ≤
d2, and leaves f unchanged within the disk of radius d, and analogously
for B∞,b. In equations (2.3) and (2.4), we use a symmetric form for the
Fourier transform; this choice will prove convenient for a later analysis (see
equation (2.108)).
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2.2 Algebraic Properties

It follows immediately from the definition (equation 2.1) that Da,tDa,u =
Da,ν , where 1

ta + 1
ua = 1

νa , and that D∞,d is idempotent. This composition
rule guarantees the existence of functional square roots,

(Da,t)
1
2 = Da,ν , where ν = 2

1
a t , (2.5)

which will be important below. Corresponding relationships hold for B.
From here on, we will suppress subscripts whenever this does not lead

to ambiguities. D and B are evidently self-adjoint operators. Since they do
not commute, BD and DB are not self-adjoint, but combinations such as
DmBkDm and BmDkBm are self-adjoint. Moreover, if ψ is an eigenvector
of DuBDν with eigenvalue λ, then Dhψ is an eigenvector of Du+hBDν−h,
also with eigenvalue λ. This is because

Du+hBDν−h(Dhψ) = Dh(DuBDνψ) = Dh(λψ) = λ(Dhψ). (2.6)

In particular, the operators DuBDv are isospectral for changes in u and ν
which leave u+ ν constant. These relations take a particularly simple form
for D∞ and B∞, which are idempotent.

It now follows that BD and DB have only real eigenvalues (since they are
isospectral with the self-adjoint operators B

1
2 DB

1
2 and D

1
2 BD

1
2 ). More-

over, their eigenvalues λ are necessarily between 0 and 1. |λ| ≤ 1 follows
from the observation that the operators D and B can only diminish the
magnitude of a function, and λ ≥ 0 follows from the inner-product calcu-
lation that for any function f,(

D
1
2 BD

1
2 f, f

)
=

(
B

1
2 D

1
2 f ,B

1
2 D

1
2 f

)
≥ 0 . (2.7)

Consider now the problem of finding the function f that is most nearly
preserved by successive application of space- and band-limits via D and
B, respectively. One way of formulating this problem is as follows. Since
application of D and B can only reduce |f |2 ≡ (f, f), we can formulate
this problem as finding the function f that maximizes |BDf |2 subject to
|f |2 = 1. We calculate

max
|f |2=1

|BDf |2 = max
(f,f)=1

(f,DB2Df) . (2.8)

The Lagrange multiplier method, applied to the right hand side of equa-
tion (2.8), indicates that |BDf |2 is extremized when f satisfies the eigen-
value equation

DB2Df = λf . (2.9)

By the remarks at the beginning of this section, the eigenfunctions of
DB2D can be obtained from the eigenfunctions of B2D2 by application of
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D. The operator B2D2 is of the form BD, but with choices for the width
parameters b and d reduced by a factor of 21/a (equation 2.5). Note that in
the abrupt (a = ∞) case, the situation is particularly simple (Slepian and
Pollack [1961]): this change in scale is trivial, and eigenfunctions of BD,
operated on by D, are in turn eigenfunctions of DB.

Other than this change of scale and the application of D, the eigenfunc-
tion of BD with largest eigenvalue is the function f that is altered the least
by successive application of space- and band-limits. Similarly, eigenfunc-
tions of successively lower eigenvalue correspond to functions that, within
subspaces orthogonal to eigenfunctions of higher eigenvalue, have this prop-
erty.

The notion of a function that is simultaneously both space- and band-
limited can be expressed in other ways, such as a function that maximizes
(DBDf, f) subject to |f |2 = 1. By the above remarks, the solutions to
the corresponding eigenvalue problems (equation 2.9) are readily obtained
from the eigenfunctions of BD, and this relationship is particularly simple
in the abrupt case. (Note that the one cannot merely ask for functions that
maximize (BDf, f) = 1 subject to |f |2 = 1. Since BD is not self-adjoint,
this maximization does not lead to an eigenvalue problem for BD as did
the extremum problem of equation (2.8).)

Thus, we direct our attention to finding the eigenfunctions of BD.

2.3 The Gaussian Case

We focus on the Gaussian (a = 2) case, for several reasons. First, the
eigenfunctions of BD (and hence, DB) have a simple closed form. Sec-
ond, the operators D and B generically have rotational symmetry, but in
this case also separate in Cartesian coordinates. This leads to relationships
between the eigenfunctions of the separated operators and eigenfunctions
with rotational symmetry. Finally, the Gaussian case provides a reason-
able approximate description of the general case, as anticipated from the
slowly-varying linear operator theory of Sirovich and Knight (Knight and
Sirovich [1982, 1986]; Sirovich and Knight [1981, 1982, 1985]).

We write Dgau,d ≡ D2,d
√

2, an operator whose envelope is a product
of one-dimensional Gaussians, each of standard deviation d. We use the
analogous convention for Bgau,b ≡ B2,b

√
2. Now it is convenient to define

Dx,df(x, y) = exp
[
− x2

2d2

]
f(x, y) , (2.10)

which space-limits only along the x-coordinate, and to analogously de-
fine Dy,d, Bx,b and By,b. Dgau,d = Dx,dDy,d, Bgau,d = Bx,bBy,b, and the
operators also have the commutation relations Dx,dBy,b = By,bDx,d and
Dy,dBx,b = Bx,bDy,d. Thus, there will be eigenfunctions ψ(x, y) of
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Bgau,bDgau,d with eigenvalue λ which have the form

ψ(x, y) = ψx(x)ψy(y) , (2.11)

where the factors ψx(x) and ψy(y) are eigenfunctions of the one-dimensional
operators Bx,bDx,d and By,bDy,d with eigenvalues λx and λy, and

λ = λxλy . (2.12)

2.4 One Dimension

We now consider the one-dimensional operators Dgau,d ≡ D2,d
√

2, Bgau,b ≡
B2,b

√
2, and suppress the subscripts. As the Fourier transform of a Gaussian

is another Gaussian, we have explicitly,(
BDf

)
(x) =

b√
2π

∫
f(u) exp

(
− u2

2d2

)
exp

(− 1
2b2(u − x)2

)
du . (2.13)

Following Knight and Sirovich [1982, 1986], we seek solutions of

BDfn = λnfn (2.14)

in the form of a Hermite polynomial hn scaled by a factor k, multiplied by
a Gaussian of standard deviation α,

fn(x) = hn(kx) exp
(
− x2

2α2

)
, (2.15)

and anticipate eigenvalues of the form

λn = ηn+ 1
2 . (2.16)

It is convenient to use Hermite polynomials that are orthogonal with
respect to a Gaussian of unit standard deviation, and whose highest co-
efficient is unity. This convention, more convenient for what follows, is
different from the standard one (Abramowitz and Stegun [1964] equation
22.2.14) for the Hermite polynomials Hn; the relationship between these
conventions is

hn(x) = 2−n/2Hn

( x√
2

)
. (2.17)

Under our convention, the Hermite polynomials have the generating func-
tion ∞∑

n=0

zn

n!
hn(x) = exp

(
xz − 1

2z2
)
. (2.18)

The assumed form for fn, equation (2.15), leads to a generating function
for the right hand side of the eigenvalue equation (2.14):

∞∑
n=0

zn

n!
λnfn(x) = η

1
2 exp

(
− x2

2α2
+ kηxz − 1

2η2z2

)
. (2.19)
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We can also write a generating function for the left-hand side of equation
(2.14):

∞∑
n=0

zn

n!
(DBfn)(x) =

√
b2

b2 + 1
d2 + 1

α2

exp
[− 1

2 (b2x2 + z2)
]

exp
[

1
2

(b2x + kz)2

b2 + 1
d2 + 1

a2

]
. (2.20)

The two generating functions (equations (2.19) and (2.20)) have the same
form. Equating the coefficients of x2, xz, and z2 in the exponents, and also
equating the two overall multiplicative factors, leads to constraints for the
unknown quantities α, k, and η of equations (2.15) and (2.16). These con-
straints are satisfied by

k = b

√
1 − η2

η
, (2.21)

α2 =
1 ±√

1 + 4b2d2

2b2
, and (2.22)

η =
b2

b2 + 1
d2 + 1

α2

. (2.23)

Only the positive branch of equation (2.22) corresponds to eigenfunctions
that approach zero for large x. The negative branch corresponds to imag-
inary α and to real eigenfunctions that diverge for large x. We will focus
on the positive branch.

These equations can be placed in a more dimensionless form by taking
c = bd, κ = k

b , andβ = αb. With these parameters,

β2 =
1 ±√

1 + 4c2

2
, (2.24)

η =
2c2

1 + 2c2 +
√

1 + 4c2
=

( 2c

1 +
√

1 + 4c2

)2

, and (2.25)

κ2 =
√

1 + 4c2

c2
. (2.26)

After some algebra, the eigenfunctions (2.15) can be written

fn

(χ

k

)
= hn(χ) exp

(− 1
4χ2

)
exp

( χ2

4κ2c2

)
= hn(χ) exp

(− 1
4χ2

)
exp

( χ2

4
√

1 + 4c2

)
. (2.27)

Equation (2.15) and the more explicit form (2.27) are thus the func-
tions that extremize simultaneous space- and band-limited functions in the
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Gaussian sense that we have defined. The combination

c = bd (2.28)

is a product of the space limit and the bandwidth limit. As c → ∞, the
Gaussian envelope in equation (2.27) becomes progressively less promi-
nent, and the eigenfunctions approach the unmodified Hermite functions
hn(χ) exp

(− 1
4χ2

)
.

2.5 Two Dimensions: Reorganization According to
Rotational Symmetry

We now consider the two-dimensional Gaussian case. As a consequence
of the Cartesian separation of equation (2.11), solutions of the two-dimen-
sional eigenvalue problem equation (2.14) may be parameterized by integers
nx and ny, with

fnx,ny
(x, y) = fnx

(x) fny
(y) , (2.29)

where the factors on the right hand side are given by equation (2.27). As a
consequence of equations (2.12) and (2.16), the eigenvalue associated with
fnx,ny

is
λnx,ny

= η1+nx+ny , (2.30)

where η is given by equation (2.23) or (2.25).
Thus, eigenvalues are identical for eigenfunctions that share a common

value of n = nx + ny. These n + 1 eigenfunctions, namely f0,n, f1,n−1, . . . ,
fn−1,1, fn,0, are readily reorganized into new linear combinations that ex-
hibit polar symmetry, as one would expect from the polar symmetry of the
operators B and D for the Gaussian (a = 2) case. To calculate these linear
combinations explicitly, we combine generating functions with the umbral
calculus of Rota and Taylor [1994]. The main steps are: (a) defining the
umbral calculus, (b) writing a generating function for products of Hermite
polynomials in Cartesian coordinates, (c) using the umbral calculus to re-
organize this generating function in terms of polar coordinates, and (d)
matching coefficients to arrive at the desired reorganization.

The umbral calculus is essentially an algebra of polynomials in several
variables. Addition in this algebra is the usual addition. Multiplication in
this algebra is a nonstandard operation that will be denoted ⊗. This oper-
ation is defined in terms of its action on products of Hermite polynomials
(which form a basis), and then is extended to all polynomials via linear-
ity. The linearity condition is equivalent to stating that ⊗ and addition
obey the distributive law. For Hermite polynomials with identical formal
arguments, we define

hm(x) ⊗ hn(x) = hm+n(x). (2.31)
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For Hermite polynomials with distinct arguments, ⊗ acts like ordinary
multiplication:

hm(x) ⊗ hn(y) = hm(x)hn(y) (2.32)

We use exponential notation p⊗m = p ⊗ p ⊗ . . . ⊗ p for iterated products
of any polynomial p, and we also write h = h1 so that h⊗n(x) = hn(x).
For example, in this notation, the generating function (2.18) for Hermite
polynomials takes the form

∞∑
n=0

zn

n!
h⊗n(x) = exp

(
xz − 1

2
z2

)
. (2.33)

Now consider a generating function Q(z, t) defined by

Q(z, t) =
∞∑

k=0

∞∑
l=0

zk

k!
tl

l!
qk,l(x, y) , (2.34)

where
qk,l(x, y) = [h(x) + ih(y)]⊗k ⊗ [h(x) − ih(y)]⊗l . (2.35)

With k = a + r and l = b + s and application of the binomial expansion to
each term of equation (2.35) we find

Q(z, t) =
∞∑

a,b,r,s=0

za+r

a! r!
tb+s

b! s!
ir(−i)s ha+b(x) ⊗ hr+s(y) . (2.36)

Each term is of the form of equation (2.32) at this step, so ⊗ becomes
ordinary multiplication. Equation (2.36) now can be factored into

Q(z, t) =
[ ∞∑

a,b=0

zatb

a!b!
ha+b(x)

]
·
[ ∞∑

r,s=0

(iz)r(−it)s

r!s!
hr+s(y)

]
. (2.37)

Application of the binomial expansion collapses each of these factors:

Q(z, t) =
[ ∞∑

m=0

(z + t)m

m!
hm(x)

][ ∞∑
m=0

(iz − it)m

m!
hm(y)

]
. (2.38)

It now follows from the generating function for h, equation (2.18), that

Q(z, t) = exp
[
x(z + t) − (z + t)2

2

]
exp

[
y(iz − it) − (iz − it)2

2

]
, (2.39)

or equivalently,

Q(z, t) = exp [(x + iy)z + (x − iy)t − 2zt]. (2.40)
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With the usual polar substitutions x = R cos θ and y = R sin θ, along with
ρ =

√
zt and σ =

√
z
t , equation (2.40) becomes

Q
(
ρσ,

ρ

σ

)
= exp

[
Rρ

(
eiθσ +

1
eiθσ

)
− 2ρ2

]
. (2.41)

We now form a Taylor series expansion of the right hand side:

Q
(
ρσ,

ρ

σ

)
=

∞∑
s=0

1
s!

(
Rρ

(
eiθσ +

1
eiθσ

)
− 2ρ2

)s

=
∞∑

s=0

s∑
g=0

1
g!(s − g)!

(
Rρ

(
eiθσ +

1
eiθσ

))g (−2ρ2
)s−g

=
∞∑

s=0

s∑
g=0

g∑
j=0

1
(s − g)!j!(g − j)!

(Rρ)g
(−2ρ2

)s−g (
eiθσ

)2j−g
.

(2.42)

From the middle line of equation (2.42), we see that any term that involves
σµ must have g ≥ |µ|, and hence must be associated with ρ2ν+|µ| for some
non-negative integer ν. We therefore collect terms that involve ρ2ν+|µ|σµ

in equation (2.42). These are the terms for which j = 1
2 (|µ| + g) and s =

1
2 (|µ| + g) + ν. Thus

Q
(
ρσ,

ρ

σ

)
=

∞∑
µ=−∞

∞∑
ν=0

ρ2ν+|µ|σµeiµθR|µ|

×
∑

g

(−2)
1
2 (|µ|−g)+vRg−|µ|(

1
2 (|µ| − g) + ν

)
!
(

1
2 (|µ| + g)

)
!
(

1
2 (g − |µ|))! (2.43)

where the inner sum is over all values of g for which the arguments of the
factorials are non-negative integers. With p = 1

2 (g − |µ|), we have

Q
(
ρσ,

ρ

σ

)
=

∞∑
µ=−∞

∞∑
ν=0

ρ2ν+|µ|σµeiµθR|µ|
ν∑

p=0

(−2)ν−pR2p

(|µ| + p)!p!(ν − p)!
. (2.44)

We now convert the expression in equation (2.34) for Q to polar form in
another way. The definition of ⊗ leads to the identity

[h(x) + ih(y)] ⊗ [h(x) − ih(y)] = h2(x) + h2(y). (2.45)

This is a crucial step: the left-hand side is a product of Hermite polynomials
in Cartesian coordinates, while the right-hand side depends only on the
radius (as h2(u) = u2 − 1).

Repeated application of this identity to equation (2.35) yields

qk,l(x, y) = [h2(x) + h2(y)]⊗min(k,l) ⊗ [h(x) ± ih(y)]⊗|k−l|, (2.46)
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where the sign in the final term is chosen to match the sign of k − l.
Now consider the substitutions ν = min(k, l) and µ = k − l. As k and l

each run from 0 to ∞, ν runs from 0 to ∞, and µ independently runs from
−∞ to ∞ (see Figure 2.1). Moreover, k = ν + µ

2 +
∣∣µ
2

∣∣ and l = ν − µ
2 +

∣∣µ
2

∣∣,
so that (k, l) pairs of constant eigenvalue (constant k + l) correspond to
constant values of 2v + |µ|. (This is the reason for the reorganization of
terms between equations (2.42) and (2.43).) By use of the umbral identity
(2.46), the expression (2.34) for Q(z, t) can be transformed to

Q
(
ρσ,

ρ

σ

)
=

∞∑
µ=−∞

∞∑
ν=0

ρ2ν+|µ|(
ν + µ

2 + |µ|
2

)
!

σµ(
ν − µ

2 + |µ|
2

)
!

× [
h2(x) + h2(y)

]⊗ν ⊗ [
h(x) ± ih(y)

]⊗µ
, (2.47)

where the sign in the final term is chosen to match the sign of µ.

10 2 3

3

2

1

0

k

l
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-3

µ

B

3

2

1

0

ν

Figure 2.1. The change of indices from (k, l) (panel A) to (µ, ν) (panel B) via
the substitutions ν = min(k, l) and µ = k − l. Coordinates that correspond to
the eigenfunctions of equal eigenvalues are indicated by the gray enclosures.

We now equate the coefficient of ρ2ν+|µ|σµ in equation (2.47) with the
corresponding coefficient in equation (2.44). It suffices to consider µ ≥ 0.
This yields

[h(x) + ih(y)]⊗µ ⊗ [h2(x) + h2(y)]⊗ν = eiµθRµPµ,ν(R2), (2.48)

where

Pµ,ν(r) =
ν∑

p=0

(−2)ν−p (µ + ν)!ν!
(µ + p)!p!(ν − p)!

rp. (2.49)
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These equations, along with equation (2.15) or (2.27) that convert the
Hermite polynomials to the eigenfunctions of BD in one dimension, spec-
ify how the eigenfunctions in Cartesian separation that share a common
eigenvalue can be reorganized into a polar separation. The right-hand side
of equation (2.48) is separated in polar coordinates and has angular depen-
dence exp(iµθ). The radial dependence is Rµ times a polynomial Pµ,ν of
degree ν in R2. Moreover, their relationship (see below) to the generalized
Laguerre polynomials implies that there are ν nodes along each radius.
The left-hand side of equation (2.48) is a sum of terms hnx(x) hny (y), as
specified by the properties of ⊗. The indices nx and ny that would appear
on the left- hand side in Cartesian form are all those that satisfy

n = nx + ny = 2ν + |µ|. (2.50)

As an example of this reorganization, we take µ = 2 and ν = 3. Equation
(2.48) becomes

[h(x) + ih(y)]⊗2 ⊗ [h2(x) + h2(y)]⊗3 = e2iθR2(R6 − 30R4 + 240R2 − 480).
(2.51)

Reduction of the left-hand side via the definition of ⊗ leads to

[h(x) + ih(y)]⊗2 ⊗ [h2(x) + h2(y)]⊗3

= [h2(x) + 2ih1(x)h1(y) − h2(y)]
⊗ [h6(x) + 3h4(x)h2(y) + 3h2(x)h4(y) + h6(y)]

= h8(x) + 2ih7(x)h1(y) + 2h6(x)h2(y) + 6ih5(x)h3(y)
+ 6ih3(x)h5(y) − 2h2(x)h6(y)
+ 2ih1(x)h7(y) − h8(y) . (2.52)

Thus, the real part h8(x) + 2h6(x)h2(y) − 2h2(x)h6(y) − h8(y) and the
imaginary part 2h7(x)h1(y)+6h5(x)h3(y)+6h3(x)h5(y)+2h1(x)h7(y) are
the two polynomials associated with eigenfunctions of twofold axial sym-
metry (µ = 2) and three radial nodes (ν = 3). These eigenfunctions are
illustrated in Figure (2.2) for c = 4. Figure (2.3) shows another example of
this reorganization, with threefold axial symmetry (µ = 3) and one radial
node (ν = 1), which emphasizes that the eigenfunctions in the polar sep-
aration may have symmetries manifested by none of the eigenfunctions in
the Cartesian separation.

Properties of the polynomials Pµ,v

The polynomials Pµ,ν(R2) that appear on the right-hand side of equation
(2.48) are a doubly-indexed set with several interesting properties. Consid-
ered as functions on the plane, eiµθRµ Pµ,ν(R2) form an orthogonal family
with respect to a weight exp

(− 1
2R2

)
. This can be seen as follows. Two

such functions that have different values of µ are orthogonal because of
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8 7 6 5 4 3 2 1 0nx:

876543210ny:

µ=2,ν=3 real imaginary

Figure 2.2. An example of the reorganization of eigenfunctions in the Carte-
sian separation into eigenfunctions in the polar separation. Top row: the nine
eigenfunctions with nx + ny = 8. Bottom row: real and imaginary parts of polar
separation with twofold axial symmetry (µ = 2) and three radial nodes (v = 3),
created from the Cartesian separation via equation (2.52). The space bandwidth
product c = 4. The grayscale for each function is individually scaled.

5 4 3 2 1 0nx:

543210ny:

µ=3, ν=1 real imaginary

Figure 2.3. A second example of the reorganization of eigenfunctions in the
Cartesian separation into eigenfunctions in the polar separation. Top row: the
six eigenfunctions with nx + ny = 5. Bottom row: real and imaginary parts of
polar separation with threefold axial symmetry (µ = 3) and one radial node
(v = 1). The space bandwidth product c = 4. The grayscale for each function is
individually scaled.
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their differing angular dependence. Two such functions that share a com-
mon value of µ but have different values of ν are orthogonal because their
Cartesian decompositions are non-overlapping — since they have distinct
eigenvalues (see Figure (2.1)).

Since the eiµθRµPµ,ν(R2) are orthogonal on the plane with respect to
exp

(− 1
2R2

)
, the polynomials Pµ,ν(R2) are orthogonal on the plane with

respect to the weight R2µ exp
(− 1

2R2
)
. They thus can be considered to

be generalized Hermite polynomials. Reduction by integration over circles
shows that for fixed µ, these polynomials are also orthogonal with respect
to a weight R2µ+1 exp

(− 1
2R2

)
on the half-line. With the transformation

ζ = 1
2R2, this weight becomes

R2µ+1 exp
(− 1

2R2
)
dR = (2ζ)µ exp (−ζ)dζ . (2.53)

This demonstrates a relationship between the generalized Hermite poly-
nomials, which have the weight on the left, and the familiar generalized
Laguerre polynomials, which have the weight on the right. It extends the in-
terrelationships expressed by equations 22.5.40 and 22.5.41 of Abramowitz
and Stegun [1964].

We now find generating functions and normalization constants for these
polynomials. We rewrite equation (2.41) as

Q
(
ρσ ,

ρ

σ

)
= exp (−2ρ2) exp

[
Rρ

(
eiθσ +

1
eiθσ

)]
(2.54)

and compare with the generating function for the ordinary Bessel functions
Jn(χ) (equation 9.1.41 of Abramowitz and Stegun [1964]):

∞∑
n=−∞

τnJn(χ) = exp
[

1
2χ

(
τ − 1

τ

)]
. (2.55)

Taking τ = −ieiθσ and χ = 2iRρ leads to

Q
(
ρσ , ρ

σ

)
= exp (−2ρ2)

∞∑
n=∞

(−ieiθσ
)n

Jn(2iRρ) . (2.56)

On the other hand, substitution of equation (2.48) into equation (2.47)
gives a second expression for Q

(
ρσ, ρ

σ

)
. Equating coefficients of eiµθ now

yields (for non-negative µ)

∞∑
ν=0

ρ2ν

(ν + µ)!ν!
Pµ,ν(R2) = exp (−2ρ2)

Jµ(2iRρ)
(iRρ)µ

, (2.57)

which is a generating function over ν for each series of polynomials Pµ,ν

with fixed ν.
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To determine the normalization of the polynomials Pµ,ν , consider

1
2π

∫∫ ∞∑
0

zktlqk,l(x, y)
k! l!

z′k
′
t′l

′
qk′,l′(x, y)
k′! l′!

exp
[− 1

2 (x2 + y2)
]
dx dy

=
1
2π

∫∫
Q(z, t)Q(z′, t′) exp

[− 1
2 (x2 + y2)

]
dx dy (2.58)

in which the sum on the left hand side is over all values of k, l, k′, and l′.
Via substitution of the expression (2.40) for the generating function Q and
straightforward algebra, this is seen to be

1
2π

∫∫ ∞∑
0

zktlqk,j(x, y)
k! l!

z′k
′
t′l

′
qk′,l′(x, y)
k′! l′!

exp
[− 1

2 (x2 + y2)
]
dx dy

= exp
(
2zz′ + 2tt′

)
. (2.59)

Consequently,

1
2π

∫∫ ∣∣qk,l(x, y)
∣∣2 exp

[− 1
2 (x2 + y2)

]
dx dy = 2k+lk! l! , (2.60)

and, as expected, cross-terms (k �= k′ or l �= l′) are zero. In polar form,
recognizing (from equations (2.35) and (2.48)) that

qµ+ν,ν(x, y) = exp (iµθ) RµPµ,ν(R2), (2.61)

we find∫ ∞

0

∣∣Pµ,ν(R2)
∣∣2R2µ+1 exp

(− 1
2R2

)
dR = 2µ+2ν(µ + ν)! ν! , (2.62)

the normalization of the polynomials Pµ,ν .

2.6 The Non-Gaussian Case: One Dimension

We now return to the general band- and space-limiting operator BaDa, in
which the profiles of the limiters are determined by the shape parameter a,
as in equations (2.1) and (2.2). The eigenfunctions of the one-dimensional
operator B∞D∞, the prolate spheroidal functions (Slepian functions, from
Slepian and Pollack [1961]), closely resemble (Flammer [1957]; Xu, Haykin,
and Racine [1999]) the eigenfunctions of the one-dimensional Gaussian op-
erators B2D2, equation (2.27). A similar observation holds for the eigen-
functions of the corresponding two-dimensional operators (Slepian [1964]).
This is rather remarkable, since the operator B∞D∞ limits abruptly in
space and frequency, while the operator B2D2 applies smooth cutoffs. In
this and the next sections, we provide a rationale for these similarities by
drawing on the theory of Sirovich and Knight (Knight and Sirovich [1982,
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1986]; Sirovich and Knight [1981, 1982, 1985]) of slowly varying linear op-
erators. Our analysis applies not only to B∞D∞ but also to the operators
BaDa for intermediate exponents a > 2. This result can be viewed as an
extension of the known asymptotic relationship between the Hermite func-
tions and the prolate spheroidal functions (Flammer [1957]). We consider
the one-dimensional case in some detail and then sketch how the arguments
extend to two dimensions.

The theory of Sirovich and Knight yields asymptotic eigenvalues and
eigenfunctions for integral kernels that have a slow dependence in a specific
technical sense. It also delivers exact results for a broad class of kernels to
which a quite general family of kernels are generically asymptotic over the
principal part of their eigenspaces. It includes the WKB method for second-
order differential equations as a special case. Reference Knight and Sirovich
[1982] presents its application to problems related to the one here, and we
now summarize the relevant part of that reference.

An integral kernel K{x, x′} may be re-parameterized in terms of differ-
ence and mean variables

ν = x − x′ and q = 1
2 (x + x′) . (2.63)

In terms of these variables, the kernel is

K(ν, q) = K{q + 1
2ν , q − 1

2ν}. (2.64)

In the special case of a difference kernel K{x−x′}, the dependence on q in
equation (2.64) is absent. The Wigner transform of K{x, x′} is defined as

W (K{x, x′}) = K̃(p, q) =
∫ ∞

−∞
e−ipνK(ν, q)dν

=
∫ ∞

−∞
e−ipνK

{
q + 1

2ν, q − 1
2ν

}
dν . (2.65)

In the special case of a difference kernel K{x−x′}, equation (2.65) is simply
a Fourier transform and the kernel’s eigenfunctions eipx have eigenvalues
K̃(p).

Note that if K{x, x′} is symmetric in its arguments, then K̃(p, q) is real,
and the implicit relation

K̃(p, q) = λ , (2.66)

for real λ, will yield a set of contour lines on the (p, q) plane. If these contour
lines are closed, then we may pick a subset of them with specific enclosed
areas:

K̃(p, q) = λn , where (p, q) encloses area A(λn) = (2n + 1)π . (2.67)

If λn+1 − λn is a stable small fraction of λn over a span of consecutive
n’s, then equation (2.67) gives a good estimate of the nth eigenvalue. (By
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experience, taking liberties with the criterion shows the estimate is robust.)
Estimated eigenfunctions also emerge from the analysis. If we solve equa-
tion (2.67) for pn(q), then we find that locally at x, the nth eigenfunction
vibrates with changing x at a frequency 2πpn(x).

In one type of circumstance, the eigenvalues of equation (2.67) are ex-
act : if the contours of equation (2.66) are concentric similar ellipses and
if also, in (λ, p, q) 3-space the surface (2.66) is a paraboloid. In this case,
the spacing between the consecutive eigenvalues is constant. In addition, in
this case the exact eigenfunctions also may be specified in terms of Hermite
functions.

This exact result leads to useful asymptotics in general situations that
occur commonly. If a kernel transform K̃(p, q) is expanded about an ex-
tremum (p0, q0), then near that extremum the paraboloidal form is generic
through second-order terms in (p − p0, q − q0). In the examples below,
K̃(p, q) is symmetric under reflection of either axis. Thus it is extremized
at the origin, where Taylor expansion gives

K̃(p, q) ≈ K̃(0, 0) + 1
2K̃pp(0, 0)p2 + 1

2K̃qq(0, 0)q2 . (2.68)

For the right-hand expression, equation (2.67) is exact and yields exact
eigenfunctions. Over the set of areas A(λn) in equation (2.67) for which
K̃(p, q) is well approximated by equation (2.68), the exact eigenvalues of
equation (2.68) will be good estimates of those sought, and similarly for
the exact eigenfunctions of equation (2.68).

These observations imply that a smooth area-preserving transformation
on the (p, q) plane must map K̃(p, q) to the Wigner transform of another
kernel with the same asymptotic eigenvalues given by equation (2.67). As
shown in Knight and Sirovich [1982], a more restrictive unimodular affine
transformation on (p, q), which preserves straight lines as well as areas,
yields a new kernel with exactly the same eigenvalues. The new kernel K ′

is related to the original kernel by a similarity transformation T :

K ′ = TKT−1 . (2.69)

Here, T maps the orthonormal eigenfunctions of the original kernel to those
of the new, and hence preserves inner products.

A unimodular affine transformation carries an ellipse to another ellipse
with equal area. Given an ellipse, a unimodular affine transformation may
be constructed which carries it to a circle centered at the origin. Construc-
tion of the corresponding similarity transformation T (equation (2.69)) is
also straightforward and quite simple in the axis-symmetric case (equation
(2.68)). The availability of the inverse transformation, from a centered cir-
cle to an arbitrary ellipse of equal area, reduces the eigenvalue problem for
a kernel whose Wigner transform yields contour lines which are concen-
tric similar ellipses, to the eigenvalue problem for a kernel whose Wigner
transform contours are origin-centered concentric circles.
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Thus (still following Knight and Sirovich [1982]), we examine the eigen-
value problem for a kernel whose Wigner transform is of the form

K̃(p, q) = K̃(p2 + q2) = K̃(J) . (2.70)

As noted above, the paraboloidal special case

K̃(p, q) = a + b(p2 + q2) = a + bJ (2.71)

satisfies the area rule (equation (2.67)) exactly, with

λn = a + b(2n + 1) . (2.72)

For other cases of equation (2.70), the area rule is not exact, and we may
furnish a next-order error term

λn = K̃(2n + 1) + 1
2K̃JJ(2n + 1) . (2.73)

Nonetheless for kernels with Wigner transforms of the form (2.70), the
eigenvalue problem may still be solved exactly. This may be shown (Knight
and Sirovich [1982]) by relating two classical generating function formulas.
The orthonormal eigenfunctions that emerge from equation (2.70) are those
encountered in the limiting case (c → ∞) of equation (2.27), namely the
normalized Hermite functions

un(x) =
1
4
√

π

1√
n!

hn

(√
2x

)
exp

(− 1
2x2

)
. (2.74)

In terms of these, the classical Mehler’s formula (equation 22, section 10.3
in Erdelyi [1955]) is

G{x, x′} =
1√

π(1 − z2)
exp

{
−

1
2 (z2 + 1)(x2 + x′2) − 2zxx′

1 − z2

}
=

1√
π(1 − z2)

exp
{
− 1

4

(1 + z

1 − z
(x − x′)2 +

1 − z

1 + z
(x + x′)2

)}
=

∞∑
n=0

znun(x)un(x′) . (2.75)

The second line has been arranged in a form easier to compare to what’s
above and particularly with equation (2.63). Clearly G{x, x′} is an integral
kernel whose nth eigenfunction is un(x) and nth eigenvalue is zn, whence

Gun = znun . (2.76)

Each term un(x)un(x′) on the right is a 1-dimensional projection ker-
nel. Wigner transformation of Mehler’s formula (2.75) (a straightforward
“complete the squares” integral) yields
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G̃(p2 + q2, z) =
2

1 + z
exp

{
−1 − z

1 + z
(p2 + q2)

}
=

∞∑
n=0

znW
(
un(x) un(x′)

)
.

(2.77)

We can expand the left-hand expression in powers of z, which shows that
each projection kernel has a Wigner transform which is constant on con-
centric circular contour lines. The “concentric circular contours” property
clearly is inherited by any weighted sum of functions of (p, q) which indi-
vidually have that property. Thus a kernel of the form

K{x, x′} =
∞∑

n=0

λnun(x) un(x′) (2.78)

will have a circular-contour Wigner transform as in equation (2.70). Is
the converse true? Can any kernel which satisfies equation (2.70) be ex-
pressed in the form (2.78) (which solves the eigenvalue problem)? Compare
equation (2.77) with the generating function for the orthonormal Laguerre
functions Ln(x) (derived from the generating function for the standard La-
guerre polynomials Ln from equation 22.9.15 of Abramowitz and Stegun

[1964] with Ln(x) = (−1)ne−
1
2xLn(x) ):

1
1 + z

exp
{
− 1

2

(1 − z

1 + z

)
J
}

=
∞∑

n=0

znLn(J) . (2.79)

We see that
W

(
un(x) un(x′)

)
= 2Ln(2J) (2.80)

and these functions are a complete orthonormal set. Thus a projection
integral applied to equation (2.70) evaluates the eigenvalue:

λn =
∫ ∞

0

K̃(J) · 2Ln(2J) dJ . (2.81)

Our converse holds because of the completeness of the Laguerre functions.
The Wigner transform of equation (2.78) is

K̃(p2 + q2) =
∞∑

n=0

λn · 2Ln

(
2(p2 + q2)

)
. (2.82)

Each of the Laguerre functions here has a peaking form which gives a
dominant contribution to the sum when p2 + q2 is near n, in qualitative
agreement with the area rule (2.67). Below we will encounter kernels which
are associated with the non-Gaussian space- and band-limited kernels and
which share their eigenfunctions. The Wigner transforms of these kernels
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show a central regime of near-circular contours with rapid radial variation,
and this feature will confirm their asymptotic agreement with the form of
equation (2.70).

We will first apply the methodology of Sirovich and Knight to the space-
and band-limited kernels themselves, which yields some insight but incon-
clusive results. We will then work with the more definitive associated ker-
nels.

A first step in applying this theory is to focus on the self-adjoint operator

D
1
2 BD

1
2 . We can write

D
1
2 BD

1
2 f(x) =

∫
K{x, x′}f(x′) dx′, (2.83)

where
K{x, x′} = [D(x)]

1
2 [D(x′)]

1
2 B(x − x′) . (2.84)

Here, D(x) is the spatial profile which corresponds to the space-limiting
operator D

D(x) = e−(|x|/d)a

, (2.85)

the one-dimensional analog of equation (2.1), and B(x) is the Fourier trans-
form of the analogous frequency-limiting profile of B, namely

B(x) =
1√
2π

∫ ∞

−∞
exp

[
−

( |ω|
b

)a]
dω , (2.86)

with the convention following equation (2.4) for a = ∞. We make the
substitutions ν = x − x′ and q = 1

2 (x + x′), with the intent of considering
K as varying slowly with q or rapidly with ν. This corresponds to the limit
that the space-bandwidth product c = bd is large. We next calculate the
Wigner transform of K:

K̃(p, q) =
∫ ∞

−∞
e−iνpK(ν, q) du

=
1√
2π

∫ ∞

−∞

[
D

(
1
2ν + q

)] 1
2
[
D

(
1
2ν − q

)] 1
2 B(ν)e−iνp dν . (2.87)

For a = 2, the Wigner transform is exactly a Gaussian,

K̃(p, q) =
bd√

1 + b2d2
exp

(
− q2

d2
− p2d2

1 + b2d2

)
. (2.88)

(Here we have used D = D2,d ≡ Dgau,d/
√

2 and similarly for B; the deriva-
tions from equations (2.13) to (2.27) used D = Dgau,d ≡ D2,d

√
2.) The

contour lines are concentric, similar ellipses around the origin. To follow
the discussion above, under the unimodular transformation

q =
d

4
√

1 + (bd)2
q̂ , p =

4
√

1 + (bd)2

d
p̂ , (2.89)
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equation (2.88) becomes

K̃
(
p̂2 + q̂2

)
=

bd√
1 + (bd)2

exp
(
− 1√

1 + (bd)2
(p̂2 + q̂2)

)
. (2.90)

This is just the general form of G̃ in (2.77) above. In that expression, if
we let

z =

√
1 + (bd)2 − 1√
1 + (bd)2 + 1

, (2.91)

we see that

K̃(p̂2 + q̂2) =
bd

1 +
√

1 + (bd)2
G̃

(
p̂2 + q̂2,

√
1 + (bd)2 − 1√
1 + (bd)2 + 1

)
. (2.92)

Consequently, by equation (2.75), the eigenvalues are

λn =
bd

1 +
√

1 + (bd)2

(√
1 + (bd)2 − 1√
1 + (bd)2 + 1

)n

. (2.93)

The exact eigenfunctions likewise may be found from equation (2.75) and
from the inverse transformation of the first member of equation (2.89).

If the space-bandwidth product bd is chosen to be large, we see from
equation (2.93) that for early n, a succession of eigenvalues will lie near
unity. Equation (2.90) similarly shows that for large bd, the Wigner trans-
form will be near unity for an extended neighborhood around the origin,
which extends to p̂2 + q̂2 = bd.

Figure 2.4 shows relief maps of the Wigner transform K̃ for a range
of shape parameters (a = 1, 2, 4,∞) and values of the space-bandwidth
product c = bd (c = 1

4π, π, 4π). The top row of each part of Figure 2.5 shows
a top-down view. We see that the asymptotic result found analytically
above for a = 2 of an extended region at an altitude near unity is already
manifest at the modest value of c = π and is more pronounced for a > 2
. In fact, for the Slepian case of a = ∞, the known eigenvalue spectrum
has early values near unity and a sudden plunge to near zero at a critical
n which depends on the space-bandwidth parameter c. By applying the
area rule to the area of the plateau near unity in this case, we can get a
good estimate of the critical n where the plunge occurs. However, the very
flatness of the plateau reflects the non-generic feature of numerous almost-
degenerate eigenvalues, and this confounds attempts to deduce the features
of the eigenfunctions from the features of the contour lines. In the a = ∞
case this problem is particularly severe: the Wigner transform essentially
involves the band-limited Fourier inversion integral of a function which
suddenly jumps to zero. The consequent inevitable Gibbs phenomenon,
which simply reflects the location of this jump, is the most prominent
altitude feature on the otherwise almost flat plateau.
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Figure 2.4. Wigner transforms K̃(p, q) of the operator D
1
2 BD

1
2 for four values

of the shape parameter a. The scale parameters b and d are given by b = d =
√

c,
where c = 1

4
π (panel A), c = π (panel B), and c = 4π (panel C). Only one

quadrant is shown, since the transforms have even symmetry in both arguments.
In each plot, the color scale runs from blue (at minimum amplitude) to deep red
(at maximum amplitude).
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2.7 The Non-Gaussian Case: Another Viewpoint

The above analysis is admittedly incomplete. For large values of the expo-
nent a, the appearance of the Gibbs phenomenon complicates the asymp-
totic behavior of the Wigner transform away from the origin. Moreover,
the presence of a nearly flat high plateau, which reflects the presence of
numerous nearly degenerate eigenvalues (a non-generic feature), disrupts
the straightforward application of the Sirovich–Knight methodology. These
difficulties can be circumvented by an alternative approach. This approach
makes explicit use of the Fourier transform relationship between the band-
limiting and space-limiting operators B and D as well as the fact that
taking the functional square root of either operator is equivalent to making
a change in scale.

An examination of the band- and space-limiting kernel in terms of its
underlying components gives some further insight into its mathematical
structure. In the one-dimensional case, the natural inner product is

(f, g) =
∫ ∞

−∞
f∗(x)g(x) dx , (2.94)

where the asterisk indicates complex conjugation. For an operator A, its
adjoint operator A† is defined by

(A†f, g) = (f,Ag) . (2.95)

The adjoint of the adjoint operator is the original operator. An operator A
may be resolved as

A = 1
2 (A + A†) + 1

2 (A − A†) = AR + i AI . (2.96)

Substitution of the definitions of AR and AI above (in place of A) into equa-
tion (2.95) shows that both are self-adjoint. An operator which commutes
with its adjoint

AA† = A†A (2.97)

is called “normal”; this is a generalization of “self-adjoint” and leads sim-
ilarly to several valuable special properties. We note that equation (2.96)
implies that for a normal operator, A, A†, AR, and AI all commute and
have a common set of eigenfunctions. As AR and AI are self-adjoint, the
eigenfunctions may be chosen to be orthonormal. If an eigenfunction as-
signs the eigenvalue λ(R) to AR and λ(I) to AI , then evidently the action
of A upon that eigenfunction yields the eigenvalue

λ = λ(R) + iλ(I) . (2.98)

An operator U which respects inner products

(Uf, Ug) = (f, g) . (2.99)
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is “unitary.” If U and V are both unitary, clearly the concatenation UV
inherits this property. We may regard the left expression of equation (2.99)
as a particular case of the right expression of equation (2.95), whence

(U†Uf, g) = (f, g) , (2.100)

so
U† = U−1 (2.101)

for a unitary operator. Since U−1 and U commute, a unitary operator is
normal and has orthonormal eigenfunctions. In equation (2.99) we may
choose both f and g to be eigenfunctions of U , and observe that the eigen-
values of U lie on the unit circle. (The above material is reviewed in many
places, for example Halmos [1942]).

Now let us consider three particular operators:
(i) The parity operator P defined by

Pf(x) = f(−x) . (2.102)

Clearly, P 2 = 1, whence
P−1 = P . (2.103)

If (Pf, Pg) is made explicit by use of equations (2.102) and (2.94), substi-
tution of the integration variable

x = −x′ (2.104)

confirms that P is unitary.
(ii) The scaling operator Sγ defined by

Sγf(x) =
1√
γ

f

(
x

γ

)
. (2.105)

We note
S−1

γ = S1/γ . (2.106)

If (Sγf, Sγg) is made explicit by use of equations (2.105) and (2.94), sub-
stitution of the integration variable

x = γx′ (2.107)

shows that Sγ is unitary.
(iii) The Fourier transform operator F defined by

(Ff)(x) =
1√
2π

∫
e−ixx′

f(x′) dx′ . (2.108)

Evidently the action of the operator P on equation (2.108) exchanges (−i)
for (+i) and yields the inverse Fourier operator. Thus,

PF = F−1 whence PF 2 = 1 and F 2 = P . (2.109)
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Furthermore,
F 4 = 1 , (2.110)

so F has four eigenvalues which are the fourth-roots of unity: i,−1,−i, 1.
By equation (2.108), the familiar bilinear Parseval relation between a

pair of functions and their Fourier transforms may be written

(Ff, Fg) = (f, g) , (2.111)

which is an example of equation (2.99), so that F is unitary.
Direct calculation verifies that the three operators defined above have

simple commutation relationships:

FP = PF , PSγ = SγP , SγF = FS1/γ . (2.112)

The first two pairs simply commute, and so have a common set of eigen-
functions. The combination Fγ ≡ SγF defined by

(Fγf)(x) =
1√
2πγ

∫
e−ixx′/γf(x′)dx′ , (2.113)

the “scaled Fourier transform operator”, will be used below to demonstrate
that a set of results holds with even broader generality than is immediately
apparent.

Two further properties of the Fourier operator F will prove important
below. It is fairly well known (see for example Vilenkin [1968] p. 565, sec. 4,
equation (1)) that the orthonormal Hermite functions un(x) which we intro-
duced in equation (2.74) are eigenfunctions of the Fourier operator, which
order the eigenvalues we found at equation (2.110) by

Fun = (−i)nun . (2.114)

This is a special case of equation (2.76) for

z = i . (2.115)

This substitution in equation (2.75) reduces G to the definition of F given in
equation (2.108). The second important property of F is the expression for
its Wigner transform. Direct evaluation is straightforward, or, substitution
of equation (2.115) into G̃ (equation 2.77) gives

F̃ (p2 + q2) = (1 + i)e−i(p2+q2) . (2.116)

Thus, F̃ has a constant amplitude on the (p, q) plane, and a phase which
is constant on circles and accelerates as a quadratic with increasing radius.

We next use the machinery developed above to further elucidate the
structure of the operator K{x, x′} in equation (2.83). The kernel given in
equation (2.83) corresponds to the sequence of operators

K = D
1
2 BD

1
2 , (2.117)
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where D corresponds to simple function multiplication and B to convolu-
tion. Until further notice let us specialize by choosing the same limitation
function for both space and frequency:

b = d =
√

c (2.118)

for equations (2.83) and (2.84). Then, in our present notation,

B = F−1DF (2.119)

and so
K = D

1
2 F−1DFD

1
2 . (2.120)

It is convenient to adopt the notation

D̂(x) =
[
D(x)

] 1
2 (2.121)

and to define the convolution operator

B̂ = F−1D̂F . (2.122)

Then B in equation (2.119) may be expressed as the iterated convolution

B =
(
B̂

)2 =
(
F−1D̂F

)(
F−1D̂F

)
= F−1D̂2F = F−1DF . (2.123)

Thus, equation (2.117) becomes

K = D̂B̂2D̂ = D̂F−1D̂2FD̂ . (2.124)

Now let us note that D̂(x) is an even function of x, so its multiplica-
tive action commutes with the action of the parity operator P , defined in
equation (2.102):

D̂P = PD̂ . (2.125)

If we insert F−1 = PF (equation (2.109)) in equation (2.124) we find

K = D̂PFD̂2FD̂ = PD̂FD̂D̂FD̂

= P
(
D̂FD̂

)2
. (2.126)

Because P commutes with both D̂ and F , from equation (2.126) we observe
that the eigenfunctions of K are the same as those of its associated operator

Z = D̂FD̂. (2.127)

As D̂ is self-adjoint, and as F is unitary, we may now show that Z is a
normal operator:

Z†Z =
(
D̂F−1D̂

)(
D̂FD̂

)
=

(
D̂PFD̂

)(
D̂FD̂

)
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=
(
D̂FD̂

)(
D̂PFD̂

)
= ZZ† (2.128)

and so we expect that the operator Z = D̂FD̂ will endow the eigenfunc-
tions of K with complex eigenvalues. The possible separation of D̂FD̂ into
a combination of two commuting self-adjoint operators (equations (2.96),
(2.97)) corresponds to the possible separation of F into Fourier cosine and
sine transforms,

F = FR + iFI . (2.129)

The Fourier cosine component FR is a self-adjoint operator and hence has
a Wigner transform that is real. It matches F on the subspace spanned by
the even-order eigenvectors and annihilates the subspace spanned by the
odd-order eigenvectors. Similarly, the Fourier sine component FI is a self-
adjoint operator and has a Wigner transform that is real, and iFI matches
F on the subspace spanned by the odd-order eigenvectors.

Corresponding statements hold for the integral kernel Z. Represented as
an integral kernel, Z = D̂FD̂ takes the form

Z{x, x′} =
1√
2π

D̂(x) e−ixx′
D̂(x′) . (2.130)

Noting the steps in equation (2.96), we may write

Z{x, x′} =
1
2π

(
D̂(x) cos(xx′)D̂(x′) − iD̂(x) sin(xx′)D̂(x′)

)
= ZR{x, x′} + iZI{x, x′} (2.131)

where both ZR and ZI are manifestly symmetric kernels (and, as noted
above, will thus have Wigner transforms which are real).

Much structural information about the operator K can be extracted from
equation (2.130). From equations (2.121) and (2.85), we have that D̂(x) is
of the form

D̂(x) = e−
1
2 ( |x|

d )a

= e−Γ(x), (2.132)

where Γ(x) is even, zero at x = 0, and monotone upward to infinity. We
note that as x increases, D̂(x) is near unity until the value of |x|

d achieves
a fair fraction of unity. If d is large, there will be a fair range of values
x, x′ over which Z{x, x′} is reasonably close to F{x, x′}. As the first sev-
eral eigenfunctions of F (2.74) are quite well confined to the neighborhood
of the origin by their quadratic exponential factor, there is room to sus-
pect that they might well-approximate the near-the-origin eigenfunctions
of Z (which are those of K as well). We note that this was indeed the
case for the “soft” Gaussian-based limiter kernel whose eigenfunctions and
eigenvalues were derived exactly above. In the “hard” limit of Slepian this
is likewise true: the Slepian eigenfunctions satisfy the second-order “pro-
late spheroidal” ordinary differential equation, which for large bandwidth
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becomes asymptotic to the “parabolic cylinder” ordinary differential equa-
tion whose eigenfunctions are the Hermite functions. This is elaborated by
Flammer [1957] (and has been exploited by Xu, Haykin, and Racine [1999]
for the reduction of electroencephalographic data). We now pursue the con-
jecture for those frequency- and space-limiting kernels that lie between the
“soft” and “hard” limits.

We have seen that the eigenvalue spectrum of the kernel K must lie
between 1 and 0. We further noted that K commutes with the parity op-
erator P (equations (2.112),(2.126)). Thus the eigenfunctions of K have
even or odd symmetry, and assign to P the eigenvalues ±1 respectively. In
both the Slepian and Gaussian cases these eigenfunctions, unsurprisingly,
alternate in parity with descending eigenvalues of K. When we factor P
from K (equation (2.126)) the remaining operator Z2 thus must have real
eigenvalues which are positive or negative according to the eigenfunction’s
parity. Consequently the eigenvalue equation

Zϕn = ζnϕn (2.133)

must have eigenvalues which are positive or negative real for even par-
ity, and are pure imaginary for odd parity. If we consider a sequence of
space- and bandwidth-limiting operators K for which the bandwidth goes
to infinity, we have

D̂ → 1 and Z → F . (2.134)

This establishes that in the same limit the eigenvalues of Z go to {±1,±i}
though it does not yet establish the choice of ±1 on the even eigenfunctions
nor ±i on the odd ones; and does not establish the eigenfunctions (2.74),
because linear combinations with a common eigenvalue have not been ruled
out. However, the exact solution for K in the “soft” (Gaussian) case does
yield the eigenfunctions of equation (2.74) in the limit and consequently
the eigenvalue sequence of equation (2.114).

The Wigner transform of the kernel Z is

Z̃(p, q) =
∫ ∞

−∞
D̂

(
q + 1

2ν
)
D̂

(
q − 1

2ν
) e−i(q2− 1

4 ν2+pν)
√

2π
dν (2.135)

= e−i(p2+q2)

∫ ∞

−∞
D̂

(
q + 1

2ν
)
D̂

(
q − 1

2ν
)ei( 1

2 ν−p)2

√
2π

dν

= e−i(p2+q2)

∫ ∞

−∞
D̂

(
q + p + 1

2ν′)D̂(
q − p − 1

2ν′)ei( 1
2 ν′)2

√
2π

dν′ ,

where on the second line the square has been completed in the exponent,
and on the third line ν = ν′+2p has shifted the integration origin; these are
the two critical steps in the closed evaluation of F̃ from F . In the last form
of equation (2.135), the oscillations of the exponential term in the integrand
accelerate as ν′ advances, and eventually their signed contributions to the
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integral cancel strongly. If D̂(x) is slow enough (from a large enough choice
of the cutoff d), then for fixed (p, q), this will happen before either D̂ factor
in equation (2.135) departs enough from unity to lend a substantial (p, q)-
dependence to the integral. More specifically, for large enough d, equation
(2.132) may be approximated by

D̂(x) ≈ 1 − 1
2

( |x|
d

)a

, (2.136)

whose substitution in equation (2.135) yields

Z̃(p, q) ≈ F̃ (p2+q2)− 1
da

√
2π

∫ ∞

−∞
eis2{|s+p+q|a+|s+p−q|a}

ds (2.137)

(where we have let ν′ = 2s). As the integral on the right is a function of
only p, q, and a, once any choice of these has been made, a large enough
choice of the cutoff d will make Z̃(p, q) → F̃ (p2 + q2). For what follows, we
recall that d =

√
c relates our cutoff to the space-bandwidth product.

The second and third rows of Figure 2.5 examine the limits of validity
of this asymptotic approximation. Again for the modest value of c = π,
and for a ≥ 2 , an amplitude plateau appears surrounding the origin and
has an altitude near

√
2 , consistent with equation (2.116). The circularity

of phase contours near the origin, for a = 4, persists from orange through
dark blue, corresponding to a half cycle. By equation (2.114), this half cycle
signals dominant contributions from the first two eigenfunctions. These
confirming features remain stable as we proceed to c = 4π. (Note that it is
the radial scale that has been changed in Figure 2.5 to accommodate the
appearance of further significant features.) However, for a = 4 (compare the
amplitude picture with the previous) the area of the plateau has increased
by a factor of 4, indicating that the number of eigenfunctions which make
major contributions to this region’s concordance with equation (2.116) has
increased from 2 to 8. The corresponding phase picture shows that in this
region both radial frequency and phase agree with equation (2.116) as well.
The a = ∞ (Slepian) case also now shows a region of clear concurrence.
Though a little shaky (when compared to a = 4), it extends through at
least 2 1

4 cycles, or through the first 9 eigenfunctions. As mentioned above,
as c = bd increases, the early Slepian functions are known to approach
the Hermite functions (Flammer [1957]). The figure’s better concordance
for an intermediate value of the shape parameter a (which supports the
discussion of the asymptotics of equation (2.137)) is strong evidence that
across the range of values of a, the eigenfunctions are asymptotic to the
Hermite functions.

Return to the general self-adjoint operator (Dd)
1
2 Bb(Dd)

1
2 = D̂dBdD̂d,

where Dd and Bb are defined by the one-dimensional analogs of equations
(2.1) and (2.2), respectively. To show that the above considerations apply
even if b �= d, we reconsider the scaled Fourier transform operator Fγ , as
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Figure 2.5. Comparison of the Wigner transforms K̃(p, q) and Z̃(p, q) for the
values of the shape parameter a and scale parameters b and d of Figure 2.4. In
each panel, first row: K̃(p, q); second row: amplitude of Z̃(p, q); third row: phase

of Z̃(p, q). A common color scale for amplitude, running from blue to deep red, is
used for the first two rows. Color scale for third row: red corresponds positive real,
yellow to positive imaginary, green to negative real, blue to negative imaginary.
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defined by equation (2.113). It follows from the definitions of B and D that

Bb = PFγDbγFγ = (Fγ)−1DbγFγ , (2.138)

generalizing equation (2.119). Hence, if we choose

γ =
d

b
, (2.139)

we find
D̂dBdD̂d = D̂dPFγDdFγD̂d . (2.140)

Symmetry considerations again require that any eigenfunction ψ of
D̂dBbD̂d is either even- or odd-symmetric. Thus, if ψ is an eigenfunction
of D̂dBbD̂d

D̂dBbD̂dψ = PZ2ψ, (2.141)

where we have defined
Z = D̂dFγD̂d , (2.142)

generalizing equation (2.127).
We now proceed to find the Wigner transform Z̃ of Z, where

Z{x, x′} =
1√
2πγ

D̂d(x)D̂d(x′)e−ixx′/γ . (2.143)

The substitutions ν = x − x′ and q = 1
2 (x + x′), followed by Fourier

transformation with respect to ν, leads to an expression for the Wigner
transform of Z,

Z̃(p, q) =
1√
2πγ

∫ ∞

−∞
D̂d

(
q +

1
2
ν

)
D̂d

(
q − 1

2ν
)
e−i(q2− 1

4 ν2)/γe−iνp dν ,

(2.144)
which is rearranged to

Z̃(p, q) =
1√
2πγ

e−i(q2/γ+p2γ)

∫ ∞

−∞
D̂d

(
q + 1

2ν
)
D̂d

(
q − 1

2ν
)
ei(ν−2pγ)2/4γ dν ,

(2.145)
generalizing equation (2.135). For a = 2, the integral can be performed
exactly:

Z̃(p, q) =

√
2

1
bd − i

exp
(
− q2

d2
(1 + ibd) − p2d2

1 − ibd

)
. (2.146)

In the limit of a → ∞, the second derivatives of the integral (2.145) at
the origin behave similarly to those of K̃: ∂2Z̃

∂p2 is analytic, ∂2Z̃
∂p∂q is zero,

and ∂2Z̃
∂q2 is undefined. Thus, a Gaussian approximation for Z̃ is no more

justified than for K̃. However, as in the special case of b = d considered
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above, the integral (2.145) can be approximated directly for the general
a > 2, if, within the vicinity of ν = 2pγ , the functions Dd are slowly
varying. This condition translates to∣∣q ± pγ

∣∣ 
 21/a d . (2.147)

(The factor 21/a originates from the square root of the operator Dd.) This
also takes the more symmetric form∣∣ q√

γ
± p

√
γ
∣∣ 
 21/a

√
bd . (2.148)

The above condition is satisfied if both |q| 
 d and |p| 
 b, that is,
within the band- and space-limits specified by D and B, respectively. In this
regime, the dominant contribution to the integral (2.145) can be obtained
by replacing D with its peak value, 1. This leads to

Z̃(p, q) ≈ (1 + i)e−i(q2/γ+p2γ) , (2.149)

generalizing the approximation of equation (2.135) by equation (2.116).
The approximate Wigner transform, equation (2.149), has contour lines

that are ellipses parallel to the (q, p) coordinate axes. Moreover (similar
to equation (2.89) above), these contour lines can be made circular by the
symplectic transformation q′ = q√

γ , p′ = p
√

γ. Z is not Hermitian, but it
is normal — that is, it commutes with its adjoint. As we have seen above,
this suffices for the analysis of Knight and Sirovich [1986] to be applicable.
In particular, we can conclude that within the regime specified by equation
(2.148), the eigenfunctions of Z, and hence of D̂dBdD̂d,are approximated
by the Hermite functions.

Thus, we have generalized the asymptotic relationship of Flammer [1957]
between the Hermite functions and the Slepian functions (which extremize
space and band limits in the sense of a = ∞) to functions which extremize
space and band limits for any choice of the shape parameter a in (0,∞).
As the next section shows, certain features of our analysis apply even more
generally, and in particular do not require specification of the shape for the
space or band-limiter.

A Perturbation Analysis

For the particular case of a = 2 (the Gaussian case), we have an exact
solution for the eigenvalues and eigenfunctions of Z. We have seen that
the spectrum separates naturally into four subsets which respectively are
given by {1,−i,−1, i}, each multiplied by a set of positive numbers less
than unity and descending to zero. Since K = PZ2 (equations (2.126) and
(2.127)), this characterization of the eigenfunctions and eigenvalues of Z
determines the behavior of the eigenfunctions and eigenvalues of K.
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Here we use a perturbation argument to show that this behavior is
generic. In contrast to the previous arguments, this aspect of the analysis
is rather general, and does not depend on the precise form of the space-
limiting function D or the band-limiting function B, provided that they
are even-symmetric and Fourier transforms of each other.

Under these conditions, it suffices to consider the integral kernel of equa-
tion (2.130), Z = D̂FD̂, which can be recast in the more general form

Z{x, x′} =
1√
2π

e−Γ(x,t)e−ixx′
e−Γ(x′,t) , (2.150)

where t is a parameter that smoothly specifies the shape of the space-
limiting function D (or D̂), and Γ is real. In particular, we can specify that
t = 0 corresponds to the Gaussian (“soft”) case, and t = 1 corresponds
to the Slepian (“hard”) case, but for the present argument, the shapes
specified by intermediate values of t need not be specified. Several choices
of the parameterization by t are of interest, which includes allowing t to
control a or d, the parameters that already appear in the definition (2.85)
of D. Our goal is to determine how the eigenvalues ζn of equation (2.133)
depend on t.

Since the eigenvectors ϕn may be chosen to be orthonormal, it follows
from the eigenvalue equation (2.133) that

ζn = (ϕn , Zϕn) . (2.151)

Consequently,

dζn

dt
= −(

ϕn , (ΓtZ + ZΓt)ϕn

)
= −2ζn(ϕn , Γtϕn) , (2.152)

where Γt ≡ ∂
∂tΓ(x, t). (We have used (ϕn , ∂

∂tϕn) = 0 which follows from
orthonormality.) The differential equation (2.152) is readily integrated to
obtain an expression for the eigenvalues ζn:

ζn(t) = ζn(0)e−2
∫ t
0 cn(t′) dt′ , (2.153)

where
cn(t) =

(
ϕn(t) , Γtϕn(t)

)
. (2.154)

Thus, as the kernel Z of equations (2.130) and (2.150) varies parametrically
with t, its eigenvalues vary according to equation (2.153).

The integral in equation (2.153) is real. This means that the eigenvalues
ζn(t) necessarily have the same phase as ζn(0). By choosing D̂ = 1 at t = 0,
(so Z = F , the infinite space-bandwidth limit) we can thus infer from
equation (2.114) that the phase of ζn(t) is equal to − 1

2nπ for the general
Z. Finally, we note that if the parametric dependence of γ on t is monotone
increasing (corresponding, for example, to space-limiting functions D̂ that
are successively narrower), then equation (2.153) implies that as t increases,
each of the eigenvalues ζn(t) shrinks monotonically towards zero along a
cardinal axis.
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2.8 The Non-Gaussian Case: Two Dimensions

The above analysis of the operator Z can be applied directly to the two-

dimensional operators D
1
2 BD

1
2 . This implies a corresponding asymptotic

relationship between the eigenfunctions for the general operators D
1
2 BD

1
2

(or BD) and those for the Gaussian case.
In two dimensions, the operators B,D, and their products do not sep-

arate in Cartesian coordinates for a �= 2 . However, they do have exact
rotational symmetry (including a �= 2). This symmetry, and the separation
into polar coordinates that it implies, means that one can find a complete
set of eigenfunctions, all of which have an angular dependence of the form
eiµθ for some integer µ. Conversely, for each integer µ, we anticipate a dis-
crete set of eigenfunctions ψµ,ν(R, θ) = eiµθζµ,ν(R), where ν counts the
number of zero-crossings in the radial dependence ζµ,ν(R). In the Gaussian
case, the corresponding eigenvalue λµ,ν depends only on 2ν + |µ|. This de-
generacy is a consequence of the dual separation into polar and Cartesian
coordinates, equation (2.50).

In sum, the above analysis shows that for the general shape parameter
a, the two-dimensional functions are also parameterized by a non-negative
integer ν that counts the number of zero-crossings along a radius, and
a second integer µ (which may be negative) that describes the angular
dependence. In view of the asymptotic relationship of the general one-
dimensional functions and the Hermite functions, we anticipate that the
eigenvalue associated with ν and µ asymptotically depends only on 2ν+|µ|.

2.9 V4 Receptive Fields

One of our motivations for studying functions that are simultaneously
space- and band-limited is to gain some insight into neural processing of
visual images beyond primary visual cortex (V1), and especially in V4. The
extrastriate area V4 appears to be an important area for the analysis of
shape Merigan [1996]. The behavior of neurons in V4 differs dramatically
from those of its inputs, V1 and V2. Neurons in V1 and V2 usually can
be characterized as having a single preferred orientation, and respond well
to a grating of an appropriately chosen spatial frequency, especially if the
grating is limited in spatial extent. Known differences between V1 and V2
neurons are relatively subtle (Levitt, Kiper, and Movshon [1994]), and con-
sist mainly of differences in overall receptive field size, contrast sensitivity,
and the prominence of responses to illusory contours (Grosof, Shapley, and
Hawken [1993]; von der Heydt, Peterhans, and Baumgartner [1984]). In
contrast, V4 neurons do not have a clear orientation preference, are often
difficult to stimulate with gratings, and typically require complex stimuli
for strong responses (Kobatake and Tanaka [1994]).

Consequently, systematic study of the spatial structure of the receptive
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fields of V4 neurons has been difficult. One of the few successful examples is
the provocative study by Gallant, Braun, and Van Essen [1993] and Gallant,
Connor, Rakshit, Lewis, and Van Essen [1996]. V4 neurons were stimulated
with patches of standard (“Cartesian”) gratings, and also patches of “po-
lar” gratings and patches of “hyperbolic” gratings (Figure 2.6). The polar
gratings include target- and pinwheel-like stimuli; the hyperbolic gratings
consist of alternating bands of light and dark that form rectangular hyper-
bolae with shared asymptotes. The main finding was that many V4 neurons
were well-stimulated by particular examples of non-Cartesian stimuli. Al-
though some neurons responded substantially better to members of one
class of gratings than to the other two, most neurons had broad tunings
across these classes (that is, they responded almost as well to some stimuli
of the non-preferred class as to the best stimulus). Moreover, the typical
neuron responded relatively poorly to most stimuli, even within its pre-
ferred class.

To determine whether this kind of behavior is expected from neurons
that filter the image in a manner that is both space and band-limited,
we performed a crude simulation. Receptive field profiles were constructed
from the two-dimensional eigenfunctions for BD (Gaussian case), for val-
ues of the circular symmetry index µ ∈ {0, 1, 2, 4} and for a range of radial
nodes ν ∈ {0, 1, 2, 3}. We chose the space-bandwidth product c = bd = 4.
The resulting profiles are shown in Figure 2.7. Raw “responses” were calcu-
lated simply by evaluating the inner product of each stimulus in Figure 2.6
with the receptive field profile. (The stimulus was considered to have a real
part, as specified by Gallant, Braun, and Van Essen [1993]; Gallant, Con-
nor, Rakshit, Lewis, and Van Essen [1996], and a corresponding imaginary
part, obtained by replacing cosines by sines. Thus, this highly schematized
model essentially posits a quadrature pair operation that removes the ef-
fect of the spatial “phase” of the Cartesian or non-Cartesian grating.) For
each receptive field profile, the raw responses were then normalized by the
largest quadrature pair response encountered to any of the stimuli.

A histogram of the normalized responses obtained for each receptive field
profile is shown in Figure 2.8. Several features are immediately apparent.
As in the data of Gallant, Braun, and Van Essen [1993]; Gallant, Con-
nor, Rakshit, Lewis, and Van Essen [1996], most receptive fields responded
poorly to most stimuli – as evidenced by the large peaks in most of the his-
tograms at a response size of 0. The receptive fields corresponding to µ = 1
responded almost exclusively to Cartesian gratings. This is a consequence
of the symmetry of these receptive fields. Among the other profiles, many
(µ = 4) had optimal responses to polar gratings, and one (µ = 0, ν = 1)
had an optimal response to a hyperbolic grating. The profiles correspond-
ing to µ = 2 tended to have large responses to some Cartesian and some
polar gratings, while the profiles corresponding to µ = 4 tended to have
largest responses to polar gratings, with next-largest responses to hyper-
bolic gratings.
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cartesian

polar

hyperbolic

Figure 2.6. Some of the stimuli used by Gallant, Braun, and Van Essen [1993];
Gallant, Connor, Rakshit, Lewis, and Van Essen [1996]. The full stimulus set
included three other spatial frequencies for each stimulus class, and also counter-
clockwise variants of the “polar” stimuli — for a total of 30 Cartesian gratings,
45 polar gratings, and 20 hyperbolic gratings.

µ=2

µ=1

µ=0

µ=4

ν=0 ν=1 ν=2 ν=3

Figure 2.7. Receptive field sensitivity profiles (real parts) used for the simulation.
All profiles had a space bandwidth product c = 4. The size of the disk corresponds
to the region of space that covered the test stimuli, taken from Gallant, Braun,
and Van Essen [1993]; Gallant, Connor, Rakshit, Lewis, and Van Essen [1996]
(see Figure 2.6).
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µ
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µ
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ν
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ν
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Figure 2.8. Summary of responses of the receptive fields of Figure 2.7 to Carte-
sian, polar, and hyperbolic gratings. The three histograms in each frame represent
responses to the three classes of grating stimuli: Cartesian gratings (30 total),
dark; polar gratings (45 total), gray; hyperbolic gratings (20 total), light. The
horizontal axis represents response size, normalized by the largest quadrature pair
response across all three classes. The height of each histogram bar represents the
number of stimuli that elicited a response of each (normalized) size.
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3 Discussion

This paper describes two-dimensional profiles that are simultaneously lim-
ited in spatial extent and in bandwidth. The main motivation is to general-
ize ideas that have benefited the study of visual processing in primary visual
cortex, V1. As outlined above, V1 neurons, to a first approximation, are of-
ten thought of as one-dimensional spatial analyzers. They generally have a
well-defined orientation preference, and typically they can be characterized
by their responses to windowed gratings. However, there are indications
that visual processing by individual neurons, even in V1, is not restricted
to a single orientation (Purpura, Victor, and Katz [1994]). Moreover, cer-
tain aspects of early visual processing (whose physiologic locus is uncer-
tain) make explicit use of two-dimensional information, such as extraction
of T-junctions (Rubin [2001]), curvature (Wolfe, Yee, and Friedman-Hill
[1992]), texture (Victor and Brodie [1978]) and shape (Wilkinson, Wilson,
and Habak [1998]). Finally, neurons beyond V1 and V2 are generally not
well-stimulated by standard gratings or other simple stimuli, which makes
quantitative study of such neurons a challenge (Gallant, Braun, and Van
Essen [1993]; Gallant, Connor, Rakshit, Lewis, and Van Essen [1996]; Ko-
batake and Tanaka [1994]; Tanaka, Saito, Fukada, and Moriya [1991]).

Our notion of simultaneous confinement in space and spatial frequency
is distinct from the notion in Daugman [1985] of minimizing uncertainty in
two important respects. First, (see equations (2.8) and (2.9) and surround-
ing material), our notion seeks profiles that are least altered by application
of linear operators that truncate influences that are non-local in space (D)
or spatial frequency (B). In contrast, Daugman’s (1985) notion directly
adopts Gabor’s (1946) idea of seeking profiles that minimize joint spread
in space and spatial frequency, as quantified by a Heisenberg uncertainty
product. Secondly, our approach considers the profiles themselves as the
subject for extremization. Though the profiles naturally group into real
and imaginary pairs (lower portions of Figure 2.2 and Figure 2.3), they
are intrinsically real, and their positive and negative lobes are intrinsic to
their extremal properties. Daugman’s approach focuses on the magnitude-
squared of the profiles (Stork and Wilson [1990]); the positive and negative
lobes of the derived profiles only arise because of phase factors eiωx that
are irrelevant to the extremal properties.

Interestingly, applying the Gabor/Daugman approach to real-valued func-
tions (Gabor [1946]; Stork and Wilson [1990]) identifies one-dimensional
Hermite functions as playing an extremal role, but this role proves to be
that of maximizing uncertainty within the space of polynomials multiplied
by Gaussians, rather than minimizing it (Klein and Beutter [1992]).

The families of functions presented here have attributes that recommend
them as a natural extension of windowed gratings. Since each family forms
a complete orthogonal set, its members can serve as a basis for charac-
terization of the quasilinear aspects of a neuron’s response, either as in-
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dividual stimuli presented in discrete trials or as members of a rapidly-
presented stimulus sequence (Ringach, Sapiro, and Shapley [1997]). More
importantly, these functions can serve as a common stimulus set to deter-
mine how spatial processing evolves from V1 to V4. From the point of view
of V1, these families of functions contain elements (those with one index 0
in Cartesian separation) that are very similar to Gabor patches (Swanson,
Wilson, and Giese [1984]). From the point of view of V4, the families (in
polar separation) contain elements that resemble the non-Cartesian grat-
ings used by Gallant and co-workers. With these stimuli, hypotheses for the
organization and relationship of V1 and V4 receptive fields can readily be
tested. For example, if indeed V1 neurons are one-dimensional analyzers,
there should be little response to functions which, in the Cartesian sepa-
ration ψnx

(x)ψny
(y), have both indices nx and ny nonzero. On the other

hand, if V1 neurons only appear to be one-dimensional analyzers because
they have a limited space-bandwidth product, then neurons that respond
to an intrinsically two-dimensional function such as ψ1(x)ψ1(y) should be
about as common as neurons that respond to a one-dimensional multilobed
function, such as ψ2(x)ψ0(y), of equal eigenvalue. The hypothesis that pro-
cessing in V4 is intrinsically two-dimensional, rather than just characterized
by an increased space-bandwidth product, makes the converse prediction.

As noted above, the “Gabor” profiles of typical neurons in V1 have only
one or two major lobes, and equally well might be replaced by functions
such as ψ1(x)ψ0(y) and ψ2(x)ψ0(y), with an appropriate choice of axes.
Wilson [1999], drawing on anatomical work by Schoups, Tootell, and Orban
[1995], has suggested that V4 neurons obtain their properties by pooling of
V1 responses across multiple orientations, and that circularly symmetric V4
receptive fields might result from uniform pooling of one-dimensional pro-
files in V1. Appropriately weighted combinations of profiles at orthogonal
orientations also can lead to receptive field sensitivity profiles with n-fold
rotational symmetry, for arbitrary n, as seen from the relationship between
the Cartesian and polar separations described above. Neurons with prefer-
ences for n-fold rotational symmetry have been encountered in extrastriate
cortices (Tanaka, Saito, Fukada, and Moriya [1991]). It is interesting (and
also highly speculative) to note that the relationship between the polar
separation and the Cartesian separation provides an economical way to
construct receptive fields of arbitrary rotational symmetry.

Our crude analysis (Figure 2.8) of simulated neurons based on the eigen-
functions in polar separation indicates that these receptive field profiles
indeed can be tuned for Cartesian and non-Cartesian gratings, as Gallant,
Braun, and Van Essen [1993]; Gallant, Connor, Rakshit, Lewis, and Van
Essen [1996] found for real V4 neurons. Given the highly schematized and
simple nature of our simulation, a detailed correspondence with physiol-
ogy would be unexpected. Indeed, only certain aspects of Gallant et al.’s
results are accounted for by this scheme. Gallant et al. found tuning to
hyperbolic gratings that was more prominent than our simulations sug-
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gest. They also found that responses were relatively insensitive to transla-
tions of the stimulus. This suggests that the very simple scheme we used
here (inner product followed by a quadrature-pair calculation) needs to
be augmented by additional stages of processing, perhaps in the form of
receptive field subunits. More detailed modeling in this direction requires
additional physiologic data, and is beyond the scope of this work. However,
it is hoped that the considerations presented here will serve as a basis for
a sound theoretically-motivated experimental approach to understanding
visual processing beyond the earliest cortical stages.

4 Appendix

Normalization of the Eigenfunctions in the Gaussian Case. The
normalization of the eigenfunctions (2.29) requires integrals similar to equa-
tion (2.58), but with respect to Gaussians of variance other than unity.
The generating-function strategy used for the evaluation of the integrals of
equation (2.58) readily extends to this situation. First, consider

1
2πV

∫∫ ∞∑
0

zktl qk,l(x, y)
k! l!

z′k
′
t′l

′
qk′,l′(x, y)
k′! l′!

exp
[
− 1

2V
(x2 + y2)

]
dx dy

=
1

2πV

∫∫
Q(z, t)Q(x′, t′) exp

[
− 1

2V
(x2 + y2)

]
dx dy (4.1)

in which the sum on the left-hand side is over all values of k, l, k′ and l′.
Proceeding in the same manner as with equation (2.58), we find

1
2πV

∫∫ ∞∑
0

zktlqk,l(x, y)
k! l!

z′k
′
t′l

′
qk′,l′(x, y)
k′! l′!

exp
[ 1
2V

(x2 + y2)
]
dx dy

= exp
[
2V (zz′ + tt′)

]
exp

[
2(V − 1)(zt + z′t′) .

]
(4.2)

Because of the polar symmetry, terms for which k−l �= k′−l′ are necessarily
0. Extracting and equating terms corresponding to zµ+νtν(z′)µ+ω(t′)ω leads
to

1
2πV

∫∫
qµ+ν,ν(x, y) qµ+ω,ω(x, y) exp

[
− 1

2V
(x2 + y2)

]
dx dy

= (µ + ν)!ν!(µ + ω)!ω!
∑

α,β,γ,δ

2α+β+γ+δ(V − 1)α+βV γ+δ

α!β! γ! δ!
, (4.3)

where the sum is over all indices α, β, γ and δ satisfying

α + γ = µ + ν

α + δ = ν
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β + γ = µ + ω

β + δ = ω . (4.4)

Equation (4.3) leads to

1
2πV

∫∫
qµ+ν,ν(x, y) qµ+ω,ω(x, y) exp

[
− 1

2V
(x2 + y2)

]
dx dy

= 2µ+ν+ω(µ + ν)! ν! (µ + ω)! ω!
min(ν,ω)∑

s

(V − 1)ν+ω−2s V µ+2s

(ν − s)! (ω − s)! s! (µ + s)!
.

(4.5)

The general result (4.5) can also be recast as

1
V

∫ ∞

0

Pµ,ν(R2) Pµ,ω(R2) R2µ+1 exp
(
−R2

2V

)
dR

= 2µ+ν+ω(µ + ν)! ν! (µ + ω)! ω!
min(ν,ω)∑

s

(V − 1)ν+ω−2sV µ+2s

(ν − s)! (ω − s)! s! (µ + s)!
.

(4.6)

To see the relationship to the case V = 1 of equation (2.58), note that the
only nonzero contributions to the sum in equation (4.3) are for α = β = 0
which forces γ = µ + ν = µ + ω and δ = ν = ω. In equations (4.5) and
(4.6), this corresponds to the sole term s = ν = ω, which establishes the
reduction to equation (2.60) with κ = µ + ν and l = ν and to equation
(2.62).

Modest Non-Orthogonality After Shifts. The extent to which shift-
ing a function spoils the orthogonality can be captured by considering
the Hermite-function limit (large c) of the one-dimensional eigenfunctions.
These eigenfunctions (see equations (2.21) and (2.27)) are given by

ϕn(x) = hn(kx) exp
(− 1

4k2x2
)
, (4.7)

from which it follows that
∞∑

n=0

zn

n!
ϕn(x) = exp

(− 1
4k2x2 + kxz − 1

2z2
)
. (4.8)

To determine the non-orthogonality of the mth and nth eigenfunctions after
positional shifts s, define

am,n(x) =
k√
2π

∫ ∞

−∞
ϕm(x − s) ϕn(x + s) dx . (4.9)

Consider a generating function defined by

A(s, y, z) =
∞∑

m=0

∞∑
n=0

ym

m!
zn

n!
am,n(s) . (4.10)
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From the generating function (4.8) for ϕ, it follows that

A(s, y, z) =
k√
2π

∫ ∞

−∞
exp

(− 1
4k2(x − s)2 + k(x − s)y − 1

2y2
)

exp
(− 1

4k2(x + s)2 + k(x + s)z − 1
2z2

)
dx , (4.11)

and hence,

A(s, y, z) =
k√
2π

exp
(− 1

2k2s2 + ks(−y + z)
)

∫ ∞

−∞
exp

(− 1
2k2x2 + kx(y + z) − 1

2y2 + z2
)
dx

= exp
(− 1

2k2s2 + ks(−y + z) + yz
)
. (4.12)

Equating coefficients of terms ymzn in equations (4.10) and (4.12) yields:

am,n(s) =
min(m,n)∑

j=0

(−1)m−jj!
(

m

j

)(
n

j

)
(ks)m+n−2j exp

(− 1
2k2s2

)
.

(4.13)
Note that when s = 0, the only nonzero term on the right-hand side of
equation (4.13) has m + n − 2j = 0, which can only occur if m = n (thus,
recovering orthogonality when there is no shift). For nonzero s, the values
of am,n(s) are controlled by the Gaussian envelope.
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