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ABSTRACT

Proofis an essential characteristic of mathematics and as such should be a key
component in mathematics education. Translating this statement into class-
room practice is not a simple matter, however, because there have been and
remain differing and constantly developing views on the nature and role of
proof and on the norms to which it should adhere.

Different views of proof were vigorously asserted in the reassessment of
the foundations of mathematics and the nature of mathematical truth which
took place in the nineteenth century and at the beginning of the twentieth, a
reassessment which gave rise to well-known and widely divergent philosoph-
ical stands such as logicism, formalism and intuitionism. These differences
have now been joined by disagreements over the implications for proof of
‘experimental mathematics’, ‘semi-rigorous mathematics’ and ‘almost cer-
tain proofs’, concepts and practices which have emerged on the heels of the
enormous growth of mathematics in the last fifty years and the ever-increas-
ing use of computers in mathematical research. If these and earlier controver-
sies are to be reflected usefully in the classroom, mathematics educators will
have to acknowledge and become familiar with the complex setting in which
mathematical proof is embedded. This chapter aims at providing an introduc-
tion to this setting and its implications for teaching.

It is not merely as a reflection of mathematical practice that proof plays a
role in mathematics education, however. Proof in its full range of manifesta-
tions is also an essential tool for promoting mathematical understanding in
the classroom, however artificial and unnatural its use there may seem to the
beginner. To promote understanding, however, some types of proof and some
ways of using proof are better than others. Thus this chapter also aims at pro-
viding an introduction to didactical issues that arise in the use of proof.

The chapter first discusses the great importance accorded in mathematical
practice to the communication of understanding, pointing out the place of
proof in this endeavour and the implications for mathematics teaching. It then
identifies and assesses some recent challenges to the status of proof in math-
ematics from mathematicians and others, including predictions of the ‘death
of proof”. It also examines and largely seeks to refute a number of challenges
to the importance of proof in the curriculum that have arisen within the field
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of mathematics education itself, sometimes prompted by external social and
philosophical influences.

This chapter continues by looking at mathematical proof, and the mathe-
matical theories of which it is a part, in terms of their role in the empirical sci-
ences. There are important insights into the use of proof in the classroom that
may be garnered through a deeper understanding of the mechanism by which
mathematicians, nominally practitioners of a non-empirical science, make an
indispensable contribution to the understanding of external reality.

Later sections examine the use of proof in the classroom from various
points of view, proceeding from the premise that one of the key tasks of math-
ematics educators at all levels is to enhance the role of proof in teaching. The
chapter first reports upon some ambivalent but nevertheless encouraging
signs of a strengthened role for proof in the curriculum, and turns to a discus-
sion of proof in teaching, offering a model defining its full range of potential
functions. The important distinction between proofs which prove and proofs
which explain is then introduced, and its application is presented at some
length with the help of examples.

1. PROOF AND UNDERSTANDING

The most significant potential contribution of proof in mathematics education
is the communication of mathematical understanding. One comes to appreci-
ate the importance of this seemingly trite determination if one examines crit-
ically the view of proof adopted by the ‘new math’ movement of the 1950’s
and 1960’s.

The belief implicit in the ‘new math’ was that the secondary-school math-
ematics curriculum better reflects mathematics when it stresses formal logic
and rigorous proof. This belief rested upon two key assumptions:

a) that in modern mathematical theory there are generally accepted

criteria for the validity of a mathematical proof; and

b) that rigorous proof is the hallmark of modern mathematical practice.

Both of these beliefs can be seen to be false (Hanna, 1983). First of all, even
a cursory revisiting of the major accounts of the nature of mathematics (logi-
cism, formalism, intuitionism and quasi-empiricism) makes it obvious that
these significant schools of mathematical thought hold widely differing views
on the role of proof in mathematics and on the criteria for the validity of a
mathematical proof.

Second, an examination of mathematical practice shows clearly that in the
eyes of practising mathematicians rigour is secondary in importance to under-
standing and significance, and that a proof actually becomes legitimate and
convincing to a mathematician only when it leads to real mathematical under-
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standing. According to Hanna (1983), mathematicians accept a new theorem
only when some combination of the following holds:

1) They understand the theorem (that is, the concepts embodied in it, its
logical antecedents, and its implications) and there is nothing to suggest
it is not true;

2) The theorem is significant enough to have implications in one or more
branches of mathematics, and thus to warrant detailed study and
analysis;

3) The theorem is consistent with the body of accepted results;

4) The author has an unimpeachable reputation as an expert in the subject
of the theorem;

5) There is a convincing mathematical argument for it, rigorous or
otherwise, of a type they have encountered before (p.70).

Subsequent studies of a number of cases have confirmed the appropriateness
of these criteria (Neubrand, 1989; Berggren, 1990). In light of both the theory
and the practice of mathematics, then, teachers can be assured that they would
be imparting to students a greater understanding of proof itself, not to men-
tion the mathematical topic under consideration, if they were to concentrate
upon the communication of meaning rather than upon formal derivation. A
mathematics curriculum which aims to reflect the real role of rigorous proof
in mathematics must present it as an indispensable tool of mathematics rather
than as the very core of that science.

Several mathematicians have expressed similar points of view quite ex-
plicitly (Manin, 1977; Kline, 1980; Davis and Hersh, 1981, 1986). Particular-
ly interesting in this regard is a more recent paper by William Thurston
(1994). Along with 15 other mathematicians, Thurston was responding to an
article by Jaffe and Quinn (1993), who had cautioned against weakening the
standards of proof. Jaffe and Quinn had proposed that heuristic work in math-
ematics be labelled ‘speculation’ or ‘theoretical mathematics’, to distinguish
it from what they regard as proper mathematics, in which theorems are prov-
en rigorously.

Thurston maintained that in attempting to answer the question ‘What is it
that mathematicians can accomplish?’, one should not begin with the ques-
tion ‘How do mathematicians prove theorems?’. He pointed out that the latter
question carries with it two hidden assumptions:

a) that there is a uniform, objective and firmly established theory and

practice of mathematical proof; and

b) that the progress made by mathematicians consists of proving theorems

(p.161).
According to Thurston (1994), neither of these assumptions will stand up to

careful scrutiny. One will note that these hidden assumptions are in effect the
same as the assumptions of the ‘new math’ discussed above.
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Thurston (1994) also dismissed as a caricature the popular view of mathe-
matical progress usually referred to as the definition-theorem-proof (DTP)
model. For Thurston the right question to ask was: ‘How do mathematicians
advance human understanding of mathematics?’. And he added: ‘We [math-
ematicians] are not trying to meet some abstract production quota of defini-
tions, theorems and proofs. The measure of our success is whether what we
do enables people to understand and think more clearly and effectively about
mathematics’ (p.163).

It is perhaps necessary to point out that stressing the importance of under-
standing is not in any way a criticism of formal proof as such. Thurston him-
self made this clear:

I am not advocating the weakening of our community standard of proof;
I am trying to describe how the process works. Careful proofs that will
stand up to scrutiny are very important. ... Second, I am not criticizing
the mathematical study of formal proofs, nor am I criticizing people who
put energy into making arguments more explicit and more formal. These
are both useful activities that shed new insights on mathematics (p.169).

Not all agree with Thurston on this point, however. A number of recent de-
velopments in the practice of mathematics, all of them reflecting in some way
the growing use of computers, have caused some mathematicians and others
to call into question the continuing importance of proof.

1.1  Challenges to Proof from Mathematics

The computer has acted as a leavening agent in mathematics, reviving an in-
terest in algorithmic and discrete methods, leading to increased reliance on
constructive proofs, and making possible new ways of justification, such as
those that make use of computer graphics (Davis, 1993). The striking novelty
of its uses, on the other hand, has lent a tone of urgency to the discussions
among mathematicians about its implications for the nature of proof (Tymoc-
zko, 1986; Jaffe and Quinn 1993; Thurston, 1994).

Indeed, the use of the computer has led some to announce the imminent
death of proof itself (Horgan, 1993). On the basis of interviews with several
mathematicians, Horgan made this prediction in a thought-provoking article
entitled ‘The death of proof” that appeared in the October 1993 issue of Sci-
entific American. He claimed that mathematicians can now establish the va-
lidity of propositions by running experiments on computers, and maintained
that it is increasingly acceptable for them to do mathematics without concern-
ing themselves with proof at all.

One of the developments that prompted Horgan’s announcement is the use
of computers to create or validate enormously long proofs, such as the recent-
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ly published proofs of the four-colour theorem (Appel and Haken) or of the
solution to the party problem (Radziszowski and McKay). These proofs re-
quired computations so long they could not possibly be performed or even
verified by a human being. Because computers and computer programs are
fallible, then, mathematicians will have to accept that assertions proved in
this way can never be more than provisionally true.

A second and particularly fascinating development is the recently-intro-
duced concept of zero-knowledge proof (Blum, 1986), originally defined by
Goldwasser, Micali and Rackoff (1985). This is an interactive protocol in-
volving two parties, a prover and a verifier. It enables the prover to provide
to the verifier convincing evidence that a proof exists without disclosing any
information about the proof itself. As a result of such an interaction, the ver-
ifier is convinced that the theorem in question is true and that the prover
knows a proof, but the verifier has zero knowledge of the proof itself and is
therefore not in a position to convince others. (In principle, a zero-knowledge
proof may be carried out with or without a computer.)

Here is an illustration of this concept taken from Koblitz (1994). Assume
a map is colourable with three colours and the prover has a proof, that is, a
way of colouring the map so that no two countries with a common boundary
have the same colour. The prover wants to convince another person that there
is a proof (a way of colouring the map) without actually revealing it, by let-
ting the other person verify the claim in another way.

The prover first translates the problem into a graph consisting of vertices
(countries) and edges (common boundaries). This means that the prover has
a function f: V— {R, B, G} that assigns the colours R (red), B (blue), and G
(green) to vertices (countries) in such a way that no vertices joined by an edge
have the same colour. The prover also has two devices: Device A, which sets
each vertex to flash a colour (R, B, or G), and Device B, which chooses a ran-
dom permutation of the colours and resets each vertex accordingly. (A per-
mutation might cause all green vertices to switch to blue and all blue vertices
to red, for example).

The interaction between prover and verifier then proceeds as follows. To
convince the verifier that there is a proof, the prover keeps the colours hidden
from the verifier’s view, but allows the verifier to grab one edge at a time and
see the colours displayed at the two ends (the vertices) by Device A. The ver-
ifier starts by grabbing any edge, looking at the colours at the ends and noting
that they are different. The prover then uses Device B to permute the colours
randomly; the permutation is unknown to the verifier. After the permutation,
the verifier again grabs any edge and verifies that the colours at the ends are
different. The prover again permutes the colours. The two repeat these steps
until the verifier is satisfied that the prover knows how to colour the map (has
a proof).

This interaction does not tell the verifier how to colour the graph, nor does
it reveal any other information about the proof. The verifier is convinced that
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