
4 Scenario-Based Evaluation and Uncertainty

The following problems arise in practice:

– A concrete instance of the selected equity, FX or interest rate model must
be chosen, by instantiating its volatility and other coefficients with plausi-
ble values. For example, the Black-Scholes model dS = µSt + σ dW might
be instantiated to dS = 0.05St + 0.3 dW .

– Once instantiated, models often prove too weak to represent the market
dynamics adequately; in the case of Black-Scholes, this deficiency shows
itself in the often cited implied volatility smile.

The second problem can be approached with time- and space-dependency in
the volatility and other coefficients. If this implies randomness in the evolu-
tion of the volatility, one has created a stochastic volatility model. The first
problem does not disappear, however, and some sort of parameter calibration
is necessary before the stochastic volatility model can be applied.

Uncertain volatility takes a different approach. Instead of choosing a fixed
set of a priori model coefficients, users specify priorities which they would like
to see applied when a given portfolio is evaluated under the model. These
priorities are initially stated “in prose” and have some economic function.
They usually correspond to stochastic control problems and require dynamic
programming methods for their solution.

4.1 Preliminaries

Definition 1 (Scenario). We call a set of (declarative) agent priorities and
the (imperative) evaluation rules they imply a scenario.

Definition 2 (Uncertain coefficients). Model coefficients which are vari-
able under a given scenario are called uncertain. The evaluation rules of the
scenario control the instantiation of uncertain coefficients, locally or globally.

These definitions are not strictly formal. The soundness of the concept
needs to be established for each concrete scenario. In this book, we restrict
ourselves to two scenarios:

– the worst-case volatility scenario;
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Fig. 4.1. Both scenario and portfolio are required components when model co-
efficients are instantiated. Model coefficients can, but must not, be restricted by
patterns

– the volatility-shock scenario.

We review the worst-case volatility scenario in this chapter. It was first de-
veloped by Avellaneda and Paràs as the λ-Uncertain Volatility Model or λ-
UVM. Algorithmic issues of worst-case scenarios are moved as original work
to Part II. The volatility shock scenario is an extension of the worst-case
scenario and is discussed, also as original work, in Chapter 9 of Part II.

The benefit of the scenario approach is clear: no definite a-priori choice of
model coefficients has to be made. Furthermore, once evaluation rules have
been applied to instantiate uncertain coefficients, we’re back in the realm of
arbitrage pricing theory. On the other hand, as seen in Sect. 3.2, no-arbitrage
arguments alone are not sufficient when coefficients are stochastic; disputable
assumptions, equilibrium arguments and other methods which are not easily
generalizable are required to complete the task.

The scenario approach may yield different instantiations of model coef-
ficients for different portfolios. Figure 4.1 shows how scenario and portfolio
are both taken into account when the evaluation rules of the scenario are
executed.

The separation into model and scenario is in fact strong enough to reap-
pear in the object-oriented implementation in Part III. Models, scenarios and
portfolios all have associated class hierarchies.

In this book, we exclusively focus on the volatility as the only
uncertain coefficient. Formally, we assume a filtered probability space
(Ω,F , {Ft}, P ), a one-dimensional Brownian motion W , and some finite time
horizon T . In this probability space, let S = {St} be a security price process
with the stochastic differential equation

dS

St
= µ(St, t) dt + σ(St, t) dW (4.1)

Let r : [0, T ] → R+ be the time-dependent interest rate, and β = {βt} the
corresponding discount process:
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βt = exp
{
−

∫ t

0

rs ds

}
(4.2)

We assume r and µ are continuous functions that are sufficiently well behaved
for our purpose. σ : (0,∞)× [0, T ] → R++ is our uncertain model coefficient.

Definition 3 (Candidate set and scenario measure). A set

C ⊆ {σ | (4.1) has a solution} (4.3)

is called a candidate set for σ. For each σ ∈ C there exists a unique measure
Q(σ) which makes βS a martingale: we say Q(σ) is the scenario measure
for σ.

Sometimes we also refer to the “scenario σ” or “scenario volatility.” The
candidate set implements the optional pattern for the uncertain coefficient
referred to in Fig. 4.1.

Let the nonnegative, continuous random variable X denote the payoff of
a contingent claim at time T . The no-arbitrage price of the contingent claim
for fixed σ follows the process

Ft(X,σ) =
1
βt

EQ(σ) (βT X | Ft) (4.4)

Extension to portfolios of contingent claims is straightforward. Let X =
(X1, . . . , Xk)T be a set of k > 0 nonnegative contingent claims—a portfolio!—
on (Ω,F), all maturing at time T . (The theory can be easily generalized to
contingent claims with different expiration dates.) For any combined position
λ = (λ1, . . . , λk)T ∈ Rk, λ·X is also a—not necessarily nonnegative—random
variable on (Ω,F) and represents the final cashflow at time T for the holder
of the portfolio. (At this time we assume that contingent claims are not
path-dependent; i.e., their payoff can be written as g(ST ) for some function
g. Later, of course, we will include barrier and American options.) The value
process F = {Ft} is extended to cover combined positions through

Ft(λ · X, σ) =
k∑

i=1

λiFt(Xi, σ) (4.5)

4.2 The Worst-Case Volatility Scenario

We distinguish three concrete worst-case volatility scenarios, or worst-case
scenarios for short, each illuminating the exposure to volatility risk from a
slightly different perspective. All scenarios have in common that

C = {σ | σmin ≤ σ(St, t) ≤ σmax and (4.1) has a solution} (4.6)
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Fig. 4.2. The generic terms of Fig. 4.1 filled in. The worst-case scenario can be
tailored to pricing, hedging or calibration situations as described in the text

where 0 < σmin ≤ σmax represents a prescribed bound. For simplicity, we
assume constant bounds, but the theory holds for time-heterogeneous bounds
as well. Figure 4.2 illustrates the flow of information that leads from C, (λ,X)
and the concrete scenario to the selection of σ ∈ C.

The agent priorities in each of the worst-case scenario variations can be
informally stated as follows:

Worst-case pricing. Given the portfolio X and a position λ ∈ Rk in X. Which
σ̂ ∈ C maximizes today’s value F0(λ · X, σ)?

The optimal hedge-portfolio. Given two portfolios X and X̄ of resp. k and
k̄ contingent claims, and a position λ ∈ Rk in X. For each X̄i, 1 ≤ i ≤
k̄, a market price π̄i is known. (Assume, for instance, that the X̄i are
traded frequently, and the Xi are exotic over-the-counter instruments.)
Which σ̂ ∈ C maximizes F0(λ ·X, σ) under the additional constraint that
F0(X̄i, σ̂) = π̄i for 1 ≤ i ≤ k̄?

Calibration. Given a portfolio X̄ of k̄ contingent claims, and market prices
π̄i for all X̄i, 1 ≤ i ≤ k̄. Fix a subjective “prior” σ̄ ∈ C. Which σ̂ ∈ C
minimizes ‖σ−σ̄‖ under the additional constraint that F0(X̄i, σ̂) = π̄i for
each 1 ≤ i ≤ k̄? We leave the semantics of the distance ‖ · ‖ unspecified.

Section 4.2.1 is dedicated to the the worst-case pricing problem. Section 4.2.2
is a short treatise on the problem of finding the optimal hedge portfolio.
Section 4.2.3 investigates calibration issues.

Here and throughout the rest of the work, optimality is denoted by a “̂ ”
accent.

4.2.1 Worst-Case Pricing

The objective is to find the volatility coefficient σ̂ ∈ C which maximizes
F0(λ · X, σ) for a given vector X of k contingent claims, and given position
λ ∈ Rk. Sellers of λ · X are completely hedged against volatility risk within
the bounds (4.6) if they charge at least F0(λ ·X, σ̂). (From this point of view,
λi > 0 means Xi is sold, and λi < 0 means Xi is bought. Positive quantities
signify liabilities of the seller, while negative quantities signify cash inflow.)
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The objective must be formalized with care, since σ̂ may not exist. For
instance, assume the final payoff λ · X is convex and continuous, and C ={
0.2 − 1

n | n ≥ 6
}
. It is clear that F0(λ · X, 0.2 − 1

n ) → F0(λ · X, 0.2) from
below as n → ∞, yet 0.2 6∈ C. Nevertheless, F0(λ ·X, 0.2) should be regarded
as the worst-case price, and σ = 0.2 as its scenario coefficient.

Convex Contingent Claims It is instructive to consider the simple case
of convex portfolios first. Let Y = λ · X, and assume Y can be writ-
ten g(ST (ω)) = Y (ω) for ω ∈ Ω and some nonnegative convex function
g : (0,∞) → R+. (For instance, X might be a vector of European call or put
options, with positions λi > 0 throughout). In this case, the Black-Scholes
solution is also convex in S. As shown in [52],

Fact 3. For convex Y , the value process F (Y, σmax) is a super-martingale
under any measure Q(σ) with σ ∈ C. Similarly, the value process F (Y, σmin)
is a sub-martingale under any measure Q(σ) with σ ∈ C. This implies

Ft(Y, σmin) ≤ Ft(Y, σ) ≤ Ft(Y, σmax) (4.7)

for 0 ≤ t ≤ T and for all σ ∈ C.

For a nonnegative convex overall position Y , the solution of the maximization
problem is thus σ̂ = σmax. Similarly, if Y is negative and concave, |Y | is
positive and convex, and Ft(Y, σ) ≤ Ft(Y, σmin) for all σ ∈ C.

General Portfolios Let Y = λ ·X be the liability structure at time T for a
portfolio X of k contingent claims and position λ ∈ Rk. This time we make
no assumptions about Y : Ω → R. In [3], Fact 3 is generalized as follows:

Fact 4. Let Σ : R → {σmin, σmax} be the following function:

Σ(x) =

{
σmax if x ≥ 0
σmin if x < 0

(4.8)

Given Y , define a value process F̂ (Y ) = {F̂t(Y )} by F̂t(Y ) = f̂(St, t;Y ),
where f̂ is the solution of the partial differential equation

∂f

∂t
+

1
2

Σ

(
∂2f

∂S2

)
S2

t

∂2f

∂S2
+ rtSt

∂f

∂S
− rtft = 0 (4.9)

with boundary condition f̂(ST , T ) = Y (ST ).
Then F̂ (Y ) is a super-martingale under any measure Q(σ) where σ ∈ C.

The informal rationale is the following: take the original Black-Scholes
equation (3.11) and bring rtft to the right side, while observing that the
remaining terms on the left side do not contain f . To make f as large as
possible, we maximize the only term on the left side which has some degree
of freedom: 1

2σS2
t

∂2f
∂S2 . This is accomplished in (4.8).
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Fact 5. Let F̂ (Y ) be the value process for Y defined in Fact 4. Then

F̂0(Y ) = sup
σ∈C

F0(Y, σ) (4.10)

Moreover, the σ which yields the supremum is given by (4.8).

Thus, there actually exists a “scenario σ̂”, and it can be constructed
locally. Following (3.5), define the R2-valued replicating strategy θ̂ = {θ̂t} as

θ̂0
t = βt(F̂t − ∂

∂S
f̂(St, t;Y )St) and θ̂1

t =
∂

∂S
f̂(St, t;Y ) (4.11)

This strategy is termed “super-hedging” in [35] and [36]. It is furthermore
observed that (4.11) represents the super-hedging strategy that requires the
smallest amount F̂0 of initial funds.

Fact 6. For c ∈ R++ and two liability structures Y = λ ·X and Z = λ′ ·X′,

F̂t(c Y ) = cF̂t(Y )

F̂t(Y + Z) ≤ F̂t(Y ) + F̂t(Z)

F̂t(Y + Z) ≥ F̂t(Y ) − F̂t(−Z)

(4.12)

Thus, positions may be scaled, but F̂ is nonlinear and sub-additive. (The
third statement follows from the second with Ft(Y ) = Ft(Y + Z − Z) ≤
Ft(Y + Z) + Ft(−Z)). Notice also that Fact 6 is valid for 0 ≤ t ≤ T , not just
for t = 0.

4.2.2 The Optimal Hedge Portfolio

Let X and X̄ be two portfolios of size k and k̄, respectively. Assume further-
more that λ ∈ Rk is a position for X, and π̄ ∈ Rk̄

++ is a market price vector
for X̄. (X might be a book position, and X̄ might be a set of liquid options.)
It is a natural restriction to consider only those σ ∈ C under whose scenario
measure Q(σ) the prices π̄ for X̄ are matched. This restriction on C is defined
as follows:

C′ = {σ ∈ C | F0(X̄i, σ) = π̄i for 1 ≤ i ≤ k̄} (4.13)

Now let Y = λ · X be the combined payoff of portfolio X. [4] show

Fact 7. Given X, X̄, λ and π̄. Assume λ̂ ∈ Rk̄ is a finite solution of the
following optimization problem in the variables λ̄ ∈ Rk̄ (the hedging position
in the market portfolio) and σ ∈ C:

inf
λ̄∈Rk̄

{
sup
σ∈C

F0(Y + λ̄ · X̄, σ) − λ̄ · π̄
}

(4.14)
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Let σ̂ be the scenario volatility for λ̂ according to Fact 5:

F0(Y + λ̄ · X̄, σ̂) = sup
σ∈C

F0(Y + λ̄ · X̄, σ) (4.15)

Then

F0(Y, σ̂) = sup
σ∈C′

F0(Y, σ) (4.16)

The solution λ̂ is unique, since the function

h(λ̄) = sup
σ∈C

F0(Y + λ̄ · X̄, σ) − λ̄ · π̄ (4.17)

is convex and has therefore at most one minimum. Furthermore, under first-
order conditions on optimality,

∂

∂λ̄i

(
F0(Y + λ̄ · X̄, σ̂) − λ̄ · π̄) ∣∣∣∣

λ̂i

= F0(X̄i, σ̂) − π̄i = 0 (4.18)

and therefore F0(X̄i, σ̂) = π̄i, for 1 ≤ i ≤ k̄.
The position λ̂ is optimal in the sense that no other position reduces the

residual worst-case liability h(λ̄) by a larger amount. An agent who counter-
balances a stake in X by taking an offsetting position λ̂ in X̄ needs at most
h(λ̄) additional cash to hedge the combined position, provided the volatility
is within the bounds set in C. λ̂ can thus be regarded as the optimal hedge
portfolio under the worst-case scenario.

4.2.3 Calibration to the Worst Case

The goal of calibration is to find an instantiation of the uncertain coefficients
that matches observed prices of market instruments exactly. In that sense,
the optimal hedge portfolio results from calibrating σ to the market prices
π̄. The method, however, is not satisfactory since it depends on the presence
of a book portfolio X. Furthermore, agents cannot introduce subjective prior
beliefs about uncertain coefficients; in fact, the resulting scenario σ takes on
only extremal values σmin and σmax.

For this reason, let us reformulate the problem. Given a portfolio X̄ and
a corresponding price vector π̄ ∈ Rk

++, choose some (constant) prior σ̄ ∈ C
that best reflects your subjective beliefs about the volatility of the underlying
asset.

For any σ ∈ C and for any ω ∈ Ω, define the distance of σ to σ̄ on the
path {St(ω) | 0 ≤ t ≤ T} as

d(σ, ω) =
∫ T

0

η
(
σ(Su(ω), u)2

)
du (4.19)
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where η is a smooth, finite, strictly convex function which attains its minimum
at σ̄2, i.e. η(σ̄2) = 0. η is called pseudo entropy function and implements a
penalty for deviation from the prior—for instance, take η(σ2) = 1

2 (σ2 − σ̄2)2.
With C′ as defined in (4.13), Avellaneda et al show in [5] that

Fact 8. Given X̄ and π̄. Assume λ̂ ∈ Rk̄ is a finite solution of the following
optimization problem in the variables λ̄ ∈ Rk̄ and σ ∈ C:

inf
λ̄∈Rk̄

{
sup
σ∈C

F0(−d(σ) + λ̄ · X̄, σ) − λ̄ · π̄
}

(4.20)

and let σ̂ ∈ C be the scenario volatility for λ̂. Then

F0(−d(σ̂), σ̂) = sup
σ∈C′

F0(−d(σ), σ) (4.21)

In other words, σ̂ minimizes the penalty. Again, the solution λ̂ is unique.

Computation of h(λ̄) In the case of the optimal hedge portfolio, h(λ̄) is
computed by solving (4.9). This approach needs to be modified for calibration.

For fixed η, define the flux function

Φ(x) = sup
σ

(
σ2x − η(σ2)

)
(4.22)

where the supremum is taken over (σmin, σmax) and attained at σ = Φ′(x).
With Ȳ = λ̄ · X̄ for fixed λ̄ ∈ Rk̄, define the process G = {Gt} as

Gt = sup
σ∈C

Ft(−d(σ) + Ȳ , σ) (4.23)

Fact 9. Given G and Ȳ . Then Gt = g(St, t), where g is the solution of the
partial differential equation

∂g

∂t
+

1
βt

Φ

(
βt

2
S2

t

∂2g

∂S2

)
+ rt St

∂g

∂S
− rtgt = 0 (4.24)

with boundary condition g(ST , T ) = Ȳ (ST ). The supremum in (4.23) is real-
ized at

σ(St, t) =

√
Φ′

(
βt

2
S2

t

∂2g

∂S2

)
(4.25)

By construction, h(λ̄) = G0.

The PDE (4.24) can be solved with finite difference methods. Notice that
(4.24) is not the pricing equation for Ȳ ; the pricing equation for Ȳ is obtained
by replacing Φ with Φ′

2 S2
t

∂2g
∂S2 .
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4.3 Minimum-Entropy Calibration

In Sect. 4.2.3 the volatility surface σ(St, t) of the stochastic model is cali-
brated to a set of k̄ benchmark instruments X̄ with prices π̄ ∈ Rk

++. The
resulting worst-case risk-neutral measure is a function of σ̂, i.e. Q = Q(σ̂).

Although we call this method non-parametric because σ̂ is constructed
node by node on a tree or lattice (if such an implementation is chosen), σ̂ is
still calibrated explicitly.

In this section we describe a method in which no model coefficient is
calibrated explicitly, but the worst-case measure is computed directly from
the prior measure implicit in the originally selected prior model coefficients.
The method generalizes worst-case volatility scenarios.

The following material is taken from [6].
We use the short rate r = {rt} as the underlying and assume it follows

the Vasicek model:

dr = (θ − α r) dt + σ dX (4.26)

dX is the random shock, α the speed of mean reversion, and θ
α the level of

mean reversion.
Now assume the process r is sampled N times (in a Monte-Carlo imple-

mentation, for example), yielding N paths ω1, . . . , ωN of r. The approximate
value of any instrument X can then be obtained by computing its discounted
expected payoff under these N paths:

F i
0(X) =̇ exp

(
−

∫ T

0

rt(ωi) dt

)
X(ωi) (1 ≤ i ≤ N)

F0(X) =
1
N

N∑
i=1

F i
0(X)

(4.27)

The summation in (4.27) amounts to assigning to each path the weight 1
N .

This uniform probability distribution P of paths is consistent with the prior
model (4.26). The error made in (4.27) decreases as N → ∞.

Now pick any different probability distribution Q for the paths ω1, . . . , ωN ,
i.e. 0 < q1, . . . , qN < 1 and

∑N
i=1 qi = 1. The so-called Kullback-Leibler

distance of the new distribution Q to the original, uniform distribution P is

H(Q|P ) =
N∑

i=1

Q(ωi) log
(

Q(ωi)
P (ωi)

)

=
N∑

i=1

Q(ωi) log
(

Q(ωi)
1/N

)

= log N +
N∑

i=1

Q(ωi) log Q(ωi) = log N +
N∑

i=1

qi log qi

(4.28)
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Here, 0 ≤ H(Q|P ) ≤ log N , and H(Q|P ) = 0 if Q = P . Changing the
measure from P to Q changes the price of the instrument X:

F0(X | Q) =̇
N∑

i=1

qi F i
0(X) (4.29)

Now let X̄ and π̄ be a vector of k̄ contingent claims and a corresponding
price vector, respectively. If N is much greater than k̄ it makes sense to ask
for the alternative measure Q which correctly prices X̄, given π̄. A reasonable
criterion is to choose Q such that H(Q|P ) is minimized. With (4.28), this
criterion is equivalent to maximizing the entropy

H(Q) = −
N∑

i=1

qi log qi (4.30)

Under certain assumptions, this constrained entropy optimization problem
has a unique solution, which can be found by the method of Lagrange mul-
tipliers (see [22], for example). For fixed λ ∈ Rk̄, define

Gi
0(X) = exp

(
F i

0(X)
)

(1 ≤ i ≤ N)

G0(X) =
1
N

N∑
i=1

Gi
0(X)

(4.31)

Furthermore define the weights q1, . . . , qN of a measure Q = Q(λ) as follows:

qi(λ) =
Gi

0(λ · X̄)
G0(λ · X̄)

(1 ≤ i ≤ N) (4.32)

If the function

U0(λ) = log
(
G0(λ · X̄)

) − λ · π̄ (4.33)

attains a minimum at λ̂, then the measure Q(λ̂) reproduces the prices π̄ of
the benchmark instruments and maximizes H(Q). This can easily be seen by
setting the partial derivatives

∂

∂λj
U0(λ) =

1
G0(λ · X̄)

∂

∂λj
G0(λ · X̄) − π̄i

= F0(λjX̄j | Q(λ)) − π̄i

(4.34)

to zero and plugging in λ̂.
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4.4 Scenarios and Nonlinearity

In general, worst-case scenarios lead to nonlinear solutions and are not
symmetric for the buy and sell side. Nonlinearity arises because of risk-
diversification under mixed convexity of the value of the portfolio. Any po-
sition λ in X has to be priced and hedged as a unit; no “stand-alone” sce-
nario price for Xi can be deduced from F̂0. Sellers of Y = λ · X can hedge
against volatility risk within the bounds C by charging at least F̂0(Y ) and
adhering to a “super-hedging” replicating strategy. Vice versa, buyers of Y
can hedge against volatility risk within the bounds C if they pay at most
−F̂0(−Y ) and adhere to a “sub-hedging” replicating strategy. The volatil-
ity range [σmin, σmax] leads to a corresponding no-arbitrage worst-case price
range [−F̂0(−Y ), F̂0(Y )].

Computationally, nonlinearity requires sophisticated algorithms reduce
the combinatorial complexity that arises if the portfolio under consideration
contains exotic, path-dependent options. In the remainder of this book, al-
gorithms for barrier and American options are studied in particular.


