Physik kompakt 1

Mechanik, Fluiddynamik und Wärmelehre

Zweite Auflage Mit 248 Abbildungen

Professor Dr. Wolfgang Scobel Professor Dr. Dr. h.c. Gunnar Lindström Professor Dr. Rudolf Langkau

Universität Hamburg Institut für Experimentalphysik Luruper Chaussee 149 22761 Hamburg, Deutschland e-mail: wolfgang.scobel@desy.de gunnar.lindstroem@desy.de

Die erste Auflage erschien in zwei Teilbänden in dem 6teiligen Werk *Physik kompakt* in der Reihe: Vieweg Studium – Grundkurs Physik, herausgegeben von Hanns Ruder, bei Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

Die Deutsche Bibliothek – CIP-Einheitsaufnahme:
Physik kompakt. –
Berlin ; Heidelberg ; New York ; Barcelona ; Hongkong ; London ; Mailand ; Paris ; Tokio : Springer (Springer-Lehrbuch)
Bd. 1. Mechanik, Fluiddynamik und Wärmelehre / Wolfgang Scobel ... – 2. Aufl. – 2002
ISBN 3-540-43141-1

ISBN 3-540-43141-1 2. Auflage Springer-Verlag Berlin Heidelberg New York

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes ist auch m Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland vom 9. September 1965 in der jeweils geltenden Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtsgesetzes.

Springer-Verlag Berlin Heidelberg New York ein Unternehmen der BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2002 Printed in Germany

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, daß solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Datenkonvertierung von Fa. LE-TeX, Leipzig Einbandgestaltung: design & production GmbH, Heidelberg

Gedruckt auf säurefreiem Papier

SPIN: 10860363 56/3141/ba - 5 4 3 2 1 0

Inhaltsverzeichnis

Te	Teil I Mechanik					
1	Ein	Einleitung				
_	1.1	Die Arbeitsmethode der Physik	3			
	1.2	Physikalische Größen, Maßsystem	3			
	1.3	Vektorielle Größen	8			
	1.4	Darstellung physikalischer Zusammenhänge	11			
2	Kir	Kinematik des Massenpunktes				
	2.1	Massenpunkt und Bahnkurve	15			
	2.2	Geradlinige Bewegung; Geschwindigkeit und Beschleunigung .	15			
	2.3	Allgemeine krummlinige Bewegung	19			
	2.4	Kreisbewegung	22			
	2.5	Galilei-Transformation	25			
3	$\mathbf{D}\mathbf{y}$	Dynamik des Massenpunktes				
	3.1	Die Newtonschen Axiome	29			
	3.2	Kraft und Masse	32			
	3.3	Anwendung der Newtonschen Bewegungsgleichung	36			
	3.4	Trägheitskräfte in beschleunigten Bezugssystemen	39			
4	Erh	ıaltungsgrößen der Mechanik	51			
	4.1	Kraft und Linearimpuls. Allgemeine Formulierung				
		der Newtonschen Bewegungsgleichung	51			
	4.2	Drehmoment und Drehimpuls	54			
	4.3	Arbeit und Leistung	60			
	4.4	Kinetische und potentielle Energie	64			
	4.5	Energieerhaltung	70			
5	Ma	Massenpunktsysteme				
	5.1	Die Newtonsche Bewegungsgleichung	77			
	5.2	Erhaltungssätze	82			
	5.3	Wechselwirkungen mit kurzer Reichweite: Stoßgesetze	88			

6	Sta	rrer K	örper	93		
	6.1	Starre	r Körper als System von Massenpunkten	93		
	6.2	Statik	des starren Körpers	97		
	6.3	Dynan	nik des starren Körpers; Rotation um feste Achse	102		
		6.3.1	Berechnung von Trägheitsmomenten	106		
		6.3.2	Beispiele für Drehbewegungen um eine feste Achse	109		
		6.3.3	Arbeit, Leistung und kinetische Energie			
			bei Drehbewegungen um eine feste Achse	112		
		6.3.4	Drehimpulserhaltung bei raumfester Achse	113		
	6.4	Rotati	ion um freie Achsen; Kreisel	114		
7	Relativistische Mechanik					
	7.1	Relati	vitätsprinzip	123		
	7.2	LORE	NTZ-Transformation	124		
	7.3	Relati	vistische Dynamik	127		
	7.4	Ergän	zung: Graphiken zur speziellen Relativitätstheorie	131		
			Voraussetzungen			
		7.4.2	Koordinaten-Transformation im nichtrelativistischen			
			Fall (Galilei-Transformation)	132		
		7.4.3	Koordinaten-Transformation im relativistischen Fall			
			(LORENTZ-Transformation)	132		
		7.4.4	Masse und Impuls im relativistischen Fall	136		
		7.4.5	Kinetische Energie im relativistischen Fall	137		
		7.4.6	DE-Broglie-Wellenlänge im relativistischen Fall	140		
8	Anl	nang: I	Differentialgleichungen zu Grunderscheinungen			
	der	Physil	k	147		
	8.1	Einleit	tung	147		
	8.2	Beweg	gungsgleichungen	148		
		8.2.1	Das 2. Newtonsche Axiom	148		
		8.2.2	Die Kraft ist konstant	150		
		8.2.3	Die Kraft ist konstant und bremsend	152		
		8.2.4	Die Kraft ist konstant; die Masse wächst linear			
			mit der Zeit	154		
		8.2.5	Die Kraft ist konstant; der Massenverlust ist			
			proportional zur Geschwindigkeit	156		
		8.2.6	Die Kraft ist proportional zum Ort	158		
		8.2.7	Die Kraft ist proportional zum Ort, aber rücktreibend	162		
		8.2.8	Die Kraft ist harmonisch	167		
		8.2.9	Die Kraft ist proportional zur Geschwindigkeit			
			und bremsend	170		
		8.2.10	Die Kraft ist proportional zum Quadrat			
			der Geschwindigkeit und bremsend	179		
		8.2.11	Die Kraft ist die Summe aus elastischer Bindungskraft			
			und geschwindigkeitsproportionaler Bremskraft	186		

		 8.2.12 Die Kraft ist die Summe aus elastischer Bindungskraft, Bremskraft und einer äusseren zeitabhängigen Kraft	212
Tei	il II	Fluiddynamik und Wärmelehre	
1	Me	chanische Schwingungen	225
	1.1	Allgemeines	
	1.2	Harmonische Schwingungen	225
	1.3	Gedämpfte harmonische Schwingungen	229
	1.4	Mathematische Ergänzung: Allgemeine Behandlung	
		der Differentialgleichung für gedämpfte Schwingungen	
	1.5	Erzwungene harmonische Schwingungen; Resonanz	
	1.6	Überlagerung harmonischer Schwingungen	
	1.7	Mathematische Ergänzung: FOURIER-Analyse	
	1.8	Gekoppelte harmonische Schwingungen	246
	1.9	Molekülschwingungen als Beispiel anharmonischer Schwingungen	249
2	Haı	rmonische Wellen in stabförmigen elastischen Medien	253
_	2.1	Grundlagen	
	2.2	Stehende harmonische Wellen	
	2.3	Eigenschwingungen stabförmiger Medien	
	2.4	Energietransport durch harmonische Wellen	259
3	Me	chanik fester Körper	
	3.1	Verformung und mechanische Spannung	
	3.2	Grundtypen der elastischen Verformung	
	3.3	Abgeleitete elastische Verformungen	
	3.4	Überschreitung des Elastizitätsbereichs	268
4	Me	chanik ruhender Flüssigkeiten und Gase	269
	4.1	Druck in Flüssigkeiten und Gasen	269
	4.2	Kompressibilität	
	4.3	Schweredruck	
	4.4	Ergänzung: Druck und Dichte in der Erdatmosphäre	
	4.5	Auftrieb und messtechnische Anwendungen	
	4.6	Oberflächen von Flüssigkeiten	
	4.7	Harmonische Druckwellen in Flüssigkeiten und Gasen	
	4.8	Ergänzung: Lösung der Wellengleichung	296

5	Mechanik strömender Flüssigkeiten und Gase			
	5.1 Einleitung			
		5.2 Stationäre Strömung idealer Fluide		
	5.3		messung in Strömungen	
	5.4		dungen der Bernoullischen Gleichung	
	5.5		näre Strömung realer Fluide	
	5.6	Turbul	lente Strömung realer Fluide	316
6	Wäı		re	
	6.1	Vorber	merkungen und Begriffserläuterungen	
		6.1.1	Stoffmenge und Teilchenzahl	
	6.2	Tempe	eratur und Thermometer	
		6.2.1	Nicht-absolute Temperaturskala (nach Celsius)	324
		6.2.2	Absolute (thermodynamische) Temperaturskala	324
		6.2.3	Thermische Ausdehnung fester und flüssiger Körper \dots	325
		6.2.4	Thermische Ausdehnung von Gasen	
		6.2.5	Das Gasthermometer	328
	6.3	Zustan	ndsgleichung idealer Gase	328
	6.4	Grund	züge der kinetischen Gastheorie	329
		6.4.1	Druck des Modellgases	329
		6.4.2	Temperatur und kinetische Energie	331
		6.4.3	Innere Energie idealer Gase	332
	6.5	Wärm	e, eine Form der Energieübertragung	333
		6.5.1	Wärmemenge und Wärmekapazität	335
		6.5.2	Kalorimetrie	
	6.6	Barom	etrische Höhenformel und Boltzmann-Verteilung	339
		6.6.1	MAXWELL-BOLTZMANNsche Geschwindigkeits-	
			verteilung	341
	6.7	Der I.	Hauptsatz der Wärmelehre	342
		6.7.1	Zustandsänderungen am idealen Gas	343
		6.7.2	Reversible und irreversible Zustandsänderungen	348
		6.7.3	Spezielle Kreisprozesse	349
		6.7.4	Wärmepumpe und Kältemaschine	353
	6.8	Der II.	. Hauptsatz der Wärmelehre	354
		6.8.1	Die thermodynamische Temperaturskala	355
		6.8.2	Die Entropie	356
		6.8.3	Entropieänderungen am idealen Gas	357
		6.8.4	Entropieänderung bei irreversiblen Prozessen	359
	6.9		gatzustände und Phasen	
		6.9.1	Koexistenz von Flüssigkeit und Dampf	361
		6.9.2	Koexistenz von Festkörpern und Flüssigkeit oder Gas .	
		6.9.3	Zustandsgleichung realer Gase	
		6.9.4	Gasverflüssigung: JOULE-THOMSON-Effekt	
	6.10	Transp	oortphänomene	369
		6.10.1	Molekulardiffusion (= Massentransport)	370

	6.11	6.10.3 Gaskir 6.11.1	Wärmeleitung (= Energietransport)
		6 11 3	D, λ, η
7		ang: I	Differentialgleichungen zu Grunderscheinungen
	7.1		ellengleichung
			Aufstellung der Wellengleichung
			für den Fall von Schallwellen
		7.1.2	Lösungen der Wellengleichung
		7.1.3	Harmonische Wellen
		7.1.4	Berücksichtigung von Reibungskräften
			und anderen Einflüssen
	7.2	Die Tr	ansportgleichung 400
		7.2.1	Physikalische Grunderscheinungen 400
		7.2.2	Lösungen der Transportgleichung 405
		7.2.3	Eine "Transportgleichung" ohne Transportlösung 430
Sac	hwor	rtverze	eichnis