Foundations for a
Comprehensive Approach to
Software Quality Assessment

The objectives of this chapter are threefold:
1. to motivate the necessity of establishing a software quality assessment
program based on fundamental software engineering concepts,

2. to present the OPA Framework with Software Quality Indicators (SQIs) as
a sound comprehensive approach to quality measurement, and

3. to relate process and product measures to the goals of prediction and
assessment.

2.1 Establishing a Quality Focus

To determine the rainfall for any particular day one could periodically
measure humidity and temperature for the selected day and then, based on
established physical laws, compute how much rain one would have expected
to have fallen. Similarly, one might advance conjectures about the quality of
a product based on influencing measures like conformance to schedule,
productivity, and cost estimates. In both cases, the substitute measures are
“somewhat related” to the stated measurement goal, but lack that definitive
connection which directly relates the measurement process to the final
objective. For example, a more accurate process to measure rainfall is to
place a measurement device outside to directly collect and document the
amount of rain that actually falls. Moreover substitute measures can often
lead to false conclusions. Schedule slippage, for example, can and often does
adversely impact product quality. Can one draw the reasonable conclusion
then that if a project is on schedule, quality is present in the product? The
obvious answer is, “No.”

In concert with the above observations, we offer the following guidance as
preliminary steps to establishing a software quality assessment program:

e]13e

Managing Software Quality

1. identify software quality as the major goal of the underlying measure-
ment process, and

2. define measures that
e are objective,
e directly related to software quality, and

e reflect inherent characteristics of the software engineering process.

Emphasizing quality measures that reflect characteristics of the software
engineering process is of particular importance because it focuses attention
on the domain from which such measures are extracted. More specifically
from a software engineering perspective, software quality is not about effi-
ciency, scheduling, cost or even functionality. To repeat an earlier assertion,
these are systems engineering objectives that place constraints on the soft-
ware engineering process, and subsequently, on the achievement of software
quality goals. For example, to achieve mandated timing requirements in a
real-time decision support system the software engineer might employ the
use of global variables for inter-module communication. Although neces-
sary to meet timing constraints, the use of global variables for inter-module
communications is detrimental to maintainability. Similar examples can be
cited for schedule, cost and functionality. Recognition of the differences
between systems and software engineering goals is crucial, and the achieve-
ment of specific software engineering objectives is often constrained by the
“givens” established at the higher systems engineering level. In turn, such
recognition enables one to focus attention on the identification and defin-
ition of measures derived from the trends and artifacts of the software
engineering process which more accurately reflect product quality.

The remainder of Chapter 2 expands on the guidance provided above by
identifying and describing a framework that characterizes the software
engineering process, while serving as the focusing agent for measuring soft-
ware quality. Software quality indicators (SQIs) are also presented. SQIs play
an integral role in the definition of quality measures reflecting the presence
(or absence) of desirable product attributes. Additionally, we discuss the
impact an established (or proposed) process model can have on the identi-
fication and definition of quality measures, and finally, distinguish between
the measurement goals of assessment and prediction.

14

Software Quality Assessment

2.2 The Objectives/Principles/Attributes
(OPA) Framework

The rationale of the Objectives/Principles/Attributes (OPA) Framework
(Arthur and Nance, 1990) is briefly described in Chapter 1; more detail is
given here. As illustrated in Fig. 2.1, the framework enunciates definitive link-
ages among project-level objectives, software engineering principles, and
desirable product attributes, advancing the following rationale for software
development:

e aset of objectives can be defined that correspond to project-level goals and
objectives,

e achieving those objectives requires adherence to certain principles that
characterize the process by which the product is developed, and

e adherence to a process governed by those principles should result in a
product that possesses attributes considered to be desirable and beneficial.

Underlying this rationale is a natural set of relations, depicted in Fig. 2.2, that
link individual objectives to one or more principles, and each principle to
one or more attributes. For example, to achieve maintainability one might
employ the principle of information hiding in the development process. In
turn, employing information hiding will result in a product that exhibits a
well-defined interface.

The OPA Framework differs from other structurally similar frameworks,
e.g. McCall’s Factor/Criteria/Metric (McCall et al., 1977) and Basili’s Goal/
Question/Metric (Basili and Rombach, 1988), in that all OPA measures are
linked to project-level objectives through software engineering principles
that guide the software development process. Analogically, principles func-
tion like a fulcrum, providing the supporting capability reflected in the
software attributes to lift the product in attaining the designated objectives.
More specifically, principles

e provide the foundational definition of the desired or proper process for
developing software, and

e enable one to reason about and identify those activities that contribute to
or adversely impact the software development process.

How does one determine if, and to what extent, a product possesses desirable
attributes? The answer lies in the observation of product properties, i.e.

OBJECTIVES

Maintainability
Correctness
Reusability
Testability
Reliability
Portability
Adaptability

PRINCIPLES

Hierarchical Decomposition
Functional Decomposition
Information Hiding
Stepwise Refinement
Structured Programming
Life-cycle Verification
Concurrent Documentation

OBJECTIVES

<> PROJECT

PRINCIPLES

PROCESS

PRODUCT

ATTRIBUTES

Reduced Coupling
Enhanced Cohesion
Reduced Complexity
Well-defined Interfaces
Readability

Ease of Change
Traceability

Visibility of Behavior
Early Error Detection

ry

DOCUMENTATION (+)

A A
Properties

ATTRIBUTES

PROGRAMS

A

A
Properties

Figure 2.1 lllustration of the relationship among objectives, principles and attributes in the software

16

observable characteristics of the product. For example, the use of
global variables indicates that a module interface is not well-defined
(Dunsmore and Gannon, 1980, p. 149). More specifically, the number
of global variables used relative to preferable forms of communica-
tions, e.g. parameter passing, indicates the extent to which the

interface is ill-defined.

Software Quality Assessment

OBJECTIVES PRINCIPLES ATTRIBUTES

Concurrent Cohesion

Documentation

Adaptability

Complexity
Functional

Decomposition
Coupling

Maintainability AN Hierarchical

Decompostion Early Error Detection

Ease of Change

X7
()

X 6"' Information
/ -
X i\:":,’¢ Hiding
\)
V Life-cycle
Verification

A R Readabilit
Reusabilit //l"'((\\

Traceability
Stepwise

Refinement
Visibility of Behavior

Structured Well-defined
Programming Interfaces

Testability

Figure 2.2 Linkages among the objectives, principles and attributes

Implementing an effective quality measurement program mandates a
systematic approach that reflects the best current software engineering prac-
tices. We recommend an approach that embraces the OPA Framework as a
basis. Through its attribute/property pairs and linkages relating attributes to
principles and principles to objectives, the OPA Framework supports a well-
defined, systematic approach to examining product and process quality. The
OPA Framework definitively links the achievement of software engineering
objectives to the use of specific principles, and the use of such principles to
the realization of desirable attributes in the product. Subsequently, by
observing product properties to determine the extent to which desirable
attributes are present in the product, one can determine the extent to which
particular principles are governing the development process and, in turn, the
extent to which stated software engineering objectives are achieved.

Moreover, guided by an OPA characterization of the software (both the arti-
facts and the development or sustainment process), one can analyze and
examine relationships in the interpretation of quality measures. For example,

17

Managing Software Quality

if one observes a value indicating a low degree of achievement for a software
engineering objective (not consistent with expectations), then contributing
principles are examined (based on the defined linkages among objectives
and principles) for anomalous values. Similarly, the linkages among prin-
ciples and attributes point to candidate attributes to be examined to identify
the contributing source(s). Finally the attribute/property relations enable
the identification of the most prominent process or product characteristic(s)
influencing the original objective value. The identification of an anomalous
value for an attribute/property pair indicates the misuse (or omission) of a
critical software engineering principle. The points where this principle is
most utilized in the process become the prime candidates for attention. With
appropriate reporting one can also determine if the offending product
component(s) are isolated or the problem is widespread.

2.3 Software Quality Indicators

The OPA Framework and its enunciated rationale binds measurement and
measurement interpretation to a realistic characterization of how software is
actually produced. Below, we describe the concept of Software Quality
Indicators (SQIs) that reflect an OPA perspective and provide a sound basis
on which quality measures are defined.

2.3.1 Establishing a Basis for Measuring the
Unmeasurable

”

“Software quality factors,” “software quality metrics” and “software quality
indicators” — are all terms used in the conviction that the quality of the
software product should be measurable, at least in a relative sense. In a paper
by Kearney et. al., (1986) the authors issue a rather compelling criticism of
the inadequate basis for measuring software complexity and of the short-
comings of experimental research intended to support complexity metrics.
We share the opinions of Kearney and his colleagues, and propose the use
of statistical indicators as the basis for scalar determination of product and
process characteristics. The motivation for using statistical indicators of
software quality stems from the qualified successes in applying them to
unmeasurable economic and social concepts. This motivation, as well as
extension of the applicable theory to the derivation of software quality
indicators, is described below.

Both economic and social indicators are based on the premise that
directly unmeasurable qualitative conditions can be indirectly assessed by

Software Quality Assessment

measurable quantitative characteristics. The economic indicators of a “good
or improving economy” are routinely discussed in business news. Social
indicators like “safe streets” are often cited as contributing elements of
policy decisions. Meier and Brudney provide an instructive definition for
social indicators that serves as the foundation for our definition of software
quality indicators (Meier and Brudney, 1981, pp. 95-96):

An indicator is a variable that can be measured directly and is linked to a concept through
an operational definition. An operational definition is a statement that tells the analyst how
a concept will be measured.

Two important characteristics of social indicators are stressed by Carley
(1981, p. 2):

e Social indicators are “surrogates” that do not stand by themselves — a
social indicator must always be related back to the unmeasurable concept
for which it serves as a proxy.

e Social indicators are concerned with information, which is conceptually
quantifiable, and must avoid dealing with information, which cannot be
expressed on some ordered scale.

The parallels which can be drawn between the concept of social indicators
and that of software quality indicators are: (1) both attempt to measure the
“directly unmeasurable” through the use of surrogate (or substitute)
measures that are directly observable, and (2) an undeniable relationship
must exist between the surrogate measure and the concept being measured.

2.3.2 Applying the Social Indicator Concept to
Software Quality Measurement

The concept of software quality indicators is a natural extension of the use
of statistical indicators in the social sciences. The need arises from the fact
that certain characteristics cannot be measured directly and require surro-
gate measures in order to obtain quantitative assessment (Carmines and
Zeller, 1979, pp. 9-11). An example in software is the measurement of cohe-
sion, which cannot take a simple direct form; thus, the need exists to define
an indicator that can reflect either desirable (high) or undesirable (low)
cohesion in a software component. Multiple indicators can perform con-
firming and contrasting roles to permit a “hardening” of the softness
typically associated with this indirect form of measurement.

Software quality indicators are embodied in the OPA Framework through
attribute/property relationships. For example, an intangible attribute of the

19

development process, like early error detection, can be indirectly assessed
through measurable properties, like the changing of requirements after the
software specification review. For clarification purposes, we note that our
use of the term “Software” in “Software Quality Indicators” is not intended to
be restrictive, but applicable to both process and product quality indicators.

A Software Quality Indicator (SQI) is a variable whose value can be deter-
mined through direct analysis of product or process characteristics, and
whose evidential relationship to one or more attributes is undeniable
(Arthur and Nance, 1987, p. 25).

Crucial in this working definition is that

e the value is directly measurable through the analysis of the software devel-
opment process or products of that process, e.g. programs and docu-
mentation, and

e SQIs are always attribute/property pairs denoting undeniable relation-
ships, and indicative of the presence or absence of one or more attributes.

Consider, for example, an SQI based on code analysis: coupling through the
use of structured data types (CP/SDT). The property in this SQI is the use of
structured data types, and the attribute is coupling. One can argue that the
use of a structured data type as a parameter argument has a detrimental
impact on module coupling. That is, structured data types allow the consol-
idation of data items perceived to be related in a given context. When passed
as a parameter, however, rarely does the calling module access every data
item in the structure. Consequently, these extraneous items, from the
perspective of the calling module, unnecessarily increase the coupling
between the calling and called modules (Troy and Zweben, 1981, p. 115). A
candidate measure for this coupling is the ratio of the number of structured
data types used as parameters relative to the total number of parameters:

Structured Data Types Passed # of SDTs in Parameter List

as Parameters/Coupling

[Parameter List|

where | Parameter List | is the number of parameters in the parameter list
(the cardinality function).

Note that: (a) the value is directly measurable, (b) the SQI is an attribute/
property pair, (c) the relationship described between the use of structured
data types and coupling is undeniable (and intuitive), and (d) the stated SQI
can indicate the presence (or absence) of coupling between two modules.

Software Quality Assessment

To summarize, we want to measure quality in terms of characteristics set
forth in the OPA Framework, i.e., project-level objectives, process principles,
and desirable product attributes. Product attributes, although still not
directly measurable, are significantly less abstract than process principles
and project objectives, and serve as the basis on which software quality indi-
cators are defined. More specifically, we identify process and product prop-
erties that: (a) are directly measurable, and (b) undeniably reflect the
presence (or absence) of specific process and product attributes. In turn,
these measures are propagated along the linkages defined by the OPA Frame-
work, yielding subsequent measures reflecting the proper use of process
principles and the achievement of stated software engineering objectives.

Assuming that valid quality indicators can be formed from quantifiable
characteristics of the process, code and documentation, then automatic or
semi-automatic (human assisted) procedures can be developed to assess
software quality (Nance and Arthur, 1994).

2.3.3 Measuring Characteristics of Process and
Product

Because software evolution begins with requirements specification activities
and continues throughout the life of the product (including attendant main-
tenance activities), SQIs must embrace both process and product measures,
and ideally, must admit to at least semi-automatic computation. As illus-
trated in Fig. 2.3, we propose the use of SQIs throughout the product
software life-cycle. Initially SQI measures must reflect process characteris-
tics because little, if any, product is available. As development continues and
products become more readily available, SQI measures should expand
correspondingly to reflect product characteristics. Preliminary work in the
SQI domain suggests that process, documentation and code indicators are
needed (Arthur et al., 1991, p. 5).

Measuring Quality Through an Accumulation of Evidence

Software quality measurement should not be based on a single measure. If
such a measure attempts to incorporate many aspects of quality, it becomes
unwieldy and unintuitive (Gaffney and Cruickshank, 1980). If it focuses on a
single product or process characteristic, e.g. McCabe’s Cyclomatic Complexity
Measure, then pertinent information is inappropriately constrained, pro-
viding only a limited view of product quality. The SQI determination, embed-
ded within the OPA Framework, however, is predicated on the exploitation of
multiple measures, each attesting to the presence or absence of particular

Managing Software Quality

Time
-
Requirements Design Coding and CSCIntegration Deployment and
Analysis Unit Testing and Testing Maintenance
F—————— | IDEAL m—————— |
1 Assessmentof | I Assessmentof |
| PROCESS | I PRODUCT |
L e — - L e — -

Figure 2.3 Exploiting both process and product indicators

attributes in the product. OPA embraces the philosophy that demonstrating
that software possesses a desired attribute (or does not) is not a proof exer-
cise; rather, it resembles an exercise in civil litigation in that evidence is gath-
ered to support both contentions (the presence or absence) and weighed on
the scales of comparative judgment (Nance et al., 1986; Nance and Arthur,
1994). Asillustrated in Fig. 2.4, measures reflecting the absence of an attribute
provide values in the —5 to zero range; measures attesting to the presence
of a desirable span the range of zero to +5. Returning to an earlier example,
if we consider the extent to which a product exhibits a well-defined inter-
face, the use of global variables for inter-module communication has a detri-
mental impact. The use of parameterized calls, on the other hand, supports
such a contention. Hence, for any given product attribute the aggregation
of multiple confirming and contrasting measures yields one value in the
range (—5, +5) indicating the degree to which a desirable attribute is present
or absent in the product. Note that values falling in the designated range
(—0.5, 0.5) might occur because evidence of both presence and absence is
detected or because no evidence is available (which results in a zero).

In effect, the SQI approach offers four substantial advantages over the single
metric approach to software quality measurement: (1) multiple measures, (2)
measures which confirm orrefute the existence of a quality attribute, (3) arela-
tive measurement scale reflecting consistency of judgment and (4) measures

Software Quality Assessment

Absence Presence

0

None
or
Offsetting

Figure 2.4 Measurement scale

that are simple and intuitive. Sections 3.3 and 3.4 outline systematic proce-
dures for defining and interpreting software quality indicators.

2.4 Influences of the Process Model

Within an established development process, well-defined procedures and
guidelines serve as the basis for structured activities supporting product
development while emphasizing specific organizational goals. Among organ-
izations such goals usually emphasize similar objectives, i.e., producing a
quality product on time and within budget; their development processes,
however, often vary in approach and magnitude. For example, one organ-
ization’s process might employ the conventional waterfall approach, while
another might follow an incremental approach guided by critical path analy-
sis. Although the OPA Framework, with the SQI concept embedded, is defined
independently of any particular software development methodology, its
application must be tempered by the realities of the prevailing process model
underlying the development effort. In effect, the process model and atten-
dant activities prescribe artifacts and timing, i.e., the focus of measurement.

Consider, for example, an organization that employs an incremental
approach to software development, and desires only to examine code for
quality characteristics. One possible approach is to analyze each code unit
when it is first placed under configuration management (CM). While such
an approach meets its intended objectives, i.e., providing the software engin-
eer and program manager with quality-related information, it constrains the
measurement process to focus primarily on code assessment, and corres-
pondingly, on those activities related to placing code under CM.

Managing Software Quality

Clearly, a more inclusive picture of quality could be obtained if assessment
includes an examination of the design document before coding begins and
a tracking of software trouble reports (STRs) written against the code after it
is placed under CM. Nonetheless, practical considerations, such as limited
resources and implementation deadlines, often dictate sub-optimal quality
assessment procedures. Similarly, particulars of the development process
can, and do, define when and where measurement activities are feasible. In
effect, tradeoffs must be made to balance the benefits of additional quality
assessment (and prediction) with the organizational costs associated with
producing and collecting such data.

Crucial to the above observations is that, in establishing a measurement
program, one must balance needs with cost and practicality. To do so, one
first examines the process model to determine where each necessary data
element can be obtained, and then, based on organizational constraints and
priorities and on the practicality of being able to collect the requisite data
elements, one identifies those data collection points that yield the most
“bang for the bucks.” Once the appropriate “where, when and what” are
determined, the OPA Framework offers an appealing approach to establish-
ment of an effective measurement program. More specific discussion of the
effects of the process model on the application of the OPA Framework is
given in Chapter 8 (Section 8.1).

2.5 Establishing Measurement Goals:
Assessment or Prediction

Within the framework of software quality measurement two complementary
concepts exist: quality assessment and quality prediction. Quality assess-
ment entails an examination of the product for characteristics deemed
desirable and beneficial after the product is developed. Quality prediction,
on the other hand, focuses on the examination of artifacts that enables one
to infer, with confidence, the extent (or probability) that a product will
possess desirable quality characteristics before development is completed.

In establishing a measurement program, an a priori determination of the
purpose is necessary: assessment, prediction, or both. Such determination is
crucial because process instrumentation can differ depending on the
purpose. In particular, assessment requires an examination of the product,
while prediction focuses on an examination of process artifacts. Product code
and documentation are examples of the former; software development folders
and process trends exemplify the latter. Our experience has shown that pre-
dictive measurement, while having the greatest potential for controlling

24

quality, is the more difficult and costly of the two to achieve. Predictive mea-
surement requires process artifacts which are the hardest to identify and
collect because: (1) they are non-standard and often amorphously defined,
and (2) no two development processes are identical, making the direct appli-
cation of procedures developed by others difficult, awkward and at best only
partially effective. Recalling our admonition against trying to do too much
(Section 1.2), we suggest that the start of a measurement program adopt
assessment as the initial purpose, but with the understanding that both
assessment and prediction form the ultimate goal.

25

