
Preface

Invariant theory is a subject with a long tradition and an astounding abil-

ity to rejuvenate itself whenever it reappears on the mathematical stage.

Throughout the history of invariant theory, two features of it have always

been at the center of attention: computation and applications. This book is

about the computational aspects of invariant theory. We present algorithms

for calculating the invariant ring of a group that is linearly reductive or �-

nite, including the modular case. These algorithms form the central pillars

around which the book is built. To prepare the ground for the algorithms,

we present Gr�obner basis methods and some general theory of invariants.

Moreover, the algorithms and their behavior depend heavily on structural

properties of the invariant ring to be computed. Large parts of the book are

devoted to studying such properties. Finally, most of the applications of in-

variant theory depend on the ability to calculate invariant rings. The last

chapter of this book provides a sample of applications inside and outside of

mathematics.

Acknowledgments. Vladimir Popov and Bernd Sturmfels brought us to-

gether as a team of authors. In early 1999 Vladimir Popov asked us to write

a contribution on algorithmic invariant theory for Springer's Encyclopaedia

series. After we agreed to do that, it was an invitation by Bernd Sturmfels

to spend two weeks together in Berkeley that really got us started on this

book project. We thank Bernd for his strong encouragement and very helpful

advice. During the stay at Berkeley, we started outlining the book, making

decisions about notation, etc. After that, we worked separately and commu-

nicated by e-mail. Most of the work was done at MIT, Queen's University at

Kingston, Ontario, Canada, the University of Heidelberg, and the University

of Michigan at Ann Arbor. In early 2001 we spent another week together at

Queen's University, where we �nalized most of the book. Our thanks go to

Eddy Campbell, Ian Hughes, and David Wehlau for inviting us to Queen's.

The book bene�ted greatly from numerous comments, suggestions, and

corrections we received from a number of people who read a pre-circulated

version. Among these people are Karin Gatermann, Steven Gilbert, Julia

Hartmann, Gerhard Hi�, J�urgen Kl�uners, Hanspeter Kraft, Martin Lorenz,

Kay Magaard, Gunter Malle, B. Heinrich Matzat, Vladimir Popov, Jim

Shank, Bernd Sturmfels, Nicolas Thi�ery, David Wehlau, and Jerzy Weyman.

viii Preface

We owe them many thanks for working through the manuscript and o�ering

their expertise. The �rst author likes to thank the National Science Founda-

tion for partial support under the grant 0102193. Last but not least, we are

grateful to the anonymous referees for further valuable comments and to Ms.

Ruth Allewelt and Dr. Martin Peters at Springer-Verlag for the swift and

eÆcient handling of the manuscript.

Ann Arbor and Heidelberg, Harm Derksen

March 2002 Gregor Kemper

1 Constructive Ideal Theory

In this chapter we will provide the basic algorithmic tools which will be used
in later chapters. More precisely, we introduce some algorithms of construc-
tive ideal theory, almost all of which are based on Gr�obner bases. As the
reader will �nd out, these algorithms and thus Gr�obner bases literally per-
meate this book. When Sturmfels' book [239] was published, not much intro-
ductory literature on Gr�obner bases and their applications was available. In
contrast, we now have the books by Becker and Weispfenning [15], Adams
and Loustaunau [6], Cox et al. [48], Vasconcelos [250], Cox et al. [49], Kreuzer
and Robbiano [155], and a chapter from Eisenbud [59]. This list of references
could be continued further. We will draw heavily on these sources and restrict
ourselves to giving a rather short overview of the part of the theory that we
require. The algorithms introduced in Sections 1.1{1.3 of this chapter have
eÆcient implementations in various computer algebra systems, such as Co-
CoA [40], MACAULAY (2) [97], MAGMA [24], or SINGULAR [99], to name
just a few, rather specialized ones. The normalization algorithm explained in
Section 1.6 is implemented in MACAULAY and SINGULAR.

We will be looking at ideals I � K[x1; : : : ; xn] in a polynomial ring over
a �eld K. For polynomials f1; : : : ; fk 2 K[x1; : : : ; xn], the ideal generated by
the fi will be denoted by (f1; : : : ; fk)K[x1; : : : ; xn] or by (f1; : : : ; fk) if no
misunderstanding can arise. The algorithms in this chapter will be mostly
about questions in algebraic geometry, so let us introduce some basic no-
tation. An aÆne variety is a subset X of the n-dimensional aÆne space
A n = A n (K) := Kn de�ned by a set S � K[x1; : : : ; xn] of polynomials as

X = V(S) := f(�1; : : : ; �n) 2 Kn j f(�1; : : : ; �n) = 0 for all f 2 Sg:

When we talk about varieties, we usually assume that K is algebraically
closed. (Otherwise, we could work in the language of schemes.) The Zariski
topology on A n is de�ned by taking the aÆne varieties as closed sets. An
aÆne variety (or any other subset of A n) inherits the Zariski topology from
A n . A non-empty aÆne variety X is called irreducible if it is not the union
of two non-empty, closed proper subsets. (In the literature varieties are often
de�ned to be irreducible, but we do not make this assumption here.) The
(Krull-) dimension of X is the maximal length k of a strictly increasing
chain

8 1 Constructive Ideal Theory

X0 $ X1 $ � � � $ Xk � X

of irreducible closed subsets.
For an aÆne variety X = V(S), let I be the radical ideal of the ideal

in K[x1; : : : ; xn] generated by S. Then X = V(I), and the quotient ring
K[X] := K[x1; : : : ; xn]=I is called the coordinate ring. X is irreducible if
and only if K[X] is an integral domain, and the dimension of X equals the
Krull dimension of K[X], i.e., the maximal length of a strictly increasing
chain of prime ideals in K[X]. By Hilbert's Nullstellensatz, we can identify
K[X] with a subset of the ringKX of functions fromX intoK. Elements from
K[X] are called regular functions on X . If X and Y are aÆne varieties, a
morphism ': X ! Y is a mapping from X into Y such that the image of
the induced mapping

'�: K[Y]! KX ; f 7! f Æ ';

lies in K[X].

1.1 Ideals and Gr�obner Bases

In this section we introduce the basic machinery of monomial orderings and
Gr�obner bases.

1.1.1 Monomial Orderings

By a monomial in K[x1; : : : ; xn] we understand an element of the form
xe11 � � �xenn with ei non-negative integers. Let M be the set of all monomials.
A term is an expression c � t with 0 6= c 2 K and t 2 M . Thus every
polynomial is a sum of terms.

De�nition 1.1.1. A monomial ordering is a total order \>" on M sat-
isfying the following conditions:

(i) t > 1 for all t 2M n f1g,
(ii) t1 > t2 implies st1 > st2 for all s; t1; t2 2M .

We also use a monomial ordering to compare terms. A non-zero polynomial
f 2 K[x1; : : : ; xn] can be written uniquely as f = ct + g such that t 2 M ,
c 2 K n f0g, and every term of g is smaller (with respect to the order \>")
than t. Then we write

LT(f) = ct; LM(f) = t; and LC(f) = c

for the leading term, leading monomial, and leading coeÆcient of f .
For f = 0, all three values are de�ned to be zero.

1.1 Ideals and Gr�obner Bases 9

A monomial ordering is always a well-ordering. This follows from the fact
that ideals in K[x1; : : : ; xn] are �nitely generated. We note that the usage of
terminology is not uniform in the literature. Some authors (e.g. Becker and
Weispfenning [15]) have monomials and terms interchanged, and some speak
of initial or head terms, monomials and coeÆcients. Monomial orderings are
often called term orders. When browsing through the literature one can �nd
almost any combination of these pieces of terminology.

Example 1.1.2. We give a few examples of monomial orderings. Let t =

xe11 � � �xenn and t0 = x
e01
1 � � �xe

0

n
n be two distinct monomials.

(a) The lexicographic monomial ordering (with x1 > x2 > � � � > xn): t is
considered greater than t0 if ei > e0i for the smallest i with ei 6= e0i. We
sometimes write t >lex t

0 in this case. As an example, we have

LMlex(x1 + x2x4 + x23) = x1:

The lexicographic monomial ordering is useful for solving systems of al-
gebraic equations.

(b) The graded lexicographic monomial ordering: t >glex t0 if deg(t) >
deg(t0), or if deg(t) = deg(t0) and t >lex t0. Here deg(t) is the total
degree e1 + � � �+ en. For example,

LMglex(x1 + x2x4 + x23) = x2x4:

The graded lexicographic monomial ordering can be generalized by using
a weighted degree deg(t) := w1e1+ � � �+wnen with wi �xed positive real
numbers.

(c) The graded reverse lexicographic monomial ordering (grevlex-ordering for
short): t >grevlex t

0 if deg(t) > deg(t0), or if deg(t) = deg(t0) and ei < e0i
for the largest i with ei 6= e0i. For example,

LMgrevlex(x1 + x2x4 + x23) = x23:

The grevlex ordering is often very eÆcient for computations. It can also
be generalized by using a weighted degree.

(d) Block orderings: Let >1 be a monomial ordering on the monomials in
x1; : : : ; xr , and>2 a monomial ordering on the monomials in xr+1; : : : ; xn.
Then the block ordering formed from >1 and >2 is de�ned as follows:

t > t0 if xe11 � � �xerr >1 x
e01
1 � � �xe

0

r
r , or if xe11 � � �xerr = x

e01
1 � � �xe0rr and

x
er+1
r+1 � � �xenn >2 x

e0r+1
r+1 � � �xe

0

n
n . For example, the lexicographic monomial

ordering is a block ordering. Block orderings are useful for the computa-
tion of elimination ideals (see Section 1.2). /

We say that a monomial ordering is graded if deg(t) > deg(t0) implies
t > t0. So the orderings in (b) and (c) of the previous example are graded.

Given a monomial ordering, we write xi � xj if xi > xej for all non-
negative integers e. For example, in the lexicographic monomial ordering we

10 1 Constructive Ideal Theory

have x1 � x2 � � � � � xn. Moreover, if \>" is a block ordering with blocks
x1; : : : ; xr and xr+1; : : : ; xn, then xi � xj for i � r and j > r. If xi � xj for
all j 2 J for some J � f1; : : : ; ng, then xi is greater than any monomial in
the indeterminates xj , j 2 J . This follows directly from De�nition 1.1.1.

1.1.2 Gr�obner Bases

We �x a monomial ordering on K[x1; : : : ; xn].

De�nition 1.1.3. Let S � K[x1; : : : ; xn] be a set of polynomials. We write

L(S) = (LM(g) j g 2 S)

for the ideal generated by the leading monomials from S. L(S) is called the
leading ideal of S (by some authors also called the initial ideal).

Let I � K[x1; : : : ; xn] be an ideal. Then a �nite subset G � I is called a
Gr�obner basis of I (with respect to the chosen monomial ordering) if

L(I) = L(G):

It is clear that a Gr�obner basis of I generates I as an ideal. Indeed, a (hy-
pothetical) element f 2 In(G) with minimal leading monomial could be trans-
formed into g 2 I n (G) with smaller leading monomial by subtracting a mul-
tiple of an element from G, which yields a contradiction. It is also clear that
Gr�obner bases always exist. Indeed, fLM(f) j f 2 Ig generates L(I) by de�-
nition, hence by the Noether property a �nite subset fLM(f1); : : : ;LM(fm)g
also generates L(I), and so ff1; : : : ; fmg is a Gr�obner basis. This argument,
however, is non-constructive. But we will see in Section 1.1.4 that there is in
fact an algorithm for computing Gr�obner bases.

The most obvious question about an ideal I � K[x1; : : : ; xn] that can be
decided with Gr�obner bases is whether I = K[x1; : : : ; xn]. Indeed, this is the
case if and only if G contains a (non-zero) constant polynomial.

1.1.3 Normal Forms

A central element in the construction and usage of Gr�obner bases is the
computation of so-called normal forms.

De�nition 1.1.4. Let S � K[x1; : : : ; xn] be a set of polynomials.

(a) A polynomial f 2 K[x1; : : : ; xn] is said to be in normal form with respect
to S if no term of f is divisible by the leading monomial of any g 2 S.

(b) If f and ~f are polynomials in K[x1; : : : ; xn], then ~f is said to be a normal
form of f with respect to S if ~f is in normal form with respect to S and
f � ~f lies in the ideal generated by S.

1.1 Ideals and Gr�obner Bases 11

The following algorithm, which mimics division with remainder in the
univariate case, calculates a normal form with respect to a �nite set S of
polynomials.

Algorithm 1.1.5 (Normal form). Given a polynomial f 2 K[x1; : : : ; xn]
and a �nite subset S = fg1; : : : ; gsg � K[x1; : : : ; xn], perform the follow-
ing steps to obtain a normal form ~f of f with respect to S, together with
polynomials h1; : : : ; hs 2 K[x1; : : : ; xn] such that

f = ~f +
sX
i=1

higi:

(1) Set ~f := f and hi := 0 for all i, and repeat the steps (2){(4).
(2) If no term of ~f is divisible by the leading monomial of any gi 2 S, return ~f

as a normal form of f , and return the hi.
(3) Let ct be the maximal term of ~f such that there exists gi 2 S with LM(gi)

dividing t.
(4) Set

~f := ~f � ct

LT(gi)
gi and hi := hi +

ct

LT(gi)
:

Of course the computation of the hi can be omitted if only a normal form is
desired. The termination of Algorithm 1.1.5 is guaranteed by the fact that the
maximal monomials t of ~f divisible by some LM(gi) form a strictly decreasing
sequence, but such a sequence is �nite by the well-ordering property. The
result of Algorithm 1.1.5 is in general not unique, since it depends on the
choice of the gi in step (3). However, if G is a Gr�obner basis of an ideal I ,

then normal forms with respect to G are unique. In fact, if ~f and f̂ are two
normal forms of f with respect to G, then ~f� f̂ 2 I , so LM(~f� f̂) is divisible
by some LM(g) with g 2 G. But if ~f 6= f̂ , then LM(~f � f̂) must appear as a

monomial in ~f or f̂ , contradicting the fact that ~f and f̂ are in normal form.
In the case of a Gr�obner basis G we write ~f =: NF(f) = NFG(f) for the
normal form.

It should be mentioned that there is a variant of the normal form algo-
rithm which stops when the leading term of ~f is zero or not divisible by any
LM(g), g 2 S (\top-reduction").

Using Algorithm 1.1.5, we obtain a membership test for ideals.

Algorithm 1.1.6 (Membership test in ideals). Let I � K[x1; : : : ; xn] be an
ideal, G a Gr�obner basis of I , and f 2 K[x1; : : : ; xn] a polynomial. Then

f 2 I () NFG(f) = 0:

One can also substitute NFG(f) by the result of top-reducing f .

Thus the map NFG : K[x1; : : : ; xn]! K[x1; : : : ; xn] is K-linear with ker-
nel I , and therefore provides a way to perform explicit calculations in the

12 1 Constructive Ideal Theory

quotient ring K[x1; : : : ; xn]=I . In fact, this was the main objective for which
Gr�obner bases were invented.

A Gr�obner basis G of an ideal I can be transformed into a reduced

Gr�obner basis by iteratively substituting an element from G by a normal
form with respect to the other elements, until every element is in normal
form. After deleting zero from the resulting set and making all leading co-
eÆcients equal to 1, the resulting monic reduced Gr�obner basis is unique
(i.e., it only depends on I and the chosen monomial ordering, see Becker and
Weispfenning [15, Theorem 5.43]).

1.1.4 The Buchberger Algorithm

In order to present Buchberger's algorithm for the construction of Gr�obner
bases, we need to introduce s-polynomials. Let f; g 2 K[x1; : : : ; xn] be two
non-zero polynomials, and set t := lcm(LM(f);LM(g)) (the least common
multiple). Then the s-polynomial of f and g is de�ned as

spol(f; g) :=
LC(g) � t
LM(f)

f � LC(f) � t
LM(g)

g:

Note that the coeÆcients of t cancel in spol(f; g), and that spol(f; g) 2 (f; g).
The following lemma is the key step toward �nding an algorithm for the
construction of a Gr�obner basis.

Lemma 1.1.7 (Buchberger [32]). Let G be a basis (=generating set) of an
ideal I � K[x1; : : : ; xn]. Then the following conditions are equivalent.

(a) G is a Gr�obner basis of I.
(b) If f; g 2 G, then spol(f; g) has 0 as a normal form with respect to G.
(c) If f; g 2 G, then every normal form of spol(f; g) with respect to G is 0.

See Becker and Weispfenning [15, Theorem 5.48] for a proof. We can give
Buchberger's algorithm in a rather coarse form now.

Algorithm 1.1.8 (Buchberger's algorithm). Given a �nite basis S for an
ideal I � K[x1; : : : ; xn], construct a Gr�obner basis (with respect to a given
monomial ordering) by performing the following steps:

(1) Set G := S and repeat steps (2){(4).
(2) For f; g 2 G compute a normal form h of spol(f; g) with respect to G.
(3) If h 6= 0, include h into G.
(4) If h was found to be zero for all f; g 2 G, then G is the desired Gr�obner

basis.

This algorithm terminates after a �nite number of steps since L(S) strictly
increases with every performance of steps (2){(4).

1.2 Elimination Ideals 13

Remark 1.1.9. The theoretical cost of Buchberger's algorithm is extremely
high. In fact, no general upper bound for the running time is known. But
M�oller and Mora [168] proved an upper bound for the maximal degree of the
Gr�obner basis elements which depends doubly exponentially on the number of
variables. They also proved that this doubly exponential behavior cannot be
improved. What makes things even worse is the phenomenon of \intermediate
expression swell", meaning that during the computation the number and
size of polynomials can become much bigger than in the �nal result. It is
known that the memory space required for the computation of Gr�obner bases
increases at most exponentially with the size of the input, and all problems
with this behavior can be reduced to the problem of testing ideal membership;
so the problem of computing Gr�obner bases is \EXPSPACE-complete". We
refer to von zur Gathen and Gerhard [79, Section 21.7] for a more detailed
account of what is known about the complexity of Gr�obner bases.

In spite of all this bad news, practical experience shows that the algo-
rithm often terminates after a reasonable time (although this is usually not
predictable in advance). Much depends on improvements of the algorithm
given above, such as omitting some pairs f; g (by Buchberger's �rst and sec-
ond criterion, see Becker and Weispfenning [15, Section 5.5]), by having a
good strategy which pairs to treat �rst, and by choosing a suitable monomial
ordering (if there is any freedom of choice). There are also algorithms which
transform a Gr�obner basis with respect to one monomial ordering into one
with respect to another ordering (see Faug�ere et al. [66], Collart et al. [46]).
/

There is a variant of Buchberger's algorithm which keeps track of how
the polynomials in the Gr�obner basis G arise as linear combinations of the
polynomials in the original ideal basis S. This variant is called the extended
Buchberger algorithm, and its output is an (ordered) Gr�obner basis G =
fg1; : : : ; grg and an r � s-matrix A with coeÆcients in K[x1; : : : ; xn] such
that 0

B@
g1
...
gr

1
CA = A �

0
B@
f1
...
fs

1
CA ;

where S = ff1; : : : ; fsg. On the other hand, it is straightforward to obtain
an s� r-matrix B such that (f1; : : : ; fs)

tr = B(g1; : : : ; gr)
tr by applying the

Normal Form Algorithm 1.1.5 to the fi.

1.2 Elimination Ideals

Given an ideal I � K[x1; : : : ; xn] and an integer k 2 f1; : : : ; ng, the elim-
ination ideal of I with respect to xk; : : : ; xn is de�ned as the intersection
I \K[xk; : : : ; xn]. It has the following geometric interpretation: If

14 1 Constructive Ideal Theory

�: A n ! A n�k+1 ; (�1; : : : ; �n) 7! (�k; : : : ; �n)

is the canonical projection, then for K algebraically closed we have

� (V(I)) = V(I \K[xk; : : : ; xn]); (1.2.1)

where the left hand side is the Zariski-closure. (In scheme theoretic language,
� is the intersection of a prime ideal in K[x1; : : : ; xn] with K[xk; : : : ; xn], and
we do not need the hypothesis that K is algebraically closed.) An important
feature of Gr�obner bases is that they can be used to compute elimination
ideals.

Algorithm 1.2.1 (Computing elimination ideals). Given an ideal I �
K[x1; : : : ; xn] and an integer k 2 f1; : : : ; ng, compute the elimination ideal
I \K[xk; : : : ; xn] as follows:

(1) Choose a monomial ordering such that xi � xj for i < k and j � k (e.g.,
the lexicographic monomial ordering or a block ordering).

(2) Compute a Gr�obner basis G of I with respect to this monomial ordering.
(3) G \K[xk; : : : ; xn] is a Gr�obner basis of I \K[x1; : : : ; xn].

It is elementary to see that this algorithm is correct (see Becker and
Weispfenning [15, Proposition 6.15]). Equation (1.2.1) shows how elimination
ideals can be used to solve a system of algebraic equations with a �nite set
of solutions.

We continue by presenting some applications of elimination ideals (and
thus of Gr�obner bases) which will be needed in the following chapters of this
book.

1.2.1 Image Closure of Morphisms

Let X and Y be aÆne varieties and f :X ! Y a morphism. (Again we assume
that K is algebraically closed or use the language of schemes.) We want to
compute the Zariski-closure of the image f(X). Assume that X is embedded
into A n and Y into Am for some n and m. Without loss of generality we
can assume that Y = Am . If f is given by polynomials (f1; : : : ; fm) with
fi 2 K[x1; : : : ; xn], and X is given by an ideal I � K[x1; : : : ; xn], then the
graph of f is given by the ideal

J := I �K[x1; : : : ; xn; y1; : : : ; ym] + (f1 � y1; : : : ; fm � ym)

in K[x1; : : : ; xn; y1; : : : ; ym]. Thus by Equation (1.2.1), the closure of the im-
age is

f(X) = V (J \K[y1; : : : ; ym])

(see Vasconcelos [250, Proposition 2.1.3]), and can therefore be calculated by
Algorithm 1.2.1.

1.2 Elimination Ideals 15

1.2.2 Relations Between Polynomials

A further application of elimination ideals is the computation of relations
between polynomials. More precisely, let f1; : : : ; fm 2 K[x1; : : : ; xn] be poly-
nomials. We are interested in the kernel of the homomorphism

�: K[t1; : : : ; tm]! K[x1; : : : ; xn]; ti 7! fi;

of K-algebras (where t1; : : : ; tm are further indeterminates). The answer is as
follows: De�ne the ideal

I := (f1 � t1; : : : ; fm � tm)

in K[x1; : : : ; xn; t1; : : : ; tm]. Then it is easy to show that

ker(�) = I \K[t1; : : : ; tm]; (1.2.2)

so the desired kernel is again an elimination ideal (see Eisenbud [59, Propo-
sition 15.30]). Notice that generators for ker(�) together with the fi provide
a presentation of the algebra generated by the fi.

1.2.3 The Intersection of Ideals

The intersection of two ideals I; J � K[x1; : : : ; xn] (which geometrically cor-
responds to the union of varieties) can be computed as follows: With a new
indeterminate t, form the ideal L in K[x1; : : : ; xn; t] generated by

I � t+ J � (1� t);

where the products are formed by multiplying each generator of I and J by
t and 1� t, respectively. Then

I \ J = L \K[x1; : : : ; xn] (1.2.3)

(see Vasconcelos [250, Corollary 2.1.1]). A di�erent method for computing
the intersection of I and J involves the calculation of a syzygy module (see
Vasconcelos [250, page 29]). We can apply any of these methods iteratively
to obtain the intersection of a �nite number of ideals, but there is also a
direct method (involving further auxiliary indeterminates) given by Becker
and Weispfenning [15, Corollary 6.20].

1.2.4 The Quotient of Ideals

Given two ideals I; J � K[x1; : : : ; xn], it is often important to be able to
calculate the quotient ideal

I : J := fg 2 K[x1; : : : ; xn] j gf 2 I 8f 2 Jg:

16 1 Constructive Ideal Theory

Sometimes I : J is also referred to as the colon ideal. The quotient ideal
has the following geometric interpretation: If I is a radical ideal and K is
algebraically closed, then I : J is precisely the ideal of all polynomials van-
ishing on V(I)nV(J). The quotient ideal is also of crucial importance for the
computation of radical ideals (see Section 1.5) and primary decomposition.

If J = (f) is a principal ideal, we sometimes write I : f for the quotient
ideal I : (f). If J = (f1; : : : ; fk), then clearly

I : J =

k\
i=1

I : fi;

which reduces the task to the case that J is a principal ideal. But clearly

I : f = (I \ (f)) � f�1 (1.2.4)

(see Vasconcelos [250, Proposition 2.1.4(a)]), which can be computed by
Equation (1.2.3). Thus quotient ideals can be obtained by using any algo-
rithm for the intersection of ideals.

For an ideal I � K[x1; : : : ; xn] and a polynomial f 2 K[x1; : : : ; xn] we
can also consider the ideal

I : f1 :=
[
i2N

I : f i;

which is sometimes referred to as the saturation ideal of I with respect to f .
The saturation ideal can be calculated by successively computing the quotient
ideals Ji := I : f i = Ji�1 : f . This gives an ascending chain of ideals, thus
eventually we get Jk+1 = Jk, so I : f1 = Jk. But there is a more eÆcient
algorithm, based on the following proposition.

Proposition 1.2.2. Let I � K[x1; : : : ; xn] be an ideal and f 2 K[x1; : : : ; xn]
a polynomial. Introduce an additional indeterminate t and form the ideal J
in K[x1; : : : ; xn; t] generated by I and tf � 1. Then

I : f1 = J \K[x1; : : : ; xn]:

A proof can be found in Becker and Weispfenning [15, Proposition 6.37].

1.2.5 The Krull Dimension

We de�ne the dimension of an ideal I � K[x1; : : : ; xn] to be the Krull di-
mension of the quotient K[x1; : : : ; xn]=I . There is a method which computes
the dimension by using elimination ideals (Becker and Weispfenning [15, Sec-
tion 6.3]). However, this technique involves a large number of Gr�obner basis
computations and is therefore not very eÆcient. A better algorithm (also
given in the book of Becker and Weispfenning [15]) is based on the following
lemma, which follows from Cox et al. [48, Proposition 4 of Chapter 9, x3].

1.2 Elimination Ideals 17

Lemma 1.2.3. If \>" is a graded monomial ordering, then the dimensions
of I and of the leading ideal L(I) coincide.

To prove this lemma, one uses the fact that the normal form provides an
isomorphism of K-vector spaces (not of algebras) between K[x1; : : : ; xn]=I
and K[x1; : : : ; xn]=L(I). Lemma 1.2.3 reduces our problem to the computa-
tion of the dimension of L(I), which is a monomial ideal. But the variety
de�ned by a monomial ideal is a �nite union of so-called coordinate sub-
spaces, i.e., varieties of the form V(M) withM� fx1; : : : ; xng. Clearly such
a variety is contained in the zero set of the monomial ideal J if and only if
every generator of J involves at least one variable xi lying in M. We obtain
the following algorithm (see Cox et al. [48, Proposition 3 of Chapter 9, x1]).
Algorithm 1.2.4 (Dimension of an ideal).
Given an ideal I � K[x1; : : : ; xn], calculate the dimension of I by performing
the following steps:

(1) Compute a Gr�obner basis G of I with respect to a graded monomial
ordering.

(2) If G contains a non-zero constant, then I = K[x1; : : : ; xn], and the di-
mension is (by convention) -1.

(3) Otherwise, �nd a subset M � fx1; : : : ; xng of minimal cardinality such
that for every non-zero g 2 G the leading monomial LM(g) involves at
least one variable from M.

(4) The dimension of I is n� jMj.
Step (3) of the above algorithm is purely combinatorial and therefore usu-

ally much faster than the Gr�obner basis computation. An optimized version
of this step can be found in Becker and Weispfenning [15, Algorithm 9.6].

The setM� fx1; : : : ; xng occurring in Algorithm 1.2.4 has an interesting
interpretation. In fact, letM0 := fx1; : : : ; xngnM be the complement ofM.
Then for every non-zero g 2 G the leading monomial LM(g) involves at least
one variable not inM0. This implies that every non-zero polynomial in L(I)
involves a variable not in M0, so L(I) \K[M0] = f0g. From this it follows
that

I \K[M0] = f0g: (1.2.5)

Indeed, if f 2 I\K[M0] were non-zero, then LM(f) would lie in L(I)\K[M0].
SubsetsM0 � fx1; : : : ; xng which satisfy (1.2.5) are called independent mod-
ulo I (see Becker and Weispfenning [15, De�nition 6.46]). Consider the ratio-
nal function �eld L := K(M0) in the variables lying inM0, and let L[M] be
the polynomial ring over L in the variables fromM. Then (1.2.5) is equivalent
to the condition that the ideal IL[M] generated by I in L[M] is not equal to
L[M]. Since we have jM0j = dim(I), it follows thatM0 ismaximally indepen-
dent modulo I . (Indeed, if there existed a strict superset N %M of variables
which is independent modulo I , the N would also be independent modulo
some minimal prime P containing I . But this would imply that the tran-
scendence degree of K[x1; : : : ; xn]=P is at least jN j, hence by Eisenbud [59,

18 1 Constructive Ideal Theory

Section 8.2, Theorem A] we would get dim(I) � dim(P) � jN j > jM0j.)
The maximality ofM0 means that no non-empty subset ofM is independent
modulo IL[M]. By Algorithm 1.2.4, the dimension of IL[M] must therefore
be zero. Thus we have shown:

Proposition 1.2.5. Let I $ K[x1; : : : ; xn] be an ideal andM� fx1; : : : ; xng
as in Algorithm 1.2.4. SetM0 := fx1; : : : ; xngnM, and take the rational func-
tion �eld L := K(M0) in the variables lying in M0, and the polynomial ring
L[M]. Then the ideal J := IL[M] generated by I in L[M] is not equal to
L[M], and dim(J) = 0.

1.3 Syzygy Modules

In this section we write R := K[x1; : : : ; xn] for the polynomial ring and
Rk for a free R-module of rank k. The standard basis vectors of Rk are
denoted by e1; : : : ; ek. Given polynomials f1; : : : ; fk 2 R, we ask for the set
of all (h1; : : : ; hk) 2 Rk such that h1f1 + � � � + hkfk = 0. This set is a
submodule of Rk, called the syzygy module of f1; : : : ; fk and denoted by
Syz(f1; : : : ; fk). More generally, we ask for the kernel of an R-homomorphism
': Rk ! Rl between two free R-modules. If fi := '(ei) 2 Rl, then the kernel
of ' consists of all (h1; : : : ; hk) 2 Rk with h1f1 + � � � + hkfk = 0. Again
Syz(f1; : : : ; fk) := ker(') is called the syzygy module of the fi.

1.3.1 Computing Syzygies

In order to explain an algorithm which computes syzygy modules, we have to
give a brief introduction into Gr�obner bases of submodules of Rk. A mono-

mial in Rk is an expression of the form tei with t a monomial in R. The notion
of a monomial ordering is given as in De�nition 1.1.1, with condition (i) re-
placed by tei > ei for all i and 1 6= t a monomial in R, and demanding (ii) for
monomials t1; t2 2 Rk and s 2 R. Given a monomial ordering, we can now
de�ne the leading submodule L(M) of a submoduleM � Rk and the concept
of a Gr�obner basis ofM as in De�nition 1.1.3. Normal forms are calculated by
Algorithm 1.1.5, with the extra speci�cation that tei is said to be divisible by
t0ej if i = j and t divides t0, so the quotients are always elements in R. More-
over, the s-polynomial of f and g 2 Rk with LM(f) = tei and LM(g) = t0ej
is de�ned to be zero if i 6= j. With these provisions, Buchberger's algorithm
can be formulated as in Algorithm 1.1.8.

Suppose that G = fg1; : : : ; gkg is a Gr�obner basis of a submodule M �
Rl. Then for gi; gj 2 G we have that NFG(spol(gi; gj)) = 0, so there exist
h1; : : : ; hk 2 R with

spol(gi; gj) = h1g1 + � � �+ hkgk; (1.3.1)

1.3 Syzygy Modules 19

and the hi can be computed by the Normal Form Algorithm 1.1.5. Since
spol(gi; gj) is an R-linear combination of gi and gj , Equation (1.3.1) yields a
syzygy ri;j 2 Syz(g1; : : : ; gk). Of course ri;j = 0 if the leading monomials of
gi and of gj lie in di�erent components of Rl.

The following monomial ordering \>G" on Rk, which depends on G, was
introduced by Schreyer [210]: tei is considered bigger than t0ej if tLM(gi) >
t0 LM(gj) (with \>" the given ordering on Rl), or if tLM(gi) = t0 LM(gj)
and i < j. It is easy to see that \>G" satis�es the properties of a monomial
ordering.

Theorem 1.3.1 (Schreyer [210]). Let G = fg1; : : : ; gkg be a Gr�obner basis
with respect to an arbitrary monomial ordering \>" of a submodule M � Rl.
Then, with the above notation, the ri;j (1 � i < j � k) form a Gr�obner basis
of Syz(g1; : : : ; gk) with respect to the monomial ordering \>G".

This settles the case of syzygies for Gr�obner bases. Now assume that
f1; : : : ; fk 2 Rl are arbitrary. Using the extended Buchberger algorithm (see
at the end of Section 1.1), we can calculate a Gr�obner basis fg1; : : : ; gk0g of
the submodule generated by f1; : : : ; fk, along with representations of the gi
as R-linear combinations of the fj . Using the Normal Form Algorithm 1.1.5,
we can also express the fj in terms of the gi. The choice of the fj and gi is

equivalent to giving homomorphisms Rk ! Rl and Rk
0 ! Rl, and expressing

the fj in terms of the gi and vice versa is equivalent to giving homomorphisms
' and such that the diagram

0 - N -Rk
0 - Rl

'

?

6

�
�
��

Rk

commutes (both along ' and), where N := Syz(g1; : : : ; gk0) can be com-
puted by Theorem 1.3.1. The following lemma tells us how to compute
Syz(f1; : : : ; fk) = ker(Rk ! Rl).

Lemma 1.3.2. Let A be a commutative ring and

0 - N -M1 - M

'

?

6

�
�
��
�

M2

a commutative diagram (both along ' and) of A-modules, with the upper
row exact. Then we have an exact sequence

20 1 Constructive Ideal Theory

0 �! (id� Æ ')(M1) �! N � (id�' Æ)(M2) �!M2
��!M

with maps

(id� Æ ')(M1)! N � (id�' Æ)(M2); m 7! (m;�'(m)); and
N � (id�' Æ)(M2)!M2; (n;m) 7! '(n) +m:

In particular,
ker(�) = '(N) + (id�' Æ)(M2):

Proof. It follows by a simple diagram chase that (id� Æ ')(M1) � N , so
the �rst map is indeed into N � (id�' Æ)(M2). We show the exactness
at M2. Again by a diagram chase �('(n) + m) = 0 for n 2 N and m 2
(id�' Æ)(M2). Conversely, for m 2 ker(�) we have

m = '((m)) + (id�' Æ)(m)

with (m) 2 N . To show the exactness at N � (id�' Æ)(M2), take
(n;m2 � '((m2))) 2 N � (id�' Æ)(M2) with '(n) +m2�'((m2)) = 0.
Then

n = (id� Æ ')(n� (m2)) 2 (id� Æ ')(M1);

and (n;�'(n)) = (n;m2 � '((m2))). This completes the proof. ut
In summary, we obtain the following algorithm.

Algorithm 1.3.3 (Calculation of a syzygy module). Given elements f1; : : : ;
fk 2 Rl, perform the following steps to �nd the syzygy module Syz(f1; : : : ; fk):

(1) Using the extended Buchberger algorithm, calculate a Gr�obner basis
fg1; : : : ; gk0g of the submodule of Rl generated by the fi together with a
matrix A 2 Rk0�k such that0

B@
g1
...
gk0

1
CA = A �

0
B@
f1
...
fk

1
CA :

(2) Using the Normal Form Algorithm 1.1.5, compute a matrix B 2 Rk�k
0

with 0
B@
f1
...
fk

1
CA = B �

0
B@
g1
...
gk0

1
CA :

(3) For 1 � i < j � k0, compute the syzygies ri;j 2 Syz(g1; : : : ; gk0) given by
Equation (1.3.1).

(4) Syz(f1; : : : ; fk) is generated by the ri;j � A and the rows of Ik �BA.

1.3 Syzygy Modules 21

1.3.2 Free Resolutions

For a submoduleM � Rl (with R = K[x1; : : : ; xn] as before) with generating
set f1; : : : ; fk, we can compute generators for N := Syz(f1; : : : ; fk) � Rk

by using Algorithm 1.3.3. Continuing by computing the syzygies of these
generators and so on, we obtain a free resolution ofM , i.e., an exact sequence

0 �! Fr �! Fr�1 �! � � � �! F2 �! F1 �! F0 �!M �! 0 (1.3.2)

with the Fi free R-modules. Hilbert's syzygy theorem (see Eisenbud [59,
Corollary 19.8] or the \original" reference Hilbert [107]) guarantees that there
exists a free resolution of �nite length (bounded by n, in fact), as given above.
Free resolutions are of great interest because they contain a lot of information
about the structure of M . Theorem 1.3.1 provides the following method for
calculating a free resolution with only a single Gr�obner basis computation.

Algorithm 1.3.4 (Schreyer's algorithm). Let M � Rl be a submodule
given by a generating set. Obtain a free resolution of M as follows:

(1) Compute a Gr�obner basis G = fg1; : : : ; gkg of M with respect to an
arbitrary monomial ordering \>". Set i := 0 and repeat steps (2){(4).

(2) Set Fi := Rk and obtain the map Fi ! Fi�1 (with F�1 := M)
from (1.3.2) by (h1; : : : ; hk) 7! h1g1 + � � �+ hkgk.

(3) Compute the relations ri;j from Equation (1.3.1). By Theorem 1.3.1, the
ri;j form a Gr�obner basis with respect to \>G" of the kernel of the map
de�ned in (2).

(4) If all ri;j are zero, the resolution is complete. Otherwise, let G � Rk be
the set of the non-zero ri;j and set i := i+ 1.

The termination of Algorithm 1.3.4 after at most n iterations is guaran-
teed by (the proof of) Theorem 2.1 in Chapter 6 of Cox et al. [49] (which
provides a new, constructive proof of Hilbert's syzygy theorem).

Now suppose that the polynomial ring R is made into a graded algebra
by de�ning the degrees deg(xi) of the indeterminates to be positive integers.
Then the free module Rl can be made into a graded R-module by de�ning
the deg(ei) to be integers. Moreover, suppose thatM is a graded submodule,
i.e., generated by homogeneous elements. Then we want to �nd a graded free
resolution , i.e., one that consists of graded free modules Fi with all mappings
degree-preserving. Applying Buchberger's algorithm to a homogeneous gen-
erating set ofM yields a homogeneous Gr�obner basis, too, and by inspection
of the way in which the syzygies ri;j are formed from Equation (1.3.1), we
see that the resolution obtained by Algorithm 1.3.4 is indeed graded (with
the proper choice of the degrees of the free generators, i.e., each generator
gets the same degree as the relation to which it is mapped).

In the case that Rl is graded andM is a graded submodule, we are also in-
terested in obtaining aminimal free resolution ofM , i.e., a free resolution

22 1 Constructive Ideal Theory

such that the free generators of each Fi are mapped to a minimal generat-
ing set of the image of Fi. Such a resolution is unique up to isomorphism of
complexes (see Eisenbud [59, Theorem 20,2]), and in particular its length is
unique. This length is called the homological dimension of M , written as
hdim(M), and is an important structural invariant of M . A graded resolu-
tion (1.3.2) calculated by Algorithm 1.3.4 is usually not minimal, so how can
it be transformed into a minimal resolution, preferably without computing
any further Gr�obner bases? As a �rst step, we can use linear algebra to select
a minimal subset of the free generators of F0 whose image in M generates
M . Thus we obtain a free submodule F 00 � F0 and a commutative diagram

� � � - F1
�- F0 - M

'

?

6

F 00 -M;

where ' Æ = id. Lemma 1.3.2 yields an exact sequence

0 �! (id� Æ ')(F0) �! im(�)
'�! F 00 �!M: (1.3.3)

Observe that (id� Æ ') maps a free generator ei from F0 either to zero
(if it is also a generator of F 00) or to a non-zero element of (id� Æ ')(F0)
corresponding to the representation of the image of ei in M in terms of
the images of those ej contained in F 00. These non-zero elements are linearly
independent, hence (id� Æ')(F0) is a free module. We can use linear algebra
to compute preimages under � of the free generators of (id� Æ ')(F0) in
F1. This yields a free submodule F̂1 � F1 such that �(F̂1) = (id� Æ ')(F0)
and the restriction of � to F̂1 is injective. Now it is easy to see that (1.3.3)
and (1.3.2) lead to the exact sequence

0 �! Fr �! Fr�1 �! � � � �! F3 �! F2 � F̂1 �! F1
'Æ��! F 00 �!M �! 0:

Thus we have managed to replace (1.3.2) by a free resolution with the �rst free
module minimal. Iterating this process, we obtain the desired minimal free
resolution ofM . Notice that the only computationally signi�cant steps are the
selection of minimal generators for M and the computation of preimages of
ei� ('(ei)) for some free generators ei of F0. Both of these are accomplished
by linear algebra. Thus a minimal resolution of M can be computed by just
one Gr�obner basis computation and linear algebra.

1.4 Hilbert Series

In this section, we prove some results about Hilbert series of rings, and how
we can use ideal theory to compute them.

1.4 Hilbert Series 23

De�nition 1.4.1. For a graded vector space V =
L1

d=k Vd with Vd �nite
dimensional for all d we de�ne the Hilbert series of V as the formal Laurent
series

H(V; t) :=

1X
d=k

dim(Vd)t
d:

In the literature, Hilbert series are sometimes called Poincar�e series. In
our applications, V will always be a graded algebra or a graded module.

Example 1.4.2. Let us compute the Hilbert series of K[x1; : : : ; xn]. There are�
n+d�1
n�1

�
monomials of degree d, therefore the Hilbert series is

H(K[x1; : : : ; xn]; t) =

1X
d=0

�
n+ d� 1

n� 1

�
td:

This is exactly the power series expansion of (1� t)�n. /

Remark 1.4.3. If V and W are two graded vector spaces, then the tensor
product V
W also has a natural grading, namely

(V
W)d =
M

d1+d2=d

Vd1
Wd2 :

It is obvious from this formula that H(V
W; t) = H(V; t)H(W; t). Suppose
that R = K[x1; : : : ; xn] and xi has degree di > 0. Then we have R = K[x1]

K[x2]
 � � �
 K[xn] as graded algebras and H(K[xi]; t) = (1 � tdi)�1. It
follows that

H(R; t) =
1

(1� td1) � � � (1� tdn)
(1.4.1)

/

Remark 1.4.4. If

0! V (1) ! V (2) ! � � � ! V (r) ! 0 (1.4.2)

is an exact sequence of graded vector spaces (all maps respect degree) with

V
(i)
d �nite dimensional for all i and d, then

rX
i=1

(�1)iH(V (i); t) = 0:

This is clear because the degree d part of (1.4.2) is exact for all d. /

Proposition 1.4.5 (Hilbert). If R =
L1

d=0Rd is a �nitely generated graded
algebra over a �eld K = R0, then H(R; t) is the power series of a rational
function. The radius of convergence of this power series is at least 1. More-
over, if M =

L1
d=kMd is a �nitely generated graded R-module, then H(M; t)

is the Laurent series of a rational function (which may have a pole at 0).

24 1 Constructive Ideal Theory

Proof. Let A = K[x1; x2; : : : ; xn] be the polynomial ring, graded in such a
way that deg(xi) = di > 0. Then H(A; t) is a rational function by (1.4.1),
and the radius of convergence of the power series is 1 if n > 0, and1 if n = 0.
For any integer e, we de�ne the A-module A(e) by A(e) =

L1
d=�eA(e)d with

A(e)d := Ae+d. It is clear that H(A(e); t) = t�eH(A; t) is again a rational
function. A module is free if it is isomorphic to a direct sum

L
iA(ei). The

Hilbert series of a �nitely generated free module M is a rational function. If
M is a �nitely generated A-module, then by Hilbert's syzygy theorem (see
Eisenbud [59, Theorem 1.13]), there exists a resolution

0! F (r) ! F (r�1) ! � � � ! F (1) ! F (0) !M ! 0; (1.4.3)

where F (i) is a �nitely generated free A-module for all i, and the sequence is
exact. It follows from Remark 1.4.4 that

H(M; t) =

rX
i=0

(�1)iH(F (i); t); (1.4.4)

so H(M; t) is a rational function. If M is non-negatively graded, then the
same is true for all Fi, so the radius of convergence of H(M; t) is at least 1.

Let R be an arbitrary �nitely generated graded algebra over K = R0.
Then for some n and some d1; : : : ; dn > 0, there exists a homogeneous ideal
I � A such that A=I �= R. Hence R is a �nitely generated, non-negatively
graded A-module, and the claim follows. Moreover, any �nitely generated
graded R-module M is also a �nitely generated graded A-module. ut

The above proof gives an easy way to compute the Hilbert series of a
graded module M over a graded polynomial ring R = K[x1; : : : ; xn], if we
have a graded free resolution (1.4.3) of M . Indeed, we only have to com-
bine (1.4.4) and (1.4.1). A graded free resolution can be calculated by Algo-
rithm 1.3.4, which involves the computation of a Gr�obner basis of M . Given
a Gr�obner basis of M , there is also a more direct way to �nd the Hilbert
series, which will be discussed in Section 1.4.1.

The Hilbert series encodes geometric information as the following lemma
shows.

Lemma 1.4.6. Let R =
L

d�0Rd be a graded algebra, �nitely generated over
the �eld R0 = K. Then r := dim(R) is equal to the pole order of H(R; t) at
t = 1.

Proof. The proof requires the concept of homogeneous systems of parameters.
For the de�nition and the proof of existence, we refer forward to Section 2.4.2.
Let f1; : : : ; fr be a homogeneous system of parameters for R, and set A :=
K[f1; : : : ; fr]. It follows from (1.4.1) that H(A; t) has pole order r. In fact,
limt%1(1�t)rH(A; t) =

Qr
i=1 d

�1
i , where limt%1 denotes the limit from below

(see Example 1.4.8 below). There exists an A-free resolution

1.4 Hilbert Series 25

0! F (r) ! F (r�1) ! � � � ! F (0) ! R! 0:

Using (1.4.4) we conclude that H(R; t) has pole order � r because the same
holds for all H(F (i); t). Note that H(R; t) � H(A; t) for 0 < t < 1 since
A � R. If the pole order of H(R; t) were strictly smaller than r, then

0 = lim
t%1

(1� t)rH(R; t) � lim
t%1

(1� t)rH(A; t) =
rY
i=1

d�1
i > 0:

This contradiction shows that H(R; t) has in fact pole order r. ut
De�nition 1.4.7. Let R =

L
dRd be a graded algebra, �nitely generated

over R0 = K. Then the degree of R is de�ned as

deg(R) = lim
t%1

(1� t)rH(R; t)

where r := dim(R) is the Krull dimension of R and limt%1 means the limit
from below.

Up to a sign, the degree of R is the �rst coeÆcient of the Laurent series
expansion of H(R; t) at t = 1.

Example 1.4.8. If A = K[x1; : : : ; xn] with deg(xi) = di, then

deg(A) = lim
t%1

(1� t)nQn
i=1(1� tdi)

= lim
t%1

1Qn
i=1(1 + t+ � � �+ tdi�1)

=
1Qn
i=1 di

;

so we have deg(A) = (
Qn

i=1 di)
�1. /

If A = K[x1; : : : ; xn] (all xi of degree 1) and I � A is a homogeneous ideal,
then I corresponds to a projective variety Y � Pn�1. Then the degree of A=I
is the same as the degree of Y as a projective variety (see Hartshorne [102,
page 52]).

1.4.1 Computation of Hilbert Series

Again, let R = K[x1; : : : ; xn] be a polynomial ring, graded by deg(xi) = di,
and suppose that I � R is a homogeneous ideal. We want to compute
H(R=I; t), or equivalently H(I; t) = H(R; t)�H(R=I; t). We choose a mono-
mial ordering \>" on R and use the Buchberger Algorithm 1.1.8 to compute a
Gr�obner basis G = fg1; : : : ; grg of I with respect to \>". The leading monomi-
als LM(g1); : : : ;LM(gr) generate the leading ideal L(I). If m1; : : : ;ml 2 L(I)
are distinct monomials which span L(I)d, then we can �nd homogeneous
f1; : : : ; fl 2 Id such that LM(fi) = mi. It is clear that f1; : : : ; fl is a basis of
Id. It follows that

dim(L(I)d) = dim(Id):

We conclude H(L(I); t) = H(I; t), so we have reduced the problem to com-
puting the Hilbert series of a monomial ideal.

26 1 Constructive Ideal Theory

So suppose that I = (m1; : : : ;ml) � R is a monomial ideal. We will
show how to compute H(I; t) using recursion with respect to l. Let J =
(m1; : : : ;ml�1), then we have an isomorphism

J=(J \ (ml)) �= I=(ml)

of graded R-modules. Notice that

J \ (ml) = (lcm(m1;ml); lcm(m2;ml); : : : ; lcm(ml�1;ml));

where lcm means least common multiple. By recursion we have H(J; t) and
H(J \ (ml); t), and H((ml); t) = tdeg(ml)

Qn
i=1(1� tdi)�1. So we can compute

H(I; t) as
H(I; t) = H((ml); t) +H(J; t)�H(J \ (ml); t): (1.4.5)

See Bayer and Stillman [13] for more details. A slightly di�erent approach
was taken in Bigatti et al. [21].

Example 1.4.9. Let us compute the Hilbert series of the ideal I = (xz �
y2; xw � yz; yw � z2) � A := K[x; y; z; w], where all indeterminates have
degree 1. Note that H(A; t) = (1� t)�4 and H((f); t) = td(1� t)�4 if f is a
homogeneous polynomial of degree d. We choose the lexicographic ordering
\>" with x > y > z > w. Then G = fxz� y2; xw� yz; yw� z2g is a Gr�obner
basis of I . It follows that the initial ideal L(I) is generated by xz; xw; yw.
Observe that (xz; xw) \ (yw) = (xyzw; xyw) = (xyw). By (1.4.5) we get

H(L(I); t) = H((xz; xw; yw); t) = H((yw); t) +H((xz; xw); t)�H((xyw); t):
(1.4.6)

We know that H((yw); t) = t2=(1 � t)4 and H((xyw); t) = t3=(1 � t)4. We
only need to �nd H((xz; xw); t). Repeating the above process and making
use of (xz) \ (xw) = (xzw), we obtain (again by 1.4.5)

H((xz; xw); t) = H((xw); t) +H((xz); t)�H((xzw); t) =
2t2 � t3

(1� t)4
: (1.4.7)

Substituting (1.4.7) in (1.4.6) gives

H(I; t) = H(L(I); t) =
t2

(1� t)4
+

2t2 � t3

(1� t)4
� t3

(1� t)4
=

3t2 � 2t3

(1� t)4
;

and �nally

H(A=I; t) = H(A; t)�H(I; t) =
1

(1� t)4
� 3t2 � 2t3

(1� t)4
=

1 + 2t

(1� t)2
:

The pole order of H(A=I; t) at t = 1 is 2, so dim(A=I) = 2. If we take
limt%1(1� t)2H(A=I; t), we get deg(A=I) = 3. The ideal I de�nes a curve of
degree 3 in P3 (the twisted cubic curve). /

1.5 The Radical Ideal 27

1.5 The Radical Ideal

The computation of the radical ideal
p
I of an ideal I � K[x1; : : : ; xn] is one

of the basic tasks of constructive ideal theory. For the purposes of this book,
radical computation is important since it is used in de Jong's normalization
algorithm, which we present in Section 1.6. An important point for us is
that we want an algorithm which works in any characteristic. As we will see,
radical computation is a quite cumbersome task. Almost all methods that
were proposed approach the problem by reducing it to the zero-dimensional
case (see, for example, Gianni et al. [83], Krick and Logar [156], Alonso
et al. [10], Becker and Weispfenning [15]). To the best of our knowledge, the
only exception is a \direct" method given by Eisenbud et al. [60]. However,
the limitation of this algorithm is that it requires the ground �eld K to be
of characteristic 0, or that K[x1; : : : ; xn]=I is generated by elements whose
index of nilpotency is less than char(K) (see Theorem 2.7 in [60]). In our pre-
sentation, we will adhere to the strategy of reducing to the zero-dimensional
case. We �rst explain how this reduction works, and then address the prob-
lem of zero-dimensional radical computation. Concerning the latter problem,
we present a new variant of the \traditional" algorithm, which was given by
Kemper [139] and works in positive characteristic.

1.5.1 Reduction to Dimension Zero

The material in this subsection is largely drawn from Becker and Weispfen-
ning [15, Section 8.7]. Given an ideal I $ K[x1; : : : ; xn], we may apply Al-
gorithm 1.2.4 to �nd the dimension of I and a subset M � fx1; : : : ; xng
such that the complementM0 := fx1; : : : ; xng nM is independent modulo I ,
and jM0j = dim(I). Changing the ordering of the variables, we may assume
that M = fx1; : : : ; xrg and M0 = fxr+1; : : : ; xng. By Proposition 1.2.5, the
ideal J := IK(xr+1; : : : ; xn)[x1; : : : ; xr] is zero-dimensional. The main idea
in the reduction step is to calculate

p
J �rst. In order to work out the radical

of I from this, one �rst has to be able to form the intersection of
p
J with

K[x1; : : : ; xn]. An algorithm for this purpose is given by the following lemma.

Lemma 1.5.1 (Becker and Weispfenning [15, Lemma 8.91]). Let L =
K(xr+1; : : : ; xn) be a rational function �eld and J � L[x1; : : : ; xr] an ideal
in a polynomial ring over L. Furthermore, let G be a Gr�obner basis of J with
respect to any monomial ordering such that G � K[x1; : : : ; xn]. Set

f := lcmfLC(g) j g 2 Gg;

where the least common multiple is taken in K[xr+1; : : : ; xn], and let I be the
ideal in K[x1; : : : ; xn] generated by G. Then

J \K[x1; : : : ; xn] = I : f1:

28 1 Constructive Ideal Theory

In the above lemma, the condition G � K[x1; : : : ; xn] can always be
achieved by multiplying each element from the Gr�obner basis by the least
common multiple of the denominators of its coeÆcients. The saturation
I : f1 can be calculated by means of Proposition 1.2.2. Thus we are able
to compute the intersection J \K[x1; : : : ; xn], which is sometimes called the
contraction ideal of J .

If I � K[x1; : : : ; xn] is an ideal, we can form the ideal J in
K(xr+1; : : : ; xn)[x1; : : : ; xr] generated by I and then calculate the contrac-
tion ideal of J . However, this is not enough for our purposes, since we also
need to be able to express I as the intersection of the contraction ideal of J
with another ideal. This is achieved by the following lemma.

Lemma 1.5.2 (Becker and Weispfenning [15, Propos. 8.94, Lemma 8.95]).
Let I � K[x1; : : : ; xn] be an ideal. Choose monomial orders \>1" and \>2"
on K[x1; : : : ; xr] and K[xr+1; : : : ; xn], respectively, and let \>" be the block
ordering obtained from \>1" and \>2" (see Example 1.1.2(d)). Furthermore,
let G be a Gr�obner basis of I with respect to \>" and form

f := lcmfLC>1(g) j g 2 Gg;
where LC>1(g) is formed by considering g as a polynomial in
K(xr+1; : : : ; xn)[x1; : : : ; xr] and taking the leading coeÆcient with respect to
\>1". Then the contraction ideal of J := IK(xr+1; : : : ; xn)[x1; : : : ; xr] is

J \K[x1; : : : ; xn] = I : f1:

Moreover, if I : f1 = I : fk for some k 2 N, then

I =
�
I + (fk)

� \ (I : f1) :

We have now provided all ingredients which allow to reduce the problem
of radical computation to the zero-dimensional case.

Algorithm 1.5.3 (Higher dimensional radical computation). Let I �
K[x1; : : : ; xn] be an ideal. Perform the following steps to obtain the radi-
cal ideal

p
I .

(1) Use Algorithm 1.2.4 to compute the dimension d of I . If d = �1, then I =
K[x1; : : : ; xn] =

p
I , and we are done. Otherwise, let M � fx1; : : : ; xng

be the subset produced by Algorithm 1.2.4. Renumber the variables such
that M = fx1; : : : ; xrg.

(2) Use Lemma 1.5.2 to �nd f 2 K[xr+1; : : : ; xn] such that

I =
�
I + (fk)

� \ (IL[x1; : : : ; xr] \K[x1; : : : ; xn]) (1.5.1)

for some k 2 N, where L := K(xr+1; : : : ; xn).
(3) Compute J :=

p
IL[x1; : : : ; xr]. (Note that IL[x1; : : : ; xr] is zero-dimen-

sional by Proposition 1.2.5.)

1.5 The Radical Ideal 29

(4) Use Lemma 1.5.1 to compute

Jc := J \K[x1; : : : ; xn]:

(5) Apply this algorithm recursively to compute
p
I + (f). Then

p
I =

p
I + (f) \ Jc; (1.5.2)

which can be computed by Equation (1.2.3).

In order to convince ourselves that Algorithm 1.5.3 works correctly, we
must show that (1.5.2) holds, and that the recursion will terminate. In-
deed, (1.5.1) yields

p
I =

q
I + (fk) \

p
IL[x1; : : : ; xr] \K[x1; : : : ; xn] =

=
p
I + (f) \ (J \K[x1; : : : ; xn]) ;

which is (1.5.2). Moreover, I \ K[xr+1; : : : ; xn] = f0g by Equation (1.2.5).
Therefore f =2 I , so I+(f) is a strictly larger ideal than I . Hence the recursion
terminates since K[x1; : : : ; xn] is Noetherian.

1.5.2 Zero-dimensional Radicals

Algorithm 1.5.3 reduces the computation of a radical ideal to the zero-
dimensional case, but at the expense of having to compute over a larger
�eld L. This �eld L is a rational function �eld over the original ground �eld
K, so if K is a �nite �eld, for example, then in general L is no longer perfect.

Let K be a �eld and f 2 K[x] a non-zero polynomial with coeÆcients in
K. We call f separable if f has no multiple roots in a splitting �eld L � K.
This is equivalent with gcd(f; f 0) = 1 (see Becker and Weispfenning [15,
Proposition 7.33]). If

f = c �
mY
i=1

(x� �i)
ei

with c 2 K n f0g and �i 2 L pairwise distinct roots of f , we write

sep(f) := c �
mY
i=1

(x� �i) 2 L[x]

for the separable part of f . If char(K) = 0, then we have

sep(f) =
f

gcd(f; f 0)
;

where the greatest common divisor is taken to be monic. Note that the com-
putation of the gcd can be performed by the Euclidean algorithm (see Geddes

30 1 Constructive Ideal Theory

et al. [80, Section 2.4]). Thus in characteristic 0 the separable part is very easy
to get, and it coincides with the squarefree part. We will consider the case
of positive characteristic below. The algorithm for zero-dimensional radical
computation is based on the following result.

Proposition 1.5.4 (Seidenberg [214, Lemma 92]). Let I � K[x1; : : : ; xn]
be an ideal in a polynomial ring over a �eld K. If I \ K[xi] contains a
separable polynomial for each i = 1; : : : ; n, then I =

p
I.

A proof can also be found in Becker and Weispfenning [15, Lemma 8.13].
If I is zero-dimensional, then I \K[xi] 6= f0g for every i, since there exists
no variables which are independent modulo I (see after Algorithm 1.2.4).
Non-zero polynomials in I \ K[xi] can most easily found by the following
algorithm, which goes back to Faug�ere et al. [66].

Algorithm 1.5.5 (Finding univariate polynomials). Given an ideal I �
K[x1; : : : ; xn] and an index i 2 f1; : : : ; ng such that I \K[xi] 6= f0g, �nd a
non-zero polynomial f 2 I \K[xi] as follows:

(1) Compute a Gr�obner basis G of I with respect to an arbitrary monomial
ordering.

(2) For d = 0; 1; 2; : : : perform steps (3){(4).
(3) Compute the normal form NFG(x

d
i).

(4) Test whether the sequence NFG(x
0
i); : : : ;NFG(x

d
i) is linearly independent

over K. If it is, continue the loop for the next d. Otherwise, go to step 5.
(5) If

dX
j=0

�j NFG(x
j
i) = 0

is a K-linear relation found in step (4), then f :=
Pd

j=0 �jx
j
i 2 I is the

desired polynomial.

It is clear that the f from Algorithm 1.5.5 lies in I , since NFG(f) = 0
by the linearity of the normal form. We can now present the algorithm for
zero-dimensional radical computation in characteristic 0.

Algorithm 1.5.6 (Zero-dimensional radical in characteristic 0). Given a
zero-dimensional ideal I � K[x1; : : : ; xn] with char(K) = 0, perform the
following steps:

(1) For i = 1; : : : ; n, use Algorithm 1.5.5 to obtain a non-zero fi 2 I \K[xi].
(2) For each i, compute gi := sep(fi) = fi= gcd(fi; f

0
i), where the derivative

is with respect to xi.
(3) Set

p
I := I + (g1; : : : ; gn).

The correctness of the above algorithm follows from Proposition 1.5.4.
Now we come to the case of positive characteristic. Our presentation is largely
drawn from Kemper [139]. The following example shows that applying Algo-
rithm 1.5.6 may produce false results in this case.

1.5 The Radical Ideal 31

Example 1.5.7 (Becker and Weispfenning [15, Example 8.16]). Let K =
Fp (t) be the rational function �eld over Fp and consider the ideal

I = (xp � t; yp � t) � K[x; y]:

xp � t and yp � t are both squarefree (in fact, irreducible), but (x � y)p =
xp � yp 2 I . Hence x� y 2 pI , so I is not a radical ideal. /

The trouble is that in positive characteristic a univariate may be square-
free but not separable, and the separable part is only de�ned over a larger
�eld. We have the following algorithm, which works over a rational function
�eld over a �nite �eld.

Algorithm 1.5.8 (Separable part). Given a non-zero polynomial f 2
k(t1; : : : ; tm)[x] with coeÆcients in a rational function �eld over a perfect
�eld k of characteristic p > 0, compute the separable part of f as a polyno-
mial in k(q

p
t1; : : : ;

q
p
tm)[x] with q a power of p.

(1) Set h := gcd(f; f 0).
(2) Set g1 := f=h.
(3) Set ~h := gcd(h; h0).
(4) If ~h = h, go to (6).
(5) Set h := ~h and go to (3).
(6) If h = 1 then return g1.
(7) Write h = u(xp) with u 2 k(t1; : : : ; tm)[x]. (This is possible since h0 = 0.)
(8) Form v 2 k(p

p
t1; : : : ; p

p
tm)[x] from u by replacing every ti occurring in u

with p
p
ti and every a 2 k in u with p

p
a 2 k. (Thus vp = h.)

(9) Compute g2 := sep(v) by a recursive call.
(10) Compute g3 := sep(g1g2) by a recursive call and return g3.

The proof of correctness of Algorithm 1.5.8 is straightforward and can
be found in Kemper [139] or Kreuzer and Robbiano [155, Proposition 3.7.12]
(the latter contains essentially the same algorithm). The following algorithm
uses the separable part, as computed by Algorithm 1.5.8, to obtain the radical
of a zero-dimensional ideal in positive characteristic.

Algorithm 1.5.9 (Zero-dimensional radical in characteristic p). Given a
zero-dimensional ideal I � K[x1; : : : ; xn] in a polynomial ring over the ratio-
nal function �eld K = k(t1; : : : ; tm) with k a perfect �eld of characteristic
p > 0, obtain

p
I as follows:

(1) For i = 1; : : : ; n, use Algorithm 1.5.5 to obtain a non-zero fi 2 I \K[xi].
(2) For each i, compute sep(fi) 2 k(pri

p
t1; : : : ;

pri
p
tm)[xi] by using Algo-

rithm 1.5.8.
(3) For each i, write sep(fi) = gi(

q
p
t1; : : : ;

q
p
tm; xi), where q := pr, r :=

maxfr1; : : : ; rng, and gi 2 K[y1; : : : ; ym; xi] with new indeterminates
y1; : : : ; ym.

32 1 Constructive Ideal Theory

(4) Form the ideal

J := IK[y1; : : : ; ym; x1; : : : ; xn] + (g1; : : : ; gn) + (yq1 � t1; : : : ; y
q
m � tm)

� K[y1; : : : ; ym; x1; : : : ; xn]:

(5) Calculate the elimination ideal

~J := J \K[x1; : : : ; xn]

by using Algorithm 1.2.1 and return
p
I = ~J .

Again, it is straightforward to see that Algorithm 1.5.9 is correct. In
fact, the gi together with I generate the radical ideal over the larger �eld
k(q
p
t1; : : : ;

q
p
tm), and then in step (5) this radical is intersected with the

original polynomial ring k(t1; : : : ; tm)[x1; : : : ; xn]. A formal proof is given in
Kemper [139].

Remark 1.5.10. Although we formulated Algorithm 1.5.9 only for ground
�elds that are rational function �elds over a perfect �eld, it can be made to
work over any �eld of positive characteristic which is �nitely generated over
a perfect �eld. For details, we refer to Kemper [139]. /

Example 1.5.11. It is interesting to see how Algorithm 1.5.9 handles Exam-
ple 1.5.7. So consider the ideal I = (xp1 � t; xp2 � t) � Fp (t)[x1; x2]. We have

sep(xpi � t) = xi � p
p
t;

so in step (4) of Algorithm 1.5.9 we obtain the ideal

J = (x1 � y; x2 � y; yp � t) � Fp (t)[x1; x2; y]:

We choose the lexicographic monomial ordering with y > x1 > x2 on
Fp (t)[x1; x2; y]. By replacing x1 � y and yp � t by their normal forms with
respect to x2 � y, we obtain the new basis

G = fx1 � x2; x2 � y; xp2 � tg:
G is a Gr�obner basis since the polynomials in G have pairwise coprime leading
monomials. Hence step (5) of Algorithm 1.5.9 yields

p
I = J \ Fp (t)[x1; x2] = (x1 � x2; x

p
2 � t) ;

which is the correct result. /

1.6 Normalization

Let R be an integral domain and ~R the integral closure of R in its �eld of
fractions. We call ~R the normalization of R. If ~R = R, we say that R is

1.6 Normalization 33

normal. One reason why normalization is interesting in invariant theory, is
that every invariant ring K[x1; : : : ; xn]

G is normal (see Proposition 2.3.11).
The usefulness of normalization is further underlined by Theorem 3.9.15. In
this section we will describe a new (or at least newly re-discovered) algorithm
by de Jong [121] for computing the normalization of an integral domain that
is �nitely generated as an algebra over a �eld (i.e., an \aÆne domain"). In
fact, the algorithm is based on a theorem by Grauert and Remmert (see the
references in [121]). Let R be a Noetherian integral domain. If I � R is a
non-zero ideal, choose 0 6= f 2 I and consider the mapping

	 : HomR(I; R)! Quot(R); ' 7! '(f)

f
;

where Quot(R) denotes the �eld of fractions of R.

Lemma 1.6.1. The map 	 is independent of the choice of f , and it is a
monomorphism of R-modules. Moreover, the restriction of 	 to EndR(I) is
a homomorphism of R-algebras, and

R � 	 (EndR(I)) � ~R:

Proof. For 0 6= g 2 I we have

'(g)

g
=
f'(g)

fg
=
'(fg)

fg
=
g'(f)

fg
=
'(f)

f
:

This implies the independence of f and the injectivity of 	 . It is clear that 	
is a homomorphism of R-modules, and of R-algebras if restricted to EndR(I).
The image of EndR(I) is contained in ~R since EndR(I) is �nitely generated
as an R-module, and R is naturally embedded into EndR(I). ut
Lemma 1.6.2. Let I � R be a non-zero radical ideal. Then

EndR(I) = 	�1(~R):

Proof. The inclusion \�" follows from Lemma 1.6.1. For the reverse inclusion,
take ' 2 HomR(I; R) such that h := 	(') 2 ~R. Then hI � R, and we have
to show that hI � I . There exists an equation

hk = a0 + a1h+ � � �+ ak�1h
k�1

with ai 2 R. Hence for f 2 I we have

(hf)k = a0f
k + a1(hf)f

k�1 + � � �+ ak�1(hf)
k�1f 2 I;

hence hf 2 I by the hypothesis. This proves the lemma. ut

34 1 Constructive Ideal Theory

By Lemma 1.6.1, normality of R implies 	(EndR(I)) = R for all non-zero
ideals I . We can now give conditions on I under which the converse holds.
We write X := Spec(R) and

Xnn := fx 2 X j Rx is not normalg

for the non-normal locus. For an ideal I � R we write VX(I) := fx 2 X j
I � xg. (The inclusion makes sense since the x 2 X are prime ideals in R.)

Theorem 1.6.3. With the notation introduced above, let I � R be a non-
zero radical ideal such that Xnn � VX(I). Then the equivalence

R is normal () 	 (EndR(I)) = R

holds.

Proof. The implication \=)" follows from Lemma 1.6.1. For the converse,
assume that 	 (EndR(I)) = R and take h 2 ~R. With J := ff 2 R j fh 2 Rg
we have

P (h) := fx 2 X j h =2 Rxg = VX(J):
On the other hand, P (h) � Xnn by de�nition of P (h). By hypothesis,
P (h) � VX(I), and therefore I =

p
I � p

J . Thus there exists a non-
negative integer d with Id � J , hence hId � R by de�nition of J . Let d
be minimal with this property and assume, by way of contradiction, that
d > 0. Then there exists an element a 2 Id�1 with ha =2 R. We have ha 2 ~R
and haI � hId � R, hence ha 2 	 (HomR(I; R)) \ ~R. Lemma 1.6.2 yields
haI � I and therefore, by the hypothesis that 	 (EndR(I)) = R, ha lies in
R, a contradiction. Hence d = 0 after all, so h 2 R. Since h was an arbitrary
element from ~R, this completes the proof. ut

An apparent diÆculty about Theorem 1.6.3 is that it seems to be hard
to get one's hands on EndR(I). But this turns out to be surprisingly easy. In
fact, multiplication by a non-zero f 2 I gives an isomorphism

	(EndR(I))! (f � I) : I

(see Greuel and P�ster [98, Remark 3.1]). Thus we only need to compute a
quotient ideal to obtain EndR(I). We summarize the results and translate
them to the situation where R = K[x1; : : : ; xn]=I is an aÆne domain.

Theorem 1.6.4. Let I � K[x1; : : : ; xn] be a prime ideal, J � K[x1; : : : ; xn]
an ideal containing I, and f 2 J n I. Then with R := K[x1; : : : ; xn]=I we
have:

(a) For every g 2 (f � J + I) : J , the quotient (g + I)=(f + I) lies in the

normalization eR.

1.6 Normalization 35

(b) Assume moreover that J is a radical ideal such that the non-normal locus
of X := Spec(R) is contained in VX(J). Then R is normal if and only if

(f) + I = (f � J + I) : J:

Remark 1.6.5. If K is a perfect �eld, an ideal J satisfying the conditions
of Theorem 1.6.4(b) can be found as follows. Let f1; : : : ; fm be generators of
I and let J = (@fi=@xj)i;j be the Jacobian matrix. Then by Eisenbud [59,
Theorem 16.19], the singular locus of X = Spec(R) is

Xsing = fP 2 X j J reduced modulo P has rank < n� dim(R)g:

But the non-normal locus Xnn is contained in Xsing (see Eisenbud [59, Theo-
rem 19.19]). If J0 � K[x1; : : : ; xn] is the ideal generated by I and all (h�h)-
minors of J, where h := n� dim(R), it follows that

Xnn � Xsing = VX(J0):

In particular, J0 % I . But then for any ideal J with I � J � pJ0 we have

Xnn � VX(J):

Therefore J can be chosen by taking an (h � h)-minor f of J which is not
contained in I , and setting J :=

p
I + (f). /

We can use Theorem 1.6.4 to calculate the normalization by iteratively
adding new generators (g + I)=(f + I) to R until the condition in (b) is
satis�ed. But for each new iteration we need a presentation for the updated
algebra R. De Jong [121] proposed a method for getting a presentation of
EndR(I) consisting of relations of degree one and two. We take a somewhat
di�erent approach, given by the following lemma which reduces the task to
the computation of an elimination ideal.

Lemma 1.6.6. Let K � L be a �eld extension and ': K[x1; : : : ; xn] !
L a homomorphism of K-algebras with kernel I. Furthermore, let a =
'(g)='(f) 2 L and consider the homomorphism

�: K[x1; : : : ; xn; y]! L; xi 7! '(xi); y 7! a;

where y is an indeterminate. With an additional indeterminate t, set

J := I �K[x1; : : : ; xn; y; t] + (fy � g; ft� 1):

Then
ker(�) = J \K[x1; : : : ; xn; y]:

Proof. J lies in the kernel of the homomorphism K[x1; : : : ; xn; y; t]! L with
xi 7! '(xi), y 7! a, t 7! 1='(f). Hence J \ K[x1; : : : ; xn; y] � ker(�). To

36 1 Constructive Ideal Theory

prove the converse, we �rst remark that fh 2 J for h 2 K[x1; : : : ; xn; y; t]
implies h 2 J , since

h = tfh� h(tf � 1):

Furthermore, f iyi � gi 2 J for any non-negative integer i, since

f i+1yi+1 � gi+1 = (f iyi � gi)fy + gi(fy � g):

It follows that fd
�
yi � (g=f)i

� 2 J for d � i. Let h 2 ker(�) and set d :=
degy(h). Write h(g=f) for the result of substituting y by g=f in h. Then

'
�
fdh(g=f)

�
= 0, so fdh(g=f) 2 I . By the preceding argument we also have

fd (h� h(g=f)) 2 J , hence fdh 2 J . But this implies h 2 J , completing the
proof. ut

We can now give the ensuing algorithm, whose termination is guaran-
teed by the fact that it generates a strictly ascending sequence of R-modules
between R and ~R, with ~R being Noetherian.

Algorithm 1.6.7 (de Jong's algorithm). Given a prime ideal I �
K[x1; : : : ; xn] with K a perfect �eld, perform the following steps to ob-
tain the normalization ~R of R := K[x1; : : : ; xn]=I , given by a presentation
~R �= K[x1; : : : ; xn+m]=~I (and the embedding R � ~R given by xi+I 7! xi+~I):

(1) Set m := 0 and ~I := I .
(2) Compute the Jacobian matrix J := (@fi=@xj)i;j , where ~I = (f1; : : : ; fk).

(3) With l := n + m � dim(R), compute the ideal generated by ~I and the
(l � l)-minors of J. Call this ideal Jsing. Choose an ideal J0 such that
~I $ J0 � Jsing and an element f 2 J0 n ~I .

(4) Compute J :=
p
J0 and the quotient ideal (f � J + ~I) : J .

(5) If (f � J + ~I) : J � ~I + (f) (test this by computing normal forms of the
generators of the left hand side with respect to a Gr�obner basis of the
right hand side), we are done.

(6) Otherwise, choose g 2
�
(f � J + ~I) : J

�
n
�
~I + (f)

�
.

(7) Set m := m+ 1 and form the ideal

J 0 := ~I �K[x1; : : : ; xn+m; t] + (fxn+m � g; ft� 1)

in K[x1; : : : ; xn+m; t] with xn+m and t new indeterminates.
(8) Compute ~I := J 0 \K[x1; : : : ; xn+m] and go to step (2).

Remark. It is in step (4) that Algorithm 1.6.7 requires radical computation.
This is the reason why the ability to calculate radical ideals is important in
this book. /

We conclude the section with an example.

1.6 Normalization 37

Example 1.6.8. We can use Algorithm 1.6.7 to de-singularize curves. As an
example, consider the curve C in C 2 given by the ideal

I = (x6 + y6 � xy);

which has genus 9 and a double point at the origin. A Gr�obner basis of
Jsing = (x6 + y6 � xy; 6x5 � y; 6y5 � x) is fx; yg. Therefore we can choose
f = x and J = J0 = Jsing. We obtain

(f � J + ~I) : J = (x; y5) and ~I + (f) = (x; y6):

Thus we can choose g := y5 to obtain a new element a := (g + I)=(f + I) in
~R. By step (8) of Algorithm 1.6.7 we calculate the kernel ~I of the map

C [x; y; z] ! ~R; x 7! x+ I; y 7! y + I; z 7! a

and obtain
~I = (y5 � xz; x5 + yz � y; x4y4 + z2 � z):

The last equation con�rms the integrality of a over R. Going into the
next iteration of Algorithm 1.6.7 yields no new elements in ~R, hence ~R =
C [x; y; z]=~I . ~I de�nes a curve ~C in C 3 which maps onto C by projecting on
the �rst two coordinates. With the exception of the origin, every point of C
has a �ber consisting of a single point, and the �ber of the origin consists of
the points (0; 0; 0) and (0; 0; 1). /

