
Chapter 1 Modeling Tools
for Financial Options

1.1 Options

What do we mean by option? An option is the right (but not the obligation) to
buy or sell a risky asset at a prespecified fixed price within a specified period.
An option is a financial instrument that allows —amongst other things— to
make a bet on rising or falling values of an underlying asset. The underlying
asset typically is a stock, or a parcel of shares of a company. Other examples
of underlyings include stock indices (as the Dow Jones Industrial Average),
currencies, or commodities. Since the value of an option depends on the value
of the underlying asset, options and other related financial instruments are
called derivatives (−→ Appendix A1). An option is an agreement between
two parties about trading the asset at a certain future time. One party is
the writer, often a bank, who fixes the terms of the option contract and sells
the option. The other party ist the holder, who purchases the option, paying
the market price, which is called premium. How to calculate a fair value of
the premium is a central theme of this book. The holder of the option must
decide what to do with the rights the option contract grants. The decision
will depend on the market situation, and on the type of option. There are
numerous different types of options, which are not all of interest to this book.
In Chapter 1 we concentrate on standard options, also known as plain-vanilla
options. This Section 1.1 introduces important terms.

Options have a limited life time. The maturity date T fixes the time hori-
zon. At this date the rights of the holder expire, and for later times (t > T )
the option is worthless. There are two basic types of option: The call option
gives the holder the right to buy the underlying for an agreed price K by the
date T . The put option gives the holder the right to sell the underlying for
the price K by the date T . The previously agreed price K of the contract is
called strike or exercise price1. It is important to note that the holder is
not obligated to exercise —that is, to buy or sell the underlying according
to the terms of the contract. The holder may wish to close his position by
selling the option. In summary, at time t the holder of the option can choose
to

1 The price K as well as other prices are meant as the price of one unit of
an asset, say, in $.
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• sell the option at its current market price on some options exchange (at
t < T ),

• retain the option and do nothing,
• exercise the option (t ≤ T ), or
• let the option expire worthless (t ≥ T ).

In contrast, the writer of the option has the obligation to deliver or buy
the underlying for the price K, in case the holder chooses to exercise. The
risk situation of the writer differs strongly from that of the holder. The writer
receives the premium when he issues the option and somebody buys it. This
up-front premium payment compensates for the writer’s potential liabilities
in the future. The asymmetry between writing and owning options is evident.
This book mostly takes the standpoint of the holder.

Not every option can be exercised at any time t ≤ T . For European
options exercise is only permitted at expiry date T . American options
can be exercised at any time until the expiration date. For options the labels
American or European have no geographical meaning. Both types are traded
in every continent. Options on stocks are mostly American style.

The value of the option will be denoted by V . The value V depends
on the price per share of the underlying, which is denoted S. This letter
S symbolizes stocks, which are the most prominent examples of underlying
assets. The variation of the asset price S with time t is expressed by writing
St or S(t). The value of the option also depends on the remaining time to
expiry T −t. That is, V depends on time t. The dependence of V on S and t is
written V (S, t). As we shall see later, it is not easy to calculate the fair value
V of an option for t < T . But it is an easy task to determine the terminal
value of V at expiration time t = T . In what follows, we shall discuss this
topic, and start with European options as seen with the eyes of the holder.

S

V

K

Fig. 1.1. Intrinsic value of a call with exercise price K (payoff function)

The Payoff Function
At time t = T , the holder of a European call option will check the current
price S = ST of the underlying asset. The holder will exercise the call (buy
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the stock for the strike price K), when S > K. For then the holder can
immediately sell the asset for the spot price S and makes a gain of S −K per
share. In this situation the value of the option is V = S −K. (This reasoning
ignores transaction costs.) In case S < K the holder will not exercise, since
then the asset can be purchased on the market for the cheaper price S. In
this case the option is worthless, V = 0. In summary, the value V (S, T ) of a
call option at expiration date T is given by

V (ST , T ) =

{
0 in case ST ≤ K (option expires worthless)

ST − K in case ST > K (option is exercised)

Hence
V (ST , T ) = max{ST − K, 0}.

Considered for all possible prices St > 0, max{St − K, 0} is a function of St.
This payoff function (intrinsic value, cashflow) is shown in Figure 1.1. Using
the notation f+ := max{f, 0}, this payoff can be written in the compact form
(St − K)+. Accordingly, the value V (ST , T ) of a call at maturity date T is

V (ST , T ) = (ST − K)+. (1.1C)

For a European put exercising only makes sense in case S < K. The
payoff V (S, T ) of a put at expiration time T is

V (ST , T ) =

{
K − ST in case ST < K (option is exercised)

0 in case ST ≥ K (option is worthless)

Hence
V (ST , T ) = max{K − ST , 0},

or
V (ST , T ) = (K − ST )+, (1.1P)

compare Figure 1.2.
The curves in the payoff diagrams of Figures 1.1, 1.2 show the option

values from the perspective of the holder. The profit is not shown. For an
illustration of the profit, the initial costs paid when buying the option at
t = t0 must be subtracted. The initial costs basically consist of the premium
and the transaction costs. Both are multiplied by er(T−t0) to take account
of the time value; r is the interest rate. Substracting this amount leads to
shifting the curves in Figures 1.1, 1.2 down. The resulting profit diagram
shows a negative profit for some range of S-values, which of course means a
loss.
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Fig. 1.2. Intrinsic value of a put with exercise price K (payoff function)

The payoff function for an American call is (St−K)+ and for an American
put (K − St)+ for any t ≤ T . The Figures 1.1, 1.2 as well as the equations
(1.1C), (1.1P) remain valid for American type options.

The payoff diagrams of Figures 1.1, 1.2 and the corresponding profit dia-
grams show that a potential loss for the purchaser of an option (long position)
is limited by the initial costs, no matter how bad things get. The situation for
the writer (short position) is reverse. For him the payoff curves of Figures 1.1,
1.2 as well as the profit curves must be reflected on the S-axis. The writer’s
profit or loss is the reverse of that of the holder. Multiplying the payoff of a
call in Figure 1.1 by (−1) illustrates the potentially unlimited risk of a short
call. Hence the writer of a call must carefully design a strategy to compensate
for his risks. We will came back to this issue in Section 1.5.

A Priori Bounds
No matter what the terms of a specific option are and no matter how the
market behaves, the values V of the options satisfy certain bounds. These
bounds are known a priori. For example, the value V (S, t) of an American
option can never fall below the payoff, for all S and all t. These bounds follow
from the no-arbitrage principle (−→ Appendix A1). To illustrate the strength
of these arguments, we assume for an American put that its value is below
the payoff. V < 0 contradicts the definition of the option. Hence V ≥ 0, and
S and V would be in the triangle seen in Figure 1.2. That is, S < K and
0 ≤ V < K − S. This scenario would allow arbitrage. The strategy would be
as follows: Borrow the cash amount of S + V , and buy both the underlying
and the put. Then immediately exercise the put, selling the underlying for
the strike price K. The profit of this arbitrage strategy is K−S−V > 0. This
is in conflict with the no-arbitrage principle. Hence the assumption that the
value of an American put is below the payoff must be wrong. We conclude

V am
P (S, t) ≥ (K − S)+ for all S, t .

Similarly,
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V am
C (S, t) ≥ (S − K)+ for all S, t .

Other bounds are listed in Appendix 7. For example, a European put
on an asset that pays no dividends until T may also take values below the
payoff, but is always above the lower bound Ke−r(T−t) − S. The value of
an American option should never be smaller than that of a European option
because the American type includes the European type exercise at t = T and
in addition early exercise for t < T . That is

V am ≥ V eur

as long as all other terms of the contract are identical. For European options
the values of put and call are related by the put-call parity

S + VP − VC = Ke−r(T−t) ,

which can be shown by applying arguments of arbitrage (−→ Exercise 1.1).

Options in the Market
The features of the options imply that an investor purchases puts when the
price of the underlying is expected to fall, and buys calls when the prices are
about to rise. This mechanism inspires speculators. An important application
of options is hedging (−→ Appendix A1).

The value of V (S, t) also depends on other factors. Dependence on the
strike K and the maturity T is evident. Market parameters affecting the price
are the interest rate r, the volatility σ of the price St, and dividends in case
of a dividend-paying asset. The interest rate r is the risk-free rate, which
applies to zero bonds or to other investments that are considered free of risks
(−→ Appendix A1). The dependence of V on the volatility σ is very sensitve.
This critically important parameter σ can be defined as standard deviation of
the fluctuations in St, for scaling divided by the square root of the observed
time period. The volatility σ measures the uncertainty in the asset.

The units of r and σ2 are per year. Time is measured in years. Writing
σ = 0.2 means a volatility of 20%, and r = 0.05 represents an interest rate
of 5%. The Table 1.1 summarizes the key notations of option pricing. The
notation is standard except for the strike price K, which is sometimes denoted
X, or E.

The time period of interest is t0 ≤ t ≤ T . One might think of t0 denoting
the date when the option is issued and t as a symbol for “today.” But this
book mostly sets t0 = 0 in the role of “today,” without loss of generality.
Then the interval 0 ≤ t ≤ T represents the remaining life time of the option.
The price St is a stochastic process, compare Section 1.6. In real markets, the
interest rate r and the volatility σ vary with time. To keep the models and
the analysis simple, we assume r and σ to be constant on 0 ≤ t ≤ T . Further
we suppose that all variables are arbitrarily divisible and consequently can
vary continuously —that is, all variables vary in the set IR of real numbers.
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Table 1.1. List of important variables

t current time, 0 ≤ t ≤ T
T expiration time, maturity

r > 0 risk-free interest rate
S, St spot price, current price per share of stock/asset/underlying

σ annual volatility
K strike, exercise price per share

V (S, t) value of an option at time t and underlying price S

S

t

0

V

2

1

T

K

C

C

K

Fig. 1.3. Value V (S, t) of an American put, schematically

The Geometry of Options
As mentioned, our aim is to calculate V (S, t) for fixed values of K, T, r, σ.
The values V (S, t) can be interpreted as a piece of surface over the subset

S > 0 , 0 ≤ t ≤ T

of the (S, t)-plane. The Figure 1.3 illustrates the character of such a surface
for the case of an American put. For the illustration assume T = 1. The
figure depicts six curves obtained by cutting the option surface with the
planes t = 0, 0.2, . . . , 1.0. For t = T the payoff function (K − S)+ of Figure
1.2 is clearly visible.

Shifting this payoff parallel for all 0 ≤ t < T creates another surface,
which consists of the two planar pieces V = 0 (for S ≥ K) and V = K − S
(for S < K). This payoff surface created by (K − S)+ is a lower bound to
the option surface, V (S, t) ≥ (K − S)+. The Figure 1.3 shows two curves C1
and C2 on the option surface. Within the area limited by these two curves
the option surface is clearly above the payoff surface, V (S, t) > (K − S)+.
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Fig. 1.4. Value V (S, t) of an American put with r = 0.06, σ = 0.30, K = 10, T = 1

Outside that area, both surfaces coincide. This is strict above C1, where
V (S, t) = K−S, and holds approximately for S beyond C2, where V (S, t) ≈ 0
or V (S, t) < ε for a small value of ε > 0. These topics will be analyzed in
Chapter 4. The location of C1 and C2 is not known, these curves must be
calculated along with the calculation of V (S, t). Of special interest is V (S, 0),
the value of the option “today.” This curve is seen in Figure 1.3 for t = 0
as the front edge of the option surface. This front curve may be seen as
smoothing the corner in the payoff function. The schematic illustration of
Figure 1.3 is completed by a concrete example of a calculated put surface in
Figure 1.4. An approximation of the curve C1 is shown.

The above was explained for an American put. For other options the
bounds are different (−→ Appendix A7). As mentioned before, a European
put takes values above the lower bound Ke−r(T−t) − S, compare Figure 1.5.

1.2 Model of the Financial Market

Mathematical models can serve as approximations and idealizations of the
complex reality of the financial world. For modeling financial options the mo-
dels named after the pioneers Black, Merton and Scholes are both successful
and widely accepted. This Section 1.2 introduces some key elements of the
models.

The ultimate aim is to be able to calculate V (S, t). It is attractive to de-
fine the option surfaces V (S, t) on the half strip S > 0, 0 ≤ t ≤ T as solutions
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Fig. 1.5. Value of a European put V (S, 0) for T = 1, K = 10, r = 0.06, σ = 0.3.
The payoff V (S, T ) is drawn with a dashed line. For small values of S the value V
approaches its lower bound, here 9.4 − S.

of suitable equations. Then calculating V amounts to solving the equations.
In fact, a series of assumptions allows to characterize the functions V (S, t)
as solutions of certain partial differential equations or partial differential in-
equalities. The model is represented by the famous Black-Scholes equation,
which was suggested 1973.

Definition 1.1 (Black-Scholes equation)

∂V

∂t
+

1
2
σ2S2 ∂2V

∂S2 + rS
∂V

∂S
− rV = 0 (1.2)

The equation (1.2) is partial differential equation for the value V (S, t) of
options. This equation is a symbol of the market model. But what are the
assumptions leading to the Black-Scholes equation?

Assumptions 1.2 (model of the market)
(a) The market is frictionless.

This means that there are no transaction costs (fees or taxes), the interest
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rates for borrowing and lending money are equal, all parties have imme-
diate access to any information, and all securities and credits are available
at any time and in any size. Consequently, all variables are perfectly di-
visible —that is, may take any real number. Further, individual trading
will not influence the price.

(b)There are no arbitrage opportunities.
(c) The asset price follows a geometric Brownian motion.

(This stochastic motion will be discussed in Sections 1.6–1.8.)
(d) Technical assumptions (some are preliminary):

r and σ are constant for 0 ≤ t ≤ T . No dividends are paid in that time
period. The option is European.

These are the assumptions that lead to the Black-Scholes equation (1.2). A
derivation of this partial differential equation is given in Appendix A3.

Solutions V (S, t) are functions which satisfy this equation for all S and t.
In addition to solving the partial differential equation, the function V (S, t)
must satisfiy a terminal condition and boundary conditions. The terminal
condition for t = T is

V (S, T ) = payoff,

with payoff function (1.1C) or (1.1P), depending on the type of option. The
boundaries of the half strip 0 < S, 0 ≤ t ≤ T are defined by S = 0 and
S → ∞. At these boundaries the function V (S, t) must satisfy boundary
conditions. For example, a European call must obey

V (0, t) = 0; V (S, t) → S − Ke−r(T−t) for S → ∞. (1.3C)

In Chapter 4 we will come back to the Black-Scholes equation and to boun-
dary conditions. For (1.2) an analytic solution is known (equation (A3.5) in
Appendix A3). This does not hold for more general models. For example,
considering transaction costs as k per unit would add the term

−
√

2
π

kσS2
√

σt

∣∣∣∣∂2V

∂S2

∣∣∣∣
to (1.2), see [WDH96], [Kw98]. In the general case, closed-form solutions do
not exist, and a solution is calculated numerically, especially for American
options. For numerically solving (1.2) a variant with dimensionless variables
is used (−→ Exercise 1.2).

At this point, a word on the notation is appropriate. The symbol S for
the asset price is used in different roles: First it comes without subscript in
the role of an independent real variable S > 0 on which V (S, t) depends, say
as solution of the partial differential equation (1.2). Second it is used as St

with subscript t to emphasize its random character as stochastic process.
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1.3 Numerical Methods

Applying numerical methods is inevitable in all fields of technology including
financial engineering. Often the important role of numerical algorithms is
not noticed. For example, an analytical formula at hand (such as the Black-
Scholes formula (A3.5) in Appendix A3) might suggest that no numerical
procedure is needed. But closed-form solutions may include evaluating the
logarithm or the computation of the distribution function of the normal dis-
tribution. Such elementary tasks are performed using sophisticated numerical
algorithms. In pocket calculators one merely presses a button without being
aware of the numerics. The robustness of those elementary numerical methods
is so dependable and the efficiency so large that they almost appear not to
exist. Even for apparently simple tasks the methods are quite demanding (−→
Exercise 1.3). The methods must be carefully designed because inadequate
strategies can easily produce inaccurate results (−→ Exercise 1.4).

Spoilt by generally available black-box software and graphics packages
we take the support and the success of numerical workhorses for granted.
We make use of the numerical tools with great respect but without further
comments. We just assume an elementary education in numerical methods.
An introduction into important methods and hints on the literature are given
in Appendix A4.

Since financial markets undergo apparently stochastic fluctuations, sto-
chastic approaches will be natural tools to simulate prices. These methods
are based on formulating and simulating stochastic differential equations.
This leads to Monte Carlo methods (−→ Chapter 3). In computers, related
simulations of options are performed in a deterministic manner. It will be
decisive how to simulate randomness (−→ Chapter 2). Chapters 2 and 3 are
devoted to tools for simulation. These methods can be applied even in case
the Assumptions 1.2 are not satisfied.

More efficient methods will be preferred provided their use can be justified
by the validity of the underlying models. For example it may be advisable to
solve the partial differential equations of the Black-Scholes type. Then one
has to choose among several methods. The most elementary ones are finite-
difference methods (−→ Chapter 4). A somewhat higher flexibility concerning
error control is possible with finite-element methods (−→ Chapter 5). The
numerical treatment of exotic options requires a more careful consideration of
stability issues (−→ Chapter 6). The methods based on differential equations
will be described in the larger part of this book.

The various methods are discussed in terms of accuracy and speed. Ulti-
mately the methods must give quick and accurate answers to real-time pro-
blems posed in financial markets. Efficiency and reliability are key demands.
Internally the numerical methods must deal with diverse problems such as
convergence order or stability.
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Fig. 1.6. Grid points in the (S, t)-domain

The mathematical formulation benefits from the assumption that all va-
riables take values in the continuum IR. This idealization is practical since it
avoids initial restrictions of technical nature. This gives us freedom to impose
artificial discretizations convenient for the numerical methods. The hypothe-
sis of a continuum applies to the (S, t)-domain of the half strip 0 ≤ t ≤ T ,
S > 0, and to the differential equations. In contrast to the hypothesis of a
continuum, the financial reality is rather discrete: Neither the price S nor the
trading times t can take any real value. The artificial discretization introdu-
ced by numerical methods is at least twofold:

1.) The (S, t)-domain is replaced by a grid of a finite number of (S, t)-
points, compare Figure 1.6.

2.) The differential equations are adapted to the grid and replaced by a
finite number of algebraic equations.

Another kind of discretization is that computers replace the real numbers by
a finite number of of rational numbers, namely the floating-point numbers.
The resulting rounding error will not be relevant for much of our analysis,
except for investigations of stability.

The restriction of the differential equations to the grid causes discreti-
zation errors. The errors depend on the coarsity of the grid. In Figure 1.6,
the distance between two consecutive t-values of the grid is denoted ∆t.2 So
the errors will depend on ∆t and on ∆S. It is one of the aims of numerical
algorithms to control the errors. The left-hand figure in Figure 1.6 shows a

2 The symbol ∆t denotes a small increment in t (analogously ∆S, ∆W ). In
case ∆ would be a number, the product with u would be denoted ∆ · u or
u∆.
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simple rectangle grid, whereas the right-hand figure shows a tree-type grid
as used in Section 1.4. The type of the grid matches the kind of underly-
ing equations. Primarily the values of V (S, t) are approximated at the grid
points. Intermediate values can be obtained by interpolation.

The continuous model is an idealization of the discrete reality. But the
numerical discretization does not reproduce the original discretization. For
example, it would be a rare coincidence when ∆t represents a day. The deri-
vations that go along with the twofold transition

discrete −→ continuous −→ discrete

do not compensate.

1.4 The Binomial Method

The major part of the book is devoted to continuous models and their dis-
cretizations. With much less effort a discrete approach provides us with a
short way to establish a first algorithm for calculating options. The resul-
ting binomial method due to Cox, Ross and Rubinstein is robust and widely
applicable.

In practice one is often interested in the one value V (S0, 0) of an op-
tion at the current spot price S0. Then it is unnecessarily costly to calculate
the surface V (S, t) for the entire domain to extract the required information
V (S0, 0). The relatively small task of calculating V (S0, 0) can be comfortably
solved using the binomial method. This method is based on a tree-type grid
applying appropriate binary rules at each grid point. The grid is not prede-
fined but is constructed by the method. For illustration see the right grid in
Figure 1.6, and Figure 1.9.

A Discrete Model
We begin with discretizing the continuous time t, replacing t by equidistant
time instances ti. Let us use the notations

M : number of time steps
∆t := T

M
ti := i · ∆t, i = 0, ..., M
Si := S(ti)

So far the domain of the (S, t) half strip is replaced by parallel straight lines
with distance ∆t apart. In the next step we replace the continuous values Si

along the parallel t = ti by discrete values Sji, for all i and appropriate j.
For a better understanding of the S-discretisation compare Figure 1.7. This
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Fig. 1.7. The principle of the binomial method

figure shows a mesh of the grid, namely the transition from t to t + ∆t, or
from ti to ti+1.

Assumptions 1.3 (binomial method)

(A1) The price S over each period of time ∆t can only have two possible
outcomes: An initial value S either evolves up to Su or down to Sd
with 0 < d < u. Here u is the factor of an upward movement and d is
the factor of a downward movement.

(A2) The probability of an up movement is p, P(up) = p.
(A3) The expected return is that of the risk-free interest rate r. For the asset

price S that develops randomly from a value Si at ti to Si+1 at ti+1
this means

E(Si+1) = Si · er∆t (1.4)

Let us further assume that no dividend is paid within the time period of
interest. This assumption simplifies the derivation of the method and can be
removed later.

An asset price following the above rules (A1), (A2) is an example of a
binomial process. Such a process behaves like tossing a biased coin where
the outcome “head” (up) occurs with probability p. We shall return to the
assumptions (A1)-(A3) in the subsequent Section 1.5. The probability P of
(A2) does not reflect the expectations of an individual in the market. Rather
P is an artificial risk-neutral probability that matches (A3). The expectation
in (1.4) refers to this probability; this is sometimes written EP.

At this stage of the modeling the values of the parameters u, d and p are
unknown. They will be fixed by suitable equations or further assumptions.
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A first equation follows from Assumptions 1.3. A basic idea of the approach
will be to equate the variances of the discrete and the continuous model.
This will lead to a second equation. Proceeding in this manner will introduce
properties of the continuous model. (The continuous model will be described
in Section 1.7.) Let us start the derivation.

A consequence of (A1) and (A2) for the discrete model is

E(Si+1) = pSiu + (1 − p)Sid.

Here Si is an arbitrary value for ti, which develops randomly to Si+1, follo-
wing the assumptions (A1), (A2). Equating with (1.4) gives

er∆t = pu + (1 − p)d. (1.5)

This is the first of three required equations to fix u, d, p. Solved for the risk-
neutral probability p we obtain

p =
er∆t − d

u − d
. (1.6)

To be a valid model of probability, 0 ≤ p ≤ 1 must hold. This is equivalent
to

d ≤ er∆t ≤ u . (1.7)

These inequalities relate the upward and downward movement of the asset
price to the riskless interest rate r. The inequalities (1.7) are no new assump-
tion but follow from the no-arbitrage principle. The assumption 0 < d < u
remains valid.

Next we equate variances. Via the variance the volatility σ enters the
model. From the continuous model we apply the relation

E(S2
i+1) = S2

i e(2r+σ2)∆t. (1.8)

For the relations (1.4) and (1.8) we refer to Section 1.8 (−→ Exercise 1.12).
Recall that the variance satisfies Var(S) = E(S2) − (E(S))2 (−→ Appendix
A2). Equations (1.4) and (1.8) combine to

Var(Si+1) = S2
i e2r∆t(eσ2∆t − 1).

On the other hand the discrete model satisfies

Var(Si+1) = E(S2
i+1) − (E(Si+1))2

= p(Siu)2 + (1 − p)(Sid)2 − S2
i (pu + (1 − p)d)2.

Equating variances of the continuous and the discrete model, and applying
(1.5) leads to

e2r∆t(eσ2∆t − 1) = pu2 + (1 − p)d2 − (er∆t)2

e2r∆t+σ2∆t = pu2 + (1 − p)d2 (1.9)
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Fig. 1.8 Sequence of several meshes (schematically)

The equations (1.5), (1.9) constitute two relations for the three unknowns
u, d, p. We are free to impose an arbitrary third equation. The plausible ass-
umption

u · d = 1 (1.10)

reflects a symmetry between upward and downward movement of the asset
price. Now the parameters u, d and p are fixed. They depend on r, σ and ∆t.
So does the grid, which is analyzed next (Figure 1.8).

The above rules are applied to each grid line i = 0, . . . , M , starting at
t0 = 0 with the specific value S = S0. Attaching meshes of the kind depicted
in Figure 1.7 for subsequent values of ti builds a tree with values Sujdk and
j + k = i. In this way, specific discrete values Sji of Si are defined. Since
the same constant factors u and d underlie all meshes and since Sud = Sdu
holds, after the time period 2∆t the asset price can only take three values
rather than four: The tree is recombining. It does not matter which of the
two paths we take to reach Sud. This property extends to more than two
time periods. Consequently the binomial process defined by Assumption 1.3
is path independent. Accordingly at expiration time T = M∆t the price S
can take only the (M +1) discrete values SujdM−j , j = 0, 1, ..., M . By (1.10)
these are the values Sujuj−M = Su−Mu2j =: SjM . The number of nodes in
the tree grows quadratically in M . (Why?)

The symmetry of the choice (1.10) becomes apparent in that after two
time steps the asset value S repeats. (Compare also Figure 1.9.) In the (t, S)-
plane the tree can be interpreted as a grid of exponential-like curves. The
binomial approach defined by (A1) with the proportionality between Si and
Si+1 reflects exponential growth or decay of S. So all grid points have the
desirable property S > 0.

Solution of (1.5), (1.9), (1.10)

Using the abbreviation α := er∆t we obtain by elimination (which the reader
may check) the quadratic equation
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Fig. 1.9. Tree in the (S, t)-plane for M = 32 (data of Example 1.6)

0 = u2 − u(α−1 + αeσ2∆t︸ ︷︷ ︸
=:2β

) + 1,

with solutions u = β ±
√

β2 − 1. By virtue of ud = 1 and Vieta’s Theorem, d
is the solution with the minus sign. In summary the three parameters u, d, p
are given by

β : =
1
2
(e−r∆t + e(r+σ2)∆t)

u = β +
√

β2 − 1

d = 1/u = β −
√

β2 − 1

p =
er∆t − d

u − d

(1.11)

A consequence of the approach is that up to terms of higher order the relation
u = eσ

√
∆t holds (−→ Exercise 1.6). Therefore the extension of the tree in S-

direction matches the volatility of the asset. So the tree will cover the relevant
range of S-values.
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Forward Phase: Initializing the Tree
Now the factors u and d can be considered as known and the discrete values
of S for each ti until tM = T can be calculated. The current spot price S = S0
for t0 = 0 is the root of the tree. To adapt the notation to the two-dimensional
grid of the tree, this initial price is also denoted S00. Each initial price S0
leads to another tree of values Sji.

For i = 1, 2, ..., M calculate :

Sji := S0u
jdi−j , j = 0, 1, ..., i

Now the grid points (ti, Sji) are fixed, on which the option values Vji :=
V (ti, Sji) are to be calculated.

Calculating the Option Values V, Valuation of the Tree
For tM the payoff V (S, tM ) is known from (1.1C), (1.1P). This payoff is valid
for each S, including SjM = SujdM−j , j = 0, ..., M . This defines the values
VjM :
Call: V (S(tM ), tM ) = max {S(tM ) − K, 0}, hence:

VjM := (SjM − K)+ (1.12C)

Put: V (S(tM ), tM ) = max {K − S(tM ), 0}, hence:

VjM := (K − SjM )+ (1.12P)

The backward phase calculates recursively for tM−1, tM−2, ... the option
values V for all ti, starting from VjM . The recursion is based on Assumption
1.3, (A3). Repeating the equation that corresponds to (1.5) with double index
leads to

Sjie
r∆t = pSjiu + (1 − p)Sjid,

and
Sjie

r∆t = pSj+1,i+1 + (1 − p)Sj,i+1.

Relating the Assumption 1.3, (A3) of risk neutrality to V , Vi = e−r∆tE(Vi+1),
we obtain using the double-index notation the recursion

Vji = e−r∆t · (pVj+1,i+1 + (1 − p)Vj,i+1) . (1.13)

For European options this is a recursion for i = M −1, . . . , 0, starting from
(1.12), and terminating with V00. The obtained value V00 is an approximation
to the value V (S0, 0) of the continuous model, which results in the limit
M → ∞ (∆t → 0). The accuracy of the approximation V00 depends on M .
This is reflected by writing V

(M)
0 (−→ Exercise 1.7). The basic idea of the
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approach implies that the limit of V
(M)
0 for M → ∞ is the Black-Scholes

value V (S0, 0) (−→ Exercise 1.8).

For American options the above recursion must be modified by adding a
test whether early exercise is to be preferred. To this end the value of (1.13) is
compared with the value of the payoff. Then the equations (1.12) for i rather
than M , combined with (1.13), read as follows:

Call:

Vji = max
{
(Sji − K)+, e−r∆t · (pVj+1,i+1 + (1 − p)Vj,i+1)

}
(1.14C)

Put:

Vji = max
{
(K − Sji)+, e−r∆t · (pVj+1,i+1 + (1 − p)Vj,i+1)

}
(1.14P)

Let us summarize the algorithm:

Algorithm 1.4 (binomial method)

Input: r, σ, S = S0, T, K, choice of put or call,
European or American, M

calculate: ∆t := T/M, u, d, p from (1.11)
S00 := S0

SjM = S00u
jdM−j , j = 0, 1, ..., M

(for American options, also Sji = S00u
jdi−j

for 0 < i < M , j = 0, 1, ..., i)
VjM from (1.12)

Vji for i < M

{
from (1.13) for European options

from (1.14) for American options

Output: V00 is the approximation V
(M)
0 of V (S0, 0)

Example 1.5 European put
K = 10, S = 5, r = 0.06, σ = 0.3, T = 1.
The Table 1.2 lists approximations V (M) to V (5, 0). The convergence
towards the Black-Scholes value V (S, 0) is visible. (In this book the
number of printed decimals illustrates the attainable accuracy and does
not reflect economic practice.) Applying other methods the function
V (S, 0) can be approximated for an interval of S-values. The Figure
1.5 shows related results obtained by using the methods of Chapter 4.
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Fig. 1.10. Tree in the (S, t)-plane with (S, t, V )-points for M = 32 (data as in
Figure 1.4)

Table 1.2. Results of Example 1.5

M V (M)(5, 0)

8 4.42507
16 4.42925
32 4.429855
64 4.429923
128 4.430047
256 4.430390
2048 4.430451
Black-Scholes 4.43046477621

Example 1.6 American put
K = 50, S = 50, r = 0.1, σ = 0.4, T = 0.41666... ( 5

12 for 5 months),
M = 32.
The Figure 1.9 shows the tree for M = 32. The approximation to V0
is 4.2719. Although the binomial method is not designed to accurately
approximate the surface V (S, t), it provides rough information also for
t > 0. Figure 1.11 depicts for three time instances t = 0.404, t =
0.3, t = 0.195 the obtained approximation of V (S, t); the calculated
discrete values are interpolated by straight line segments. The function
V (S, 0) can be approximated with the methods of Chapter 4, compare
Figure 4.10.
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Fig. 1.11. to Example 1.6: Three cuts through the rough approximation of the
surface V (S, t) for t = 0.404 (solid curve), t = 0.3 (dashed), t = 0.195 (dotted),
approximated with M = 32

Extensions
The paying of dividends can be incorporated into the binomial algorithm. If
dividends are paid at tk the price of the asset drops by the same amount.
To take into account this jump, the tree is cut at tk and the S-values are
reduced appropriately, see [Hu00, § 16.3], [WDH96].

Correcting the terminal probabilities, which come out of the binomial
distribution (−→ Exercise 1.8), it is possible to adjust the tree to actual
market data [Ru94]. Another extension of the binomial model is the trinomial
model. Here each mesh offers three outcomes, with probabilities p1, p2, p3
and p1 + p2 + p3 = 1. The trinomial model allows for higher accuracy. The
reader may wish to derive the trinomial method.
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1.5 Risk-Neutral Valuation

In the previous section we have used the Assumptions 1.3 to derive an al-
gorithm for valuation of options. This Section 1.5 discusses the assumptions
again leading to a different interpretation.

The situation of a path-independent binomial process with the two fac-
tors u and d continues to be the basis of the argumentation. The scenario is
illustrated in Figure 1.12. Here the time period is the time to expiration T ,
which replaces ∆t in the local mesh of Figure 1.7. Accordingly, this global
model is called one-period model. The one-period model with only two pos-
sible values of ST has two clearly defined values of the payoff, namely V (d)

(corresponds to ST = S0d) and V (u) (corresponds to ST = S0u). In contrast
to the Assumptions 1.3 we neither assume the risk-neutral world (A3) nor
the corresponding probability P(up) = p from (A2). Instead we derive the
probability using another argument. In this section the factors u and d are
assumed to be given.

T

0

t

V V(u)

S

V

(d)

0

S

S d S u00

0

Fig. 1.12 One-period binomial model

Let us construct a portfolio of an investor with a short position in one
option and a long position consisting of ∆ shares of an asset, where the asset
is the underlying of the option. The portfolio manager must choose the
number ∆ of shares such that the portfolio is riskless. That is, a
hedging strategy is needed. To discuss the hedging properly we assume that
no funds are added or withdrawn.

By Πt we denote the wealth of this portfolio at time t. Initially the value
is

Π0 = S0 · ∆ − V0 , (1.15)
where the value V0 of the written option is not yet determined. At the end
of the period the value VT either takes the value V (u) or the value V (d). So
the value of the portfolio ΠT at the end of the life of the option is either
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Π(u) = S0u · ∆ − V (u)

or
Π(d) = S0d · ∆ − V (d) .

In case ∆ is chosen such that the value ΠT is riskless, all uncertainty is
removed and Π(u) = Π(d) must hold. This is equivalent to

(S0u − S0d) · ∆ = V (u) − V (d) ,

which defines the strategy

∆ =
V (u) − V (d)

S0(u − d)
. (1.16)

With this value of ∆ the portfolio with initial value Π0 evolves to the final
value ΠT = Π(u) = Π(d), regardless of whether the stock price moves up or
down. Consequently the portfolio is riskless.

If we rule out early exercise, the final value ΠT is reached with certainty.
The value ΠT must be compared to the alternative risk-free investment of
an amount of money that equals the initial wealth Π0, which after the time
period T reaches the value erT Π0. Both the assumptions Π0e

rT < ΠT and
Π0e

rT > ΠT would allow a strategy of earning a risk-free profit. This is in
contrast to the assumed arbitrage-free world. Hence both Π0e

rT ≥ ΠT and
Π0e

rT ≤ ΠT and hence equality must hold.3 Accordingly the initial value
Π0 of the portfolio equals the discounted final value ΠT , discounted at the
interest rate r,

Π0 = e−rT ΠT .

This means
S0 · ∆ − V0 = e−rT (S0u · ∆ − V (u)) ,

which upon substituting (1.16) leads to the value V0 of the option:

V0 = S0 · ∆ − e−rT (S0u∆ − V (u))
= e−rT {∆ · [S0e

rT − S0u] + V (u)}
= e−rT

u−d {(V (u) − V (d))(erT − u) + V (u)(u − d)}
= e−rT

u−d {V (u)(erT − d) + V (d)(u − erT )}
= e−rT {V (u) erT −d

u−d + V (d) u−erT

u−d }
= e−rT {V (u)q + V (d) · (1 − q)}

with

q :=
erT − d

u − d
. (1.17)

3 For an American option it is not certain that ΠT can be reached because
the holder may choose early exercise. Hence we have only the inequality
Π0e

rT ≤ ΠT .
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We have shown that with q from (1.17) the value of the option is given by

V0 = e−rT {V (u)q + V (d) · (1 − q)} . (1.18)

The expression for q in (1.17) is identical to the formula for p in (1.6), which
was derived in the previous section. Again we have

0 < q < 1 ⇐⇒ d < erT < u .

Presuming these bounds for u and d, q can be interpreted as a probability Q.
Then qV (u) + (1 − q)V (d) is the expected value of the payoff with respect to
this probability (1.17),

EQ(VT ) = qV (u) + (1 − q)V (d) .

Now (1.18) can be written

V0 = e−rT EQ(VT ) . (1.19)

That is, the value of the option is obtained by discounting the expected payoff
(with respect to q from (1.17)) at the risk-free interest rate r. An analogous
calculation shows

EQ(ST ) = qS0u + (1 − q)S0d = S0e
rT .

The probabilities p of Section 1.4 and q from (1.17) are defined by identical
formulas (with T corresponding to ∆t). Hence p = q, and EP = EQ. But the
underlying arguments are different. Recall that in Section 1.4 we showed the
implication

E(ST ) = S0e
rT =⇒ p = P(up) =

erT − d

u − d
,

whereas in this section we arrive at the implication

p = P(up) =
erT − d

u − d
=⇒ E(ST ) = S0e

rT .

So both statements must be equivalent. Setting the probability of the up
movement equal to p is equivalent to assuming that the expected return on
the asset equals the risk-free rate. This can be rewritten as

e−rT EP(ST ) = S0 . (1.20)

The important property expressed by equation (1.20) is that of a martingale:
The random variable e−rT ST of the left-hand side has the tendency to remain
at the same level. That is why a martingale is also called “fair game.” A mar-
tingale displays no trend, where the trend is measured with respect to EP. In
the martingale property of (1.20) the discounting at the risk-free interest rate
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r exactly matches the risk-neutral probability P(= Q) of (1.6)/(1.17). The
specific probability for which (1.20) holds is also called martingale measure.

Summary of results for the one-period model: Under the Assumptions 1.2 of
the market model, the choice ∆ of (1.16) eliminates the random-dependence
of the payoff and makes the portfolio riskless. There is a specific probability
Q (= P) with Q(up) = q, q from (1.17), such that the value V0 satisfies
(1.19) and S0 the analogous property (1.20). These properties involve the
risk-neutral interest rate r. That is, the option is valued in a risk-neutral
world, and the corresponding Assumption 1.3 (A3) is meaningful.

In the real-world economy, growth rates in general are different from r,
and individual subjective probabilities differ from our Q. But the assumption
of a risk-neutral world leads to a fair valuation of options. The obtained value
V0 can be seen as a rational price. In this sense the resulting value V0 applies
to the real world. The risk-neutral valuation can be seen as a technical tool.
The assumption of risk neutrality is just required to define and calculate a
rational price or fair value of V0. For this specific purpose we do not need
actual growth rates of prices, and individual probabilities are not relevant.
But note that we do not really assume that financial markets are actually
free of risk.

The general principle outlined for the one-period model is also valid for
the multi-period binomial model and for the continuous model of Black and
Scholes (−→ Exercise 1.8).

The ∆ of (1.16) is the hedge parameter delta, which eliminates the risk
exposure of our portfolio caused by the written option. In multi-period models
and continuous models ∆ must be adapted. The general definition is

∆ = ∆(S, t) =
∂V (S, t)

∂S
;

the expression (1.16) is a discretized version.

1.6 Stochastic Processes

Brownian motion originally meant the erratic motion of a particle (pollen)
on the surface of a fluid, caused by tiny impulses of molecules. Wiener sugge-
sted a mathematical model for this motion, the Wiener process. But earlier
Bachelier had applied Brownian motion to model the motion of stock prices,
which instantly respond to the numerous upcoming informations similar as
pollen react to the impacts of molecules. The illustration of the Dow in Figure
1.13 may serve as motivation.

A stochastic process is a family of random variables Xt, which are defined
for a set of parameters t (−→ Appendix 1.2). Here we consider the time-
continuous situation. That is, t ∈ IR varies continuously in a time interval I,
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Fig. 1.13 The Dow at 500 trading days from September 8, 1997 through August
31, 1999

which typically represents 0 ≤ t ≤ T . A frequent and more complete notation
for a stochastic process is {Xt, t ∈ I}, or (Xt)0≤t≤T . Let the chance play for
all t in the interval 0 ≤ t ≤ T , then the resulting function Xt is called
realization or path of the stochastic process.

Special properties of stochastic processes have lead to the following names:
Gaussian process: All joint distributions are Gaussian. Hence specifi-
cally Xt is distributed normally for all t.
Markov process: Only the present value of Xt is relevant for its future
motion. That is, the past history is fully reflected in the present value.4

An example of a process that is both Gaussian and Markov, is the Wiener
process.

4 This assumption together with the assumption of an immediate reaction
of the market to arriving informations are called hypothesis of the efficient
market [Bo98].
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1.6.1 Wiener Process

Definition 1.7 (Wiener process, Brownian motion)

A Wiener process (or Brownian motion; notation Wt or W ) is a time-
continuous process with the properties

(a) W0 = 0 (with probability one)
(b)Wt ∼ N (0, t) for all t ≥ 0. That is, for each t the random variable Wt

is normally distributed with mean E(Wt) = 0 and variance Var(Wt) =
E(W 2

t ) = t.
(c) All increments ∆Wt := Wt+∆t − Wt on non-overlapping time in-
tervals are independent: That is, the displacements Wt2 − Wt1 and
Wt4 − Wt3 are independent for all 0 ≤ t1 < t2 ≤ t3 < t4.

(d)Wt depends continuously on t.

Generally for 0 ≤ s < t the property Wt − Ws ∼ N (0, t − s) holds,

E(Wt − Ws) = 0 , (1.21a)

Var(Wt − Ws) = E((Wt − Ws)2) = t − s. (1.21b)

The relations (1.21a,b) can be derived from Definition 1.7 (−→ Exercise 1.9).
The relation (1.21b) is also known as

E((∆Wt)2) = ∆t . (1.21c)

The independence of the increments according to Definition 1.7(c) implies
for tj+1 > tj the independence of Wtj

and (Wtj+1 − Wtj
), but not of Wtj+1

and (Wtj+1 − Wtj ). Wiener processes are examples of martingales — there is
no drift.

Discrete-Time Model

Let ∆t > 0 be a constant time increment. For the discrete instances tj := j∆t
the value Wt can be written as a sum of increments ∆Wk,

Wj∆t =
j∑

k=1

(
Wk∆t − W(k−1)∆t

)︸ ︷︷ ︸
=:∆Wk

.

The ∆Wk are independent and because of (1.21) normally distributed with
Var(∆Wk) = ∆t. Increments ∆W with such a distribution can be calculated
from standard normally distributed random numbers Z. The implication

Z ∼ N (0, 1) =⇒ Z ·
√

∆t ∼ N (0, ∆t)

leads to the discrete model of a Wiener process

∆Wk = Z
√

∆t for Z ∼ N (0, 1) for each k . (1.22)



1.6 Stochastic Processes 27

We summarize the numerical simulation of a Wiener process as follows:

Algorithm 1.8 (simulation of a Wiener process)

Start: t0 = 0, W0 = 0; ∆t

loop j = 1, 2, ... :
tj = tj−1 + ∆t

draw Z ∼ N (0, 1)

Wj = Wj−1 + Z
√

∆t

The drawing of Z —that is, the calculation of Z ∼ N (0, 1)— will be explained
in Chapter 2. The values Wj are a realization of Wt at the discrete points tj .
The Figure 1.14 shows a realization of a Wiener process; 5000 calculated
points (tj , Wj) are joined by linear interpolation.
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Fig. 1.14. Realization of a Wiener process, with ∆t = 0.0002

Almost all realizations of Wiener processes are nowhere differentiable.
This becomes intuitively clear when the difference quotient
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∆Wt

∆t
=

Wt+∆t − Wt

∆t

is considered. Because of relation (1.21b) the standard deviation of the nu-
merator is

√
∆t. Hence for ∆t → 0 the normal distribution of the difference

quotient disperses and no convergence can be expected.

1.6.2 Stochastic Integral

Let us suppose that the price development of an asset is described by a
Wiener process Wt. Let b(t) be the number of units of the asset held in a
portfolio at time t. We start with the simplifying assumption that trading
is only possible at discrete time instances tj , which define a partition of the
interval 0 ≤ t ≤ T . Then the trading strategy b is piecewise constant,

b(t) = b(tj−1) for tj−1 ≤ t < tj

and 0 = t0 < t1 < . . . < tN = T .
(1.23)

Such a function b(t) is called step function. The trading gain for the subin-
terval tj−1 ≤ t < tj is given by b(tj−1)(Wtj − Wtj−1), and

N∑
j=1

b(tj−1)(Wtj
− Wtj−1) (1.24)

represents the trading gain over the time period 0 ≤ t ≤ T . The trading gain
(possibly < 0) is determined by the strategy b(t) and the price process Wt.

We now drop the assumption of fixed trading times tj and allow b to be
arbitrary continuous functions. This leads to the question whether (1.24) has
a limit when with N → ∞ the size of the subintervals tends to 0. If Wt would
be of bounded variation than the limit exists and is called Riemann-Stieltjes
integral ∫ T

0
b(t)dWt .

In our situation this integral generally does not exist because almost all Wie-
ner processes are not of bounded variation. That is, the first variation of Wt,
which is the limit of

N∑
j=1

|Wtj
− Wtj−1 | ,

is unbounded even in case the lengths of the subintervals vanish for N → ∞.
Although this statement is not of primary concern for the theme of this

book5, we digress for a discussion because it introduces the important as-
sertion (dWt)2 = dt. For an arbitrary partition of the interval [0, T ] into N
subintervals the inequality

5 The less mathematically oriented reader may like to skip the rest of this
subsection.
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N∑
j=1

|Wtj
− Wtj−1 |2 ≤ max

j
(|Wtj

− Wtj−1 |)
N∑

j=1

|Wtj − Wtj−1 | (1.25)

holds. The left-hand sum in (1.25) is the second variation and the right-
hand sum the first variation of W for a given partition into subintervals. The
expectation of the left-hand sum can be calculated using (1.21),

N∑
j=1

E(Wtj − Wtj−1)
2 =

N∑
j=1

(tj − tj−1) = tN − t0 = T .

But even convergence in the mean holds:
Lemma 1.9 (second variation: convergence in the mean)

Let t0 = t
(N)
0 < t

(N)
1 < . . . < t

(N)
N = T be a sequence of partitions of

the interval t0 ≤ t ≤ T with

δN := max
j

(t(N)
j − t

(N)
j−1) . (1.26)

Then (dropping the (N))

l.i.m.
δN →0

N∑
j=1

(Wtj − Wtj−1)
2 = T − t0 (1.27)

Proof: The statement (1.27) means convergence in the mean (−→ Ap-
pendix A2). Because of

∑
∆tj = T − t0 we must show

E

∑
j

((∆Wj)2 − ∆tj)

2

→ 0 for δN → 0 .

Carrying out the multiplications and taking the mean gives

2
∑

j

(∆tj)2

(−→ Exercise 1.10). This can be bounded by 2(T − t0)δN , which com-
pletes the proof.

Part of the derivation can be summarized to

E((∆Wt)2 − ∆t) = 0 , Var((∆Wt)2 − ∆t) = 2(∆t)2 ,

hence (∆Wt)2 ≈ ∆t. This property of a Wiener process is symbolically writ-
ten

(dWt)2 = dt (1.28)



30 Chapter 1 Modeling Tools for Financial Options

It will be needed in subsequent sections.
Now we know enough about the convergence of the left-hand sum of (1.25)

and turn to the right-hand side of this inequality. The continuity of Wt implies

max
j

|Wtj − Wtj−1 | → 0 for δN → 0 .

Convergence in the mean applied to (1.25) shows that the vanishing of this
factor must be compensated by an unbounded growth of the other factor, so

N∑
j=1

|Wtj
− Wtj−1 | → ∞ für δN → 0 .

In summary, Wiener processes are not of bounded variation, and the integra-
tion with respect to Wt can not be defined as an elementary limit of (1.24).

The aim is to construct a stochastic integral∫ t

t0

f(s)dWs

for general stochastic integrands f(t). For our purposes it suffices to briefly
sketch the Itô integral, which is the prototype of a stochastic integral.

For a step function b from (1.23) an integral can be defined via the sum
(1.24), ∫ t

t0

b(s)dWs :=
N∑

j=1

b(tj−1)(Wtj
− Wtj−1) . (1.29)

This is the Itô integral over a step function b. In case the b(tj−1) are random
variables, b is called a simple process. Then the Itô integral is again defined
by (1.29). Stochastically integrable functions f can be obtained as limits of
simple processes bn in the sense

E
[ ∫ t

t0

(f(s) − bn(s))2ds
]

→ 0 for n → ∞ . (1.30)

Convergence in terms of integrals
∫

ds carries over to integrals
∫

dWt. This
is achieved by applying Cauchy convergence E

∫
(bn − bm)2ds → 0 and the

isometry

E
[( ∫ t

t0

b(s)dWs

)2 ]
= E

[ ∫ t

t0

b(s)2ds
]

.

Hence the integrals
∫

bn(s)dWs form a Cauchy sequence with respect to con-
vergence in the mean. Accordingly the Itô integral of f is defined as∫ t

t0

f(s)dWs := l.i.m.n→∞
∫ t

t0

bn(s)dWs ,
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for simple processes bn defined by (1.30). The value of the integral is inde-
pendent of the choice of the bn in (1.30). The Itô integral as function in t is
a stochastic process with the martingale property.

If an integrand a(x, t) depends on a stochastic process Xt, the function
f is given by f(t) = a(Xt, t). For the simplest case of a constant integrand
a(Xt, t) = a0 the Itô integral can be reduced to a Riemann-Stieltjes integal∫ t

t0

dWs = Wt − Wt0 .

For the “first” nontrivial Itô integral consider Xt = Wt and a(Wt, t) = Wt.
Its solution will be presented in Section 3.2.

1.7 Stochastic Differential Equations

1.7.1 Itô Process

Many phenomena in nature, technology and economy are modeled by means
of deterministic differential equations ẋ = d

dtx = a(x, t). This kind of mode-
ling neglects stochastic fluctuations and is not appropriate for stock prices.
The easiest way to consider stochastic movements is via an additive term,

dx

dt
= a(x, t) + b(x, t)ξt.

Here we use the notations
a: deterministic part,
bξt: stochastic part, ξt denotes a generalized stochastic process.

An example of a generalized stochastic process is white noise. For a brief
definition of white noise we note that to each stochastic process a generalized
version can be assigned [Ar74]. For generalized stochastic processes derivati-
ves of any order can be defined. Suppose that Wt is the generalized version
of a Wiener process, then Wt can be differentiated. White noise ξt is then
defined as ξt = Ẇt = d

dtWt, or vice versa,

Wt =
∫ t

0
ξsds.

That is, a Wiener process is obtained by smoothing the white noise. The
smoother integral version dispenses with using generalized stochastic proces-
ses. Hence the integrated form of ẋ = a(x, t) + b(x, t)ξt is studied,

x(t) = x0 +
∫ t

t0

a(x(s), s)ds +
∫ t

t0

b(x(s), s)ξsds,
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and we replace ξsds = dWs. The first integral in this integral equation is
an ordinary (Lebesgue- or Riemann-) integral. The second integral is an Itô
integral to be taken with respect to the Wiener process Wt. The resulting
stochastic differential equation (SDE) is named after Itô.

Definition 1.10 (Itô stochastic differential equation)

An Itô stochastic differential equation is

dXt = a(Xt, t)dt + b(Xt, t)dWt; (1.31a)

this together with Xt0 = X0 is a symbolic short form of the integral
equation

Xt = X0 +
∫ t

t0

a(Xs, s)ds +
∫ t

t0

b(Xs, s)dWs. (1.31b)

The terms in (1.31) are named as follows:

a(Xt, t): drift term or drift coefficient
b(Xt, t): diffusion term
solution Xt: Itô process

A Wiener process is a special case of an Itô process, because from Xt = Wt

the trivial SDE dXt = dWt follows, hence a = 0 and b = 1 in (1.31). If b ≡ 0
and X0 is constant, then the SDE becomes deterministic.

An experimental approach may help developing an intuitive understan-
ding of Itô processes. The simplest numerical method combines the discretized
version of the Itô SDE

∆Xt = a(Xt, t)∆t + b(Xt, t)∆Wt (1.32)

with the Algorithm 1.8 for approximating a Wiener process, using the same
∆t for both discretizations. The result is

Algorithm 1.11 (Euler discretization of an SDE)

Approximations yj to Xtj
are calculated by

Start: t0, y0 = X0, ∆t, W0 = 0.

loop j = 0, 1, 2, ...

tj+1 = tj + ∆t

∆W = Z
√

∆t with Z ∼ N (0, 1)
yj+1 = yj + a(yj , tj)∆t + b(yj , tj)∆W
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In the easiest case the step length ∆t is chosen equidistant, ∆t = T/m for a
suitable integer m. Of course the accuracy of the approximation depends on
the choice of ∆t (−→ Chapter 3). The Algorithm 1.11 is sometimes called
after Euler and Maruyama. The evaluation is straightforward. When for some
example the functions a and b are easily calculated, the greatest effort may be
to calculate random numbers Z ∼ N (0, 1) (−→ Section 2.3). Solutions to the
SDE or to its discretized version for a given realization of the Wiener process
are called trajectories or paths. By simulation of the SDE we understand the
calculation of one or more trajectories. For the purpose of visualization, the
discrete data are mostly joined by straight lines.

Example 1.12 dXt = 0.05Xt dt + 0.3Xt dWt

Without the diffusion term the exact solution would be Xt = X0e
0.05t.

For X0 = 50, t0 = 0 and a time increment ∆t = 1/300 the Figure
1.15 depicts a trajectory Xt of the SDE for 0 ≤ t ≤ 1. For another
realization of a Wiener process Wt the solution looks different. This is
demonstrated for a similar SDE in Figure 1.16.
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Fig. 1.15. Numerically approximated trajectory of Example 1.12 with a = 0.05Xt,
b = 0.3Xt, ∆t = 1/300, X0 = 50
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1.7.2 Application to the Stock Market

Now we discuss one of the most important continuous models for motions
of the prices St of stocks. This standard model assumes that the relative
change (return) dS/S of a security in the time interval dt is composed of a
deterministic drift term µ plus stochastic fluctuations in the form σdWt:

Model 1.13 (geometric Brownian motion)

dSt = µSt dt + σSt dWt. (1.33)

This SDE is linear in Xt = St, a(St, t) = µSt is the drift rate with the expec-
ted rate of return µ, b(St, t) = σSt, σ is the volatility. (Compare Example 1.12
and Figure 1.15.) The geometric Brownian motion of (1.33) is the reference
model on which the Black-Scholes-Merton approach is based. According to
Assumption 1.2 we assume that µ and σ are constant.

A theoretical solution of (1.33) will be given in (1.39). The deterministic
part of (1.33) is the ordinary differential equation

Ṡ = µS

with solution St = S0e
µ(t−t0). For the linear SDE of (1.33) the expectation

E(St) solves Ṡ = µS. Hence S0e
µ(t−t0) is the expectation of the stochastic

process and µ is the expected continuously compounded return earned by
an investor per year. The rate of return µ is also called growth rate. The
function S0e

µ(t−t0) may be seen as a core about which the process fluctuates.
Accordingly the simulated values S1 of the ten trajectories in Figure 1.16
group around the value 50 · e0.1 ≈ 55.26.

Let us test empirically how the values S1 distribute about their expected
value. To this end we calculate, for example, 10000 trajectories and count how
many of the terminal values S1 fall into the subintervals k5 ≤ t < (k + 1)5,
for k = 0, 1, 2 . . .. The Figure 1.17 shows the resulting histogram. Apparently
the distribution is skewed. We revisit this distribution in the next section.

The discrete version of (1.33) is

∆S

S
= µ∆t + σZ

√
∆t, (1.34a)

which we know from Algorithm 1.11. Consequently the return satisfies

∆S

S
∼ N (µ∆t, σ2∆t). (1.34b)

This distribution matches actual market data in a rough approximation, see
for instance Figure 1.19. This allows to calculate estimates of historical values
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Fig. 1.16. 10 paths of SDE (1.33) with S0 = 50, µ = 0.1 and σ = 0.2

of the volatility σ.6 The approximation is valid as long as ∆t is small. We
will return to this at the end of this chapter.

As Appendix A3 shows for the continuous case, an option can be modeled
independent of individual subjective expectations on the growth rate µ. For
modeling of V (St, t), a risk-neutral world is assumed which allows to replace
µ by the risk-free rate r. This was discussed for the one-period model in
Section 1.5. For a thorough discussion of the continuous model, martingale
theory is used. For this discussion see, for example, [Do53], [HP81], [RY91],
[Du96], [Hu00], [Ne96], [MR97]. Let us summarize the situation in a remark:

Remark 1.14 (risk-neutral valuation principle)
For modeling options the return rate µ is replaced by the risk-free
interest rate r, µ = r.

In the reality of the market µ �= r; otherwise nobody would invest in the
stock market. The investor expects µ > r as compensation for the risk that
is higher for stocks than for bonds.

6 For the implied volatility see Exercise 1.5.
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Fig. 1.17. Histogram of 10000 calculated values S1 corresponding to (1.33), with
S0 = 50, µ = 0.1, σ = 0.2

Mean Reversion
The assumptions of a constant interest rate r and a constant volatility σ are
quite restrictive. To overcome this simplification, SDEs for rt and σt have
been constructed that control rt or σt stochastically. A class of models is
given by the SDE

drt = α(R − rt)dt + σrr
β
t dWt , α > 0. (1.35)

Wt is again a Brownian motion. The drift term in (1.35) is positive for rt < R
and negative for rt > R. This causes a pull to R. This effect is called mean re-
version. The parameter R, which may depend on t, corresponds to a long-run
mean of the interest rate over time. For β = 0 (constant volatility) equation
(1.35) specializes to the Vasicek model. The Cox-Ingersoll-Ross model is ob-
tained for β = 1

2 . Then the volatility σr
√

rt vanishes when rt tends to zero.
Provided r0 > 0, R > 0, this guarantees rt ≥ 0 for all t. For a discussion of
related models we refer to [LL96], [Hu00], [Kw98].

The SDE (1.35) is of a different kind as (1.33). Coupling the SDE for
rt to that for St leads to a system of two SDEs. Even larger systems are
obtained when further SDEs are coupled to define a stochasic process Rt or
to calculate stochastic volatilities. A related example is given by Example
1.15 below.
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Vector-Valued SDEs

The Itô equation (1.31) is formulated as scalar equation; our SDE (1.33) is a
one-factor model. The general multi-factor version can be written in the same
notation. Then Xt = (X(1)

t , . . . , X
(n)
t ) and a(Xt, t) are n-dimensional vectors.

The Wiener process can be m-dimensional, with components W
(1)
t , ..., W

(m)
t .

Then b(Xt, t) is an (n × m)-matrix. The interpretation of the SDE systems
is componentwise. The scalar stochastic integrals are sums of m stochastic
integrals,

X
(i)
t = X

(i)
0 +

∫ t

t0

ai(Xs, s)ds +
m∑

k=1

∫ t

t0

bik(Xs, s)dW (k)
s ,

for i = 1, ..., n.

Example 1.15 (mean-reverting volatility)
We consider a three-factor model with stock price St, instantaneous
spot volatility σt and an averaged volatility ζt serving as mean-reverting
parameter: 

dS = σSdW (1)

dσ = −(σ − ζ)dt + ασdW (2)

dζ = β(σ − ζ)dt

Here and sometimes later on, we suppress the subscript t, which may be
done when the role of the variables as stochastic processes is clear from
the context. The rate of return µ is supposed to be zero; dW (1) and
dW (2) may be correlated. The stochastic volatility σ follows the mean
volatility ζ and is simultaneously perturbed by a Wiener process. The
two SDEs for σ and ζ may be seen as a tandem controlling the dynamics
of the volatility. We recommend numerical tests. As motivation see
Figure 3.1.

Computational Matters

Stochastic differential equations are simulated in the context of Monte Carlo
methods. Here the SDE is integrated N times, with N very large, for example,
N = 10000. Then the weight of any single trajectory is almost neglectable.
Expectation and variance are calculated over the N trajectories. Generally
this costs an enormous amount of computing time. The required instruments
are:

1.) Generating N (0, 1)-distributed random numbers (Chapter 2)
2.) Integration methods for SDEs (Chapter 3)
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1.8 Itô Lemma and Implications

Itô’s lemma is most fundamental for stochastic processes. It may help, for
example, to derive solutions of SDEs (−→ Exercise 1.11).

Lemma 1.16 (Itô)
Suppose Xt follows an Itô process (1.31), dXt = a(Xt, t)dt+b(Xt, t)dWt,
and let g(x, t) be a function with continuous ∂g

∂x , ∂2g
∂x2 , ∂g

∂t . Then
Yt := g(Xt, t) follows an Itô process with the same Wiener process
Wt:

dYt =
(

∂g

∂x
a +

∂g

∂t
+

1
2

∂2g

∂x2 b2
)

dt +
∂g

∂x
b dWt (1.36)

where the derivatives of g as well as the coefficient functions a and b in
general depend on the arguments (Xt, t).
For a proof we refer to [Ar74], [Øk98], [Ste01]. Here we confine ourselves
to the basic idea. When t varies by ∆t, then X by ∆X = a ·∆t+b ·∆W
and Y by ∆Y = g(X + ∆X, t + ∆t) − g(X, t). The Taylor expansion
of ∆Y begins with the linear part ∂g

∂x∆X + ∂g
∂t ∆t, in which ∆X =

a∆t+b∆W is substituted. The additional term with the derivative ∂2g
∂x2

is new and is introduced via the O(∆x2)-term of the Taylor expansion.
Because of (1.28), (∆W )2 ≈ ∆t, this term is also of the order O(∆t)
and belongs to the linear terms. Taking correct limits (similar as in
Lemma 1.9) one obtains (1.36).

Consequences for Stocks and Options

We assume the stock price to follow a geometric Brownian motion, hence
Xt = St, a = µSt, b = σSt. The value Vt of an option depends on St.
Assuming C2-smoothness of Vt depending on S and t, we apply Itô’s lemma.
For V (S, t) in the place of g(x, t) the result is

dVt =
(

∂V

∂S
µSt +

∂V

∂t
+

1
2

∂2V

∂S2 σ2S2
t

)
dt +

∂V

∂S
σStdWt. (1.37)

This SDE is used to derive the Black-Scholes equation, see Appendix A3.
As second application of Itô’s lemma we consider Yt = log(St), viz

g(x, t) = log(x). This leads to the linear SDE

d log St = (µ − 1
2
σ2)dt + σdWt.

For this linear SDE the expectation E(Yt) satisfies the deterministic part

d

dt
E(Yt) = µ − σ2

2
.

The solution of ẏ = µ − σ2

2 with initial condition y(t0) = y0 is
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y(t) = y0 + (µ − σ2

2
)(t − t0).

In other words, the expectation of the Itô process Yt is

E(log St) = log S0 + (µ − σ2

2
)(t − t0) .

Analogously, we see from the differential equation for E(Y 2
t ) (or from the

analytical solution of the SDE for Yt) that the variance of Yt is σ2(t − t0). In
view of (1.31b) the simple SDE for Yt implies that the stochastic fluctuation
of Yt is that of σWt. So Yt is normally distributed, with density

f̂(Yt) :=
1

σ
√

2π(t − t0)
exp

−
(
Yt − y0 −

(
µ − σ2

2

)
(t − t0)

)2

2σ2(t − t0)

 .

Back transformation using Y = log(S) and considering dY = 1
S dS and

f̂(Y )dY = 1
S f̂(log S)dS = f(S)dS yields the density of St:

f(S; t−t0, S0) :=
1

Sσ
√

2π(t − t0)
exp

−
(
log(S/S0) −

(
µ − σ2

2

)
(t − t0)

)2

2σ2(t − t0)


(1.38)

This is the density of the lognormal distribution. The stock price St is
lognormally distributed under the basic assumption of a geometric Brownian
motion (1.33). The distribution is skewed, see Figure 1.18. Now the skewed
behavior coming out of the experiment reported in Figure 1.17 is clear. Note
that the parameters of Figures 1.17 and 1.18 match. Figure 1.17 is an ap-
proximation of the solid curve in Figure 1.18. — Having derived the density
(1.38), we now can prove equation (1.8), with µ = r according to Remark
1.14 (−→ Exercise 1.12).

It is inspiring to test the idealized Model 1.13 of a geometric Brownian
motion against actual empirical data. Suppose the time series S1, ..., SM re-
presents consecutive quotations of a stock price. To test the data, histograms
of the returns are helpful (−→ Figure 1.19). The transformation y = log(S)
is most practical (−→ Exercise 1.13). In view of (1.34b), the data allow to
calculate estimates of the historical volatility σ. But the tails of the data are
not well modeled by the hypothesis of a geometric Brownian motion: The
exponential decay expressed by (1.38) amounts to thin tails. This underesti-
mates extreme events and hence does not match reality. It turns out that the
geometric Brownian motion is not suitable to model risks.

We conclude this section by deriving the analytical solution of the basic
linear SDE (1.33)

dSt = µSt dt + σSt dWt
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Fig. 1.18. Density (1.38) over S for µ = 0.1, σ = 0.2, S0 = 50, t0 = 0 and t = 0.5
(dotted curve with steep gradient), t = 1 (solid curve), t = 2 (dashed) and t = 5
(dotted with flat gradient)

of Section 1.7.2. Here we again apply Itô’s lemma. For an arbitrary Wiener
process Wt set Xt := Wt and

Yt = g(Xt, t) := S0 exp
((

µ − σ2

2

)
t + σXt

)
.

From Xt = Wt follows the trivial SDE with coefficients a = 0 and b = 1. By
Itô’s lemma

dYt =
(

µ − σ2

2

)
Ytdt +

σ2

2
Ytdt + σYtdWt

= µYtdt + σYtdW.

Consequently the process

St := S0 exp
((

µ − σ2

2

)
t + σWt

)
(1.39)

solves the linear SDE (1.33). We will return to this in Chapter 3.
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Fig. 1.19. Histogram (compare Exercise 1.13): frequency of daily log-returns Ri,i−1
of the Dow in the time period 1901-1999.

Notes and Comments

on Section 1.1:
This section presents a brief introduction into standard options. For more
comprehensive studies of financial derivatives we refer, for example, to
[CR85], [WDH96], [Hu00]. Mathematical detail can be found in [MR97],
[KS98], [LL96], [Shi99], [Ep00], [Ste01]. (All hints on the literature are examp-
les; an extensive overview on the many good books in this rapidly developing
field is hardly possible.)

on Section 1.2:
Black, Merton and Scholes developed their approaches concurrently, with
basic papers in 1973 ([BS73], and [Me90], Chapter 8). Merton and Scholes
were awarded the Nobel price for economics in 1997. (Black had died in 1995.)
One of the results of these authors is the so-called Black-Scholes equation
(1.2) with its analytic solution formula (A3.5). For the Assumption 1.2(c) of
a geometric Brownian motion see also the notes and comments on Sections
1.7/1.8.
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on Section 1.3:
References on specific numerical methods are given where appropriate. As
computational finance is concerned, most quotations refer to research papers.
A general text book discussing computational issues is [WDH96]; further hints
can be found in [RT97].

on Section 1.4:
The binomial method can sometimes be found under the heading tree me-
thod or lattice method. The binomial method was introduced by Cox, Ross
and Rubinstein in 1979 [CRR79], later than the approach of Black, Merton
and Scholes. The costs of the binomial method grows quadratically with the
number of nodes M . The convergence rate is O(∆t) = O(M−1), which is
seen by plotting V (M) over M−1. As illustrated by Figure 1.9, the described
standard version wastes many nodes Sji close to zero and far away from the
strike region. Alternatively to the choice ud = 1 in equation (1.10) the choice
p = 1

2 is possible, see [Hu00], §16.5. For a detailed account of the binomial
method see also [CR85]. When the strike K is not well grasped by the tree
and its grid points, the error depending on M may oscillate. The error can
be smoothed by special choices of u and d. For advanced binomial methods
and speeding up convergence see [Br91], [Kl01].

We have introduced the binomial model for a one-factor model, with S
representing one scalar variable. The method can be extended to multi-factor
models, where S represents a vector of, say, n factors. Already for n = 2 there
are more possibilities to have a lattice grow than the natural extensions of
binomial or trinomial methods. In [MW99] hexagonal lattices are discussed
for n = 2, and icosahedral lattices for n = 3. These approaches balance the
number of nodes and the qualitity of the approximated distribution in an
efficient way.

on Section 1.5:
As shown in Section 1.5, a valuation of options based on a hedging strat-
egy is equivalent to the risk-neutral valuation described in Section 1.4. Ano-
ther equivalent valuation is obtained by a replication portfolio. This basically
amounts to including the risk-free investment, to which the hedged portfolio
of Section 1.5 was compared, into the portfolio. To this end, the replication
portfolio includes a bond with the initial value B0 := −(∆ · S0 − V0) = −Π0
and interest rate r. The portfolio consists of the bond and ∆ shares of
the asset. At the end of the period T the final value of the portfolio is
∆ ·ST +erT (V0 −∆ ·S0). The hedge parameter ∆ and V0 are determined such
that the value of the portfolio is VT , independent of the price evolution. By
adjusting B0 and ∆ in the right proportion we are able to replicate the option
position. This strategy is self-financing: No initial net investment is required.
The result of the self-financing strategy with the replicating portfolio is the
same as what was derived in Section 1.5. The reader may like to check this.
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Frequently discounting is done with the factor (1 + r · ∆t)−1. Our e−r∆t

or e−rT is consistent with the approach of Black, Merton and Scholes. For
references on risk-neutral valuation we mention [Hu00], [MR97], [Kw98] and
[Shr00].

The martingale property is defined via conditional expected values as

E(Xt|Fs) = Xs for all s < t .

Here Fs is a filtration and the stochastic process Xt is adapted, which means
that Xt is Ft measurable for all t [Do53], [Ne96], [Øk98], [Shi99], [Shr00]. The
martingale property means that at time instant s with given information set
Fs, all variations of Xt for t > s are unpredictable; Xs is the best forecast.

on Section 1.6:
Introductions into stochastic processes and further hints on advanced litera-
ture may be found in [Do53], [Fr71], [Ar74], [Bi79], [RY91], [KP92], [Shi99].
The requirement (a) of Definition 1.7 (W0 = 0) is merely a convention of tech-
nical relevance; it serves as normalization. This Brownian motion ist called
standard Brownian motion.

In contrast to the results for Wiener processes, differentiable functions Wt

satisfy for δN → 0∑
|Wtj

− Wtj−1 | −→
∫

|W ′
s|ds ,

∑
(Wtj

− Wtj−1)
2 −→ 0 .

The Itô integral and the alternative Stratonovich integral are explained in
[Do53], [Ar74], [CW83], [RY91], [KS91], [KP92], [Øk98], [Sc80], [Shr00]. The
difference between the two integrals is easy to illustrate for diffusion terms
b(t)dWt, for which b(t) is a step function, see (1.23). Then a definition of
the stochastic integral

∫ t

t0
b(s)dWs can be constructed by means of Riemann-

Stieltjes sums
n∑

i=1

b(τi)
(
Wti − Wti−1

)
for intermediate values τi ∈ [ti−1, ti]. Itô chooses non-anticipating τi = ti−1,
whereas the Stratonovich integral is defined by choosing τi = 1

2 (ti−1 + ti).
Both integrals have different properties. The Stratonovich integral does not
satisfy the martingale property and is not suitable for applications in finance.
The class of (Itô-)stochastically integrable functions is characterized by the
properties f(t) is Ft adapted and E

∫
f(s)2ds < ∞.

on Sections 1.7, 1.8:
The connection between white noise and Wiener processes is discussed in
[Ar74]. White noise is a Gaussian process ξt with E(ξt) = 0 and a spectral
density that is constant on the entire real axis. White noise is an analogy to
white light where all frequencies have the same energy.
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The general linear SDE is of the form

dXt = (a1(t)Xt + a2(t))dt + (b1(t)Xt + b2(t))dWt.

The expectation E(Xt) of a solution process Xt of a linear SDE satisfies the
differential equation

d

dt
E(Xt) = a1E(Xt) + a2,

see [KP92], p. 113. A similar differential equation holds for E(X2
t ). This allows

to calculate the variance. — The Example 1.15 with a system of three SDEs
is taken from [HPS92]. [KP92] gives in Section 4.4 a list of SDEs that are
analytically solvable or reducible.

The model of a geometric Brownian motion of equation (1.33) is the classi-
cal model describing the dynamics of stock prices. It goes back to Samuelson
(1965; Nobel price for economics in 1970). Already in 1900 Bachelier had
suggested to model stock prices with Brownian motion. Bachelier used the
arithmetic version, which can be characterized by replacing the left-hand side
of (1.33) by the absolute change dS. For µ = 0 this amounts to the process
St = S0 + σWt. Here the stock price can become negative. Main advanta-
ges of the geometric Brownian motion are the success of the approaches of
Black, Merton and Scholes, which is based on that motion, and the existence
of moments (as the expectation).

It is questionable whether linear models will be lasting in the future.
In view of their continuity, Wiener processes are not appropriate to model
jumps, which are characteristic for the evolution of stock prices. The jumps
lead to relatively thick tails in the distribution of empirial returns (see Fi-
gure 1.19). As already mentioned, the tails of the lognormal distribution are
too thin. Other distributions match empirical data better. One example is
the Pareto distribution, which has tails behaving like x−α for large x and a
constant α > 0. A correct modeling of the tails is an integral basis for va-
lue at risk (VaR) calculations. For the risk aspect compare [BaN97], [Do98],
[EKM97]. For distributions that match empirical data see [EK95], [Shi99],
[BP00], [MRGS00], [BTT00]. Estimates of future values of the volatility are
obtained by (G)ARCH methods, which work with different weights of the
returns [Shi99], [Hu00]. Of great promise are models that consider the mar-
ket as dynamical system [Lu98], [BH98], [CDG00], [BV00], MCFR00], [Sta01],
[DBG01]. These systems experience the nonlinear phenomena bifurcation and
chaos, which require again numerical methods. Such methods exist, but are
explained elsewhere [Se94].
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Exercises

Exercise 1.1 Put-Call Parity

Consider a portfolio consisting of three positions related to the same asset,
namely one share (price S), one European put (value VP), plus a short posi-
tion of one European call (value VC). Put and call have the same expiration
date T , and no dividends are paid. Assume a no-arbitrage market without
transaction costs. Show

S + VP − VC = Ke−r(T−t)

for all t, where K is the strike and r the risk-free interest rate.

Exercise 1.2 Transforming the Black-Scholes Equation

Show that the Black-Scholes equation (1.2)

∂V

∂t
+

σ2

2
S2 ∂2V

∂S2 + rS
∂V

∂S
− rV = 0

for V (S, t) is equivalent to the equation

∂y

∂τ
=

∂2y

∂x2

for y(x, τ). For proving this, you may proceed as follows:

a) Use the transformation S = Kex and a suitable transformation t ↔ τ
to show that (1.2) is equivalent to

−V̇ + V ′′ + αV ′ + βV = 0

with V̇ = ∂V
∂τ , V ′ = ∂V

∂x , α, β depending on r and σ.

b) The next step is to apply a transformation of the type

V = K exp(γx + δτ)y(x, τ)

for suitable γ, δ.

c) Transform the boundary conditions and the terminal condition of the
Black-Scholes equation accordingly.

Exercise 1.3 Standard Normal Distribution Function

Establish an algorithm to calculate

F (x) =
1√
2π

∫ x

−∞
exp(− t2

2
)dt.

Hint: Construct an algorithm to calculate the error function
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erf(x) :=
2√
π

∫ x

0
exp(−t2)dt

and use erf(x) to calculate F (x). Use quadrature methods (−→ Appendix
A4).

Exercise 1.4 Calculating an Estimate of the Variance

An estimate of the variance of M numbers x1, ..., xM is

s2
M :=

1
M − 1

M∑
i=1

(xi − x̄)2, with x̄ :=
1
M

M∑
i=1

xi

The alternative formula

s2
M =

1
M − 1

 M∑
i=1

x2
i − 1

M

(
M∑
i=1

xi

)2


can be evaluated with only one loop i = 1, ..., M , but should be avoided
because of the danger of cancellation. The following single-loop algorithm is
recommended:

α1 := x1, β1 := 0
for i = 2, ..., M :

αi := αi−1 +
xi − αi−1

i

βi := βi−1 +
(i − 1)(xi − αi−1)2

i

a) Show x̄ = αM , s2
M = βM

M−1 .
b) For the i-th update in the algorithm carry out a rounding error analysis.

What is your judgement on the algorithm?

Exercise 1.5 Implied Volatility

For European options we take the valuation formula of Black and Scholes
of the type V = v(S, t, T, K, r, σ). For the definition of the function v see
Appendix A3, equation (A3.5). If actual market data of the price V are
known, then one of the parameters considered known so far can be viewed as
unknown and fixed via the implicit equation

V − v(S, t, T, K, r, σ) = 0 .

The unknown parameter can be calculated iteratively as solution of this
equation. Consider σ to be in the role of the unknown parameter. The vo-
latility σ determined in this way is called implied volatility and is zero of
f(σ) := V − v(S, t, T, K, r, σ).
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Assignment: Design, implement and test an algorithm to calculate the
implied volatility of a call. Use Newton’s method to construct a sequence
xk → σ. The derivative f ′(xk) can be approximated by the difference quotient

f(xk) − f(xk−1)
xk − xk−1

.

For the resulting secant iteration invent a stopping criterion that requires
smallness of both |f(xk)| and |xk − xk−1|.

Exercise 1.6 Price Evolution for the Binomial Method

For β from (1.11) and u = β +
√

β2 − 1 show

u = exp
(
σ
√

∆t
)

+ O
(√

(∆t)3
)

.

Exercise 1.7 Implementing the Binomial Method

Design and implement an algorithm for calculating the value V (M) of a Eu-
ropean or American option. Use the binomial method of Algorithm 1.4.

INPUT: r (interest rate), σ (volatility), T (time to expiration in years),
K (strike price), S (price of asset), and the choices
put or call, and European or American.

Control the mesh size ∆t = T/M adaptively. For example, calculate V for
M = 8 and M = 16 and in case of a significant change in V use M = 32 and
possibly M = 64.

Test examples:
a) put, European, r = 0.06, σ = 0.3, T = 1, K = 10, S = 5
b) put, American, S = 9, otherwise as in a)
c) call, otherwise as in a)

Exercise 1.8 Limiting Case of the Binomial Model

Consider a European Call in the binomial model of Section 1.4. Suppose the
calculated value is V

(M)
0 . In the limit M → ∞ the sequence V

(M)
0 converges

to the value VC(S0, 0) of the continuous Black-Scholes model given by (A3.5)
(−→ Appendix A3). To prove this, proceed as follows:
a) Let jK be the smallest index j with SjM ≥ K. Find an argument why

M∑
j=jK

(
M

j

)
pj(1 − p)M−j(S0u

jdM−j − K)

is the expectation E(VT ) of the payoff. (For an illustration see Figure
1.20.)

b) The value of the option is obtained by discounting, V
(M)
0 = e−rT E(VT ).

Show
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V
(M)
0 = S0BM,p̃(jK) − e−rT KBM,p(jK) .

Here BM,p(j) is defined by the binomial distribution (−→ Appendix
A2), and p̃ := pue−r∆t.

c) For large M the binomial distribution is approximated by the normal
distribution with distribution F (x). Show that V

(M)
0 is approximated

by

S0F

(
Mp̃ − α√
Mp̃(1 − p̃)

)
− e−rT KF

(
Mp − α√
Mp(1 − p)

)
,

where

α := − log S0
K + M log d

log u − log d
.

d) Substitute the p, u, d by their expressions from (1.11) to show

Mp − α√
Mp(1 − p)

−→ log S0
K + (r − σ2

2 )T

σ
√

T

for M → ∞. Hint: Use Exercise 1.6: Up to terms of high order the
approximations u = eσ

√
∆t, d = e−σ

√
∆t hold. (In an analogous way

the other argument of F can be analyzed.)
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Fig. 1.20. Illustration of a binomial tree and payoff for Exercise 1.8, here for a put,
(S, t) points for M = 8, K = S0 = 10. The binomial density is shown, scaled with
factor 10.
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Exercise 1.9

In Definition 1.7 the requirement (a) W0 = 0 is dispensable. Then the requi-
rement (b) reads

E(Wt − W0) = 0 , E((Wt − W0)2) = t .

Use these relations to deduce (1.21).
Hint: (Wt − Ws)2 = (Wt − W0)2 + (Ws − W0)2 − 2(Wt − W0)(Ws − W0)

Exercise 1.10
a) Suppose that a random variable Xt satisfies Xt ∼ N (0, σ2). Use (A2.1)

to show
E(X4

t ) = 3σ4 .

b) Apply a) to show the assertion in Lemma 1.9,

E

∑
j

((∆Wj)2 − ∆tj)

2

= 2
∑

j

(∆tj)2

Exercise 1.11 Analytical Solution of Special SDEs

Apply Itô’s lemma to show

a) Xt = exp
(
Wt − 1

2 t
)

solves dXt = XtdWt

b) Xt = exp (2Wt − t) solves dXt = Xtdt + 2XtdWt

Hint: Use suitable functions g with Yt = g(Xt, t). In (a) start with Xt = Wt

and g(x, t) = exp(x − 1
2 t).

Exercise 1.12 Moments of the Lognormal Distribution

For the density function f(S; t − t0, S0) from (1.38) show

a)
∫∞
0 Sf(S; t − t0, S0)dS = S0e

µ(t−t0)

b)
∫∞
0 S2f(S; t − t0, S0)dS = S2

0e(σ2+2µ)(t−t0)

Hint: Set y = log(S/S0) and transform the argument of the exponential
function to a squared term.
In case you still have strength afterwards, calculate the value of S for which
f is maximal.

Exercise 1.13 Return of the Underlying

Let a time series S1, ..., SM of a stock price be given (for example the data of
Figure 1.13 in the internet http://www.mi.uni-koeln.de/numerik/compfin).
The return

R̂i,j :=
Si − Sj

Sj
,
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an index number of the success of the underlying, lacks the desirable property
of additivity

RM,1 =
M∑
i=2

Ri,i−1. (∗)

The log-return
Ri,j := log Si − log Sj .

has better properties.
a) Show Ri,i−1 ≈ R̂i,i−1, and
b) Ri,j satisfies (∗).
c) For empirical data calculate the Ri,i−1 and set up histograms.
d) Suppose S is lognormally distributed. How can a value of the volatility

be obtained from an estimate of the variance?
e) The mean of the 26866 returns of the time period of 98.66 years of

Figure 1.19 is 0.000199 and the standard deviation is 0.01069. Calculate
an estimate of the historical volatility σ.


