CHAPTER 2

FROM HILBERT TO KRONECKER

1. INTRODUCTION. METAMATHEMATICS

1.1. Introduction

Hilbert uses the expression «das inhaltliche logische Schliessen»' which I
translate by "internal logic", rather than logic of content. Brouwer and H. Weyl® use
also the expression to designate an inner logic different from formal (external) logic
which mirrors only the superficial structure of mathematics. For Hilbert, internal logic
is not ordinary or formal logic, the role of which is only ancillary, that is the
demonstration of theorems in a given mathematical theory. But internal logic, often
identified with metamathematics®, should be considered as an "intramathematics”" in
the sense that the inner consistency of axioms is more important than the deduction of
particular theorems. In other words, proof theory <Beweistheorie> or
<Metamathematik> is an internal logic to the extent it describes the inner workings of
a mathematical theory. Proof theory has been seen as the theory of formal systems
and, by extension, as the very embodiment of formalism. The hypothesis that I want to
defend goes the other way : internal logic is the opposite of formalism and Hilbert’s
endcavour or programme could be formulated in the following terms : internal finitary
logic reduces infinitary formal logic in the same manner that a finitary mathematical
theory (like arithmetic) reduces the infinite problems of the theory of forms or the
theory of invariants to a finite calculus.

1 Cf. D. Hilbert (1930).
2 Weyl uses the term "intrinsic” which is very close to our "internal":
Each field of knowledge, when it cristallizes into a formal theory, seems to carry with it

its intrinsic logic which is part of the formalized symbolic system and this logic will,
generally speaking, differ in different fields (Weyl, 1968, 111, p. 705).

<Inhaltlich> has been translated sometimes by "contentual”, it could also be rendered by "concrete” or
"substantive”. Beyond stylistic reasons, my use of "internal" is pointed and refers to a foundational
approach which I have attempted to justify elsewhere (see Gauthier, 1991).

3 Cf. D. Hilbert (1932, Ul p. 174). For Hilbert’s program, see G. Kreisel (1958) who does not however

mention Kronecker’s influence.



FROM HILBERT TO KRONECKER 23

That hypothesis relies heavily on the assumption that Hilbert has been inspired by
Kronecker’s mathematical practice, especially by his fundamental work Grundziige
einer arithmetischen Theorie der algebraischen Gridssen («Foundations of an
arithmetical theory of algebraic quantities »). My contention is, that despite his rare
admission of a Kroneckerian influence (see below), Hilbert saw Kronecker’s work as
a model of mathematical practice, not as a categorical imperative of philosophical
import. Hardly a constant adherent to Kronecker’s finitism, he nevertheless stressed
the importance of finiteness results and the constructive content of mathematical
results. My hypothesis, in this attempted reconstruction of Hilbert’s programme, is
that despite his oposition to Kronecker’s anti-Cantorism, he wanted to save ideal
structures (in a dialectical retreat from Brouwer’s exclusivist attitude) by granting
them a kind of ideal existence, that is consistency.

Hilbert’s most important results must be replaced in the mathematical tradition he
has inherited, the tradition of Gauss and Kronecker and I want to put the emphasis
mainly on Kronecker who has inspired much of Hilbert’s mathematical work. It is
worth noting at first that Hilbert puts at the very foundation of his entreprise, the
theory of finite intuitive arithmetic (arithmetical sentences without quantifiers); then
follow quantified arithmetic sentences (with 3 or V) which introduce an infinite
(denumerable) number of elements, e.g. Euclid’s theorem of the infinity of primes,
Fermat’s last theorem, etc., all theorems which are not immediately subjected to
negation since they refer to the entire sequence (the set) of natural numbers, and
finally, the transfinite mathematical statements which are transarithmetical by
definition and which one must consider as ideal structures, much alike Kummer’s
ideal numbers, or more apropriately, as we shall see, as Kronecker’s indeterminates
<Unbestimmte>. In order to save Aristotelian logic, that is ordinary formal logic,
Hilbert introduces a formalised language preserving classical laws of quantification
for infinite arithmetical statements and for transfinite or transarithmetic statements.
What Hilbert had sooner seen as formal logic was only the usual logic of ordinary
mathematics interpreted as formal (external) calculus. But one had to go further to
account for the internal character of intuitive finite arithmetic; from there, it should be
possible to conceive an extension to the internal logic of arithmetic, that is a
transarithmetical logic which could encompass the whole of mathematics. But the
extension had to be conservative, i.e. the laws of arithmetic must remain valid and for
that reason a consistency proof of infinite arithmetic (and analysis) was necessary.

Since finite intuitive arithmetic is self-consistent — here Hilbert concurs with
Kronecker as is evident from Hilbert’s early independence results in geometry and
later in his foundational work — and immediately justified in intuition
<Anschauung>, extended consistency has a conceptual <begriffliche> character that
can be secured only by means of logic. Once consistency is obtained, ideal existence
is warranted. I contrast here effective existence (of constructions) with ideal existence
(of structures); the passage between the two is achieved by logic alone (what Hilbert
called Aristotelian logic). Of course, the logic is non-constructive, but it must have a
finitary embodiement, and that will be the task of finitist metamathematics conceived
as an instrument for a consistency proof of analysis and set theory. The concepts of
justification or certification, <Sicherung>, surveyability <Uebersehbarkeit>, are
suposed to garantee the finiteness enjoyed by intuitive arithmetic. If this analysis is



24 CHAPTER 2

right, it shows that Hilbert’s strategy for the consistency problem had to be motivated
by a foundational approach akin to Kronecker’s theory of arithmetic.

2. ARITHMETIC

Hilbert admires Kronecker’s work in arithmetic, but he disaproves of his contempt
for Cantor, whom Kronecker condemned as «perverter of youth ». As Hilbert
declared : « nobody will drive use from the paradise Cantor has created for us »*, and
despite what Kronecker has said about the integers as creations of God’, there is no
doubt that Cantor’s paradise is more populated than Kronecker’s. However, it is not
divine inspiration that one finds in Kronecker, but Gaussian ideas, when he says that
number is a creation of our mind, while space and time have an independent reality
that cannot be determined a priori or in an absolute® fashion. Kronecker here follows
Gauss and Riemann against Kant. But mathematics is the work of a finite mind and
constructive methods - explicit solutions - must replace existence theorems as in the
fundamental theorem of algebra where an algebraic equation without roots (solutions)
leads to a contradiction. Hilbert will listen to Kronecker in his arithmetical works, but
he will turn a deaf ear when he is able to travel the transcendental royal road of
existence theorems in invariant theory.

Already in his works on number theory, Hilbert shows some reluctance to
Kummer’s and Kronecker’s arithmetical spirit. In his report on The theory of
algebraic number fields, Hilbert says :

I have attempted to bypass Kummer’s heavy aparatus of calculation in order to abide by
Riemann’s precept, that is to obtain results through concepts and not by calculation7.

Modern mathematics stands under the sign of number « unter dem Zeichen der Zahl »*
and the arithmetization of function theory (analysis) is meant to show that the proof of
a mathematical fact is ultimately reducible to relations among rational integers’.
Kronecker would not have said differently and the indeterminate coefficients or
simply indeterminates <Unbestimmte> which he introduces in 1881 are algebraic
quantifies (independent variables) playing the role of ideal extensions'’. The theory of
algebraic number fields is based on finitary concepts : in contemporary idiom, one
says that a subfield F of complex numbers is a field of algebraic numbers if it is
restricted to the field of rational numbers Q - a field is any set of numbers in which

4 See Hilbert (1926, p. 170).

5 ¢f. D. Hilbert (1932, I, p. 64 and 1932, IIL, p. 161). Hilbert adds that Kronecker had rejected everything
that transcended the integers.

6 Cf. L. Kronecker (1968, IL, p. 249-274).

7 Cf. L. Kronecker (1968, L, p. 67). Helmut Hasse adds that Hilbert has given new proofs free of Kummer’s
detailed and opaque calculations, (idem , p. 259).

8 Underlined by Hilbert (1932, I, p. 66).

9 (Idem , p. 66).

10 ¢f. L. Kronecker « Grundziige einer arithmetischen Theorie der algebraischen Grossen » (1968, II, p.
237-387).
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for two arbitrary numbers a and b, a+b, a—b, ab and db (for b #0) are also
contained in the set. In the case that F is algebraic number field, the subset of F
containing only the algebraic integers @ is a ring (Dedekind ring); @ is here a
complex number which is the root of a polynominial

bx"+bx" "+ .. +b, =0

where the b, are integers. An ideal A is generated by the algebraic integers
&, q, ..., a of an algebraic number field K if it is defined by the sums

Ao+ Ao +. .+ Ao

where the A, are arbitrary integers. The principal result in that context has been
demonstrated by Dedekind and Kronecker and bears on the finite number of
equivalence classes of an algebraic number field, a result which leads to the
fundamental theorem on the unique factorization of an ideal into prime ideals
(divisible by themselves and by the unit ideal) : the main point here is the divisibility
of any ideal by a finite number of ideals.

It is the field theory of the equivalence classes of ideals which attracts Hilbert and
his last works on number theory treat of the relative Abelian fields and are the source
of what is now called the class field theory. Hilbert maintains that in every case'' one
must find the class field K, for an arbitrary base field k by purely arithmetical
means, although there are transcendental methods available, like Dirichlet’s (Dirichlet
series). The fact that it is still difficult nowadays'? to calculate the class number for
equivalence classes of ideals is a testimony to Hilbert’s arithmetic "ideal"”.

As a matter of fact, the most important results in number theory, the quadratic
reciprocity law (and its generalizations), unique factorization — the fundamental
theorem of arithmetic says that every interger is representable in a unique way by a
product of prime factors — and its generalization in finite fields (of algebraic
numbers), the distribution of primes

. ()
lim——m—=1
noe x/]og X

and Dirichlet’s theorem on the infinity of primes in any arithmetic progression a+ nb
— proven by purely arithmetic means (Selberg in 1949) — all of them make manifest
the finite character of arithmetic and if proofs are often analytical (or transcendental),
the object is essentially finite. The same could be said in algebraic, or better,
arithmetic geometry about Weil’s results on the finite number or rational solutions

11 ¢f. « Ueber die Theorie der relativ-Abelschen Zahlkorper » (1932, II, p. 483-509).
12 See K. Ireland and M. Rosen (1980, chap. 12).
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over finite fields and Faltings’s results on the finite number or rational points on any
elliptic curve of genus = 2 where Fermat’s method of infinite descent", although of
arithmetic ascendency, is often employed in a non-constructive or non-effective way.
On the other side, the stochastic behaviour of primes seems also to call for non-
effectivity, but as the counterpart of the regularity of integers, it is the combinatorial
complexity engendered by the local distribution of (large) primes which accounts for
the probabilistic effects in an absolute natural order (i.e. of integers).

Hilbert conceives the finitary ideal of arithmetic, but he manages his access to it
via non-finitary means. Arithmetization of analysis is a goal for him as much as it is
for Kronecker and he will even say that arithmetization of geometry is achieved in
non-Euclidean geometries through the direct introduction of the number concept'™.
Hilbert’s work in invariant theory goes in the same direction, as we shall now see.

3. ALGEBRA

Algebraic invariant theory stems from number theory, but its history is closely
linked to geometry, since algebraic invariants correspond to invariant properties of
geometric figures. P. Gordan has been the first mathematician to define a complete
system of binary forms

ax” + 2bxy +cy”

(binary, i.e. in two variables) of arbitrary degreen; such a system is finite and
computable. Hilbert establishes the more general existence theorem on the finite
number of forms in a system of arbitrary forms'® with

F=AF +AF, +..+AF,

for definite forms F,F,,...,F_ of the system and arbitrary forms with variables
belonging to a given field. Here the basis theorem (of the system of forms) is the heart
of the matter and it is not difficult to show its kinship with class field theory.
Kronecker again opens the way. In his paper On the full systems of invariants'®,
Hilbert acknowledges that invariant theory is but one example (a remarkable one, to
say the least) of the field theory for algebraic functions of several variables. Kronecker
defines on algebraic function as the root of on irreductible equation f(x) =0 (of
degree n) where f(x) is on irreducible (or prime) polynomial in a domain of

rationality <Rationalitiits-Bereich> (i.e. field). Kronecker had already shown that in

13 André Weil (1979) recognizes the importance of Kronecker in number theory and in algebraic
geometry, as he has emphasized Fermat’s achievements.

14 ¢f, D. Hilbert (1932, T, p. 64).

15 ¢f. D. Hilbert (1932, I, p. 199-257).

16 ¢f. . Hilbert (1932, 11, p. 287-365).





