15 The Baryons

The best known baryons are the proton and the neutron. These are collec-
tively referred to as the nucleons. Our study of deep inelastic scattering has
taught us that they are composed of three valence quarks, gluons and a “sea”
of quark-antiquark pairs. The following treatment of the baryonic spectrum
will, analogously to our description of the mesons, be centred around the
concept of the constituent quark.

Nomenclature. This chapter will be solely concerned with those baryons
which are made up of u-, d- and s-quarks. The baryons whose valence quarks
are just u- and d-quarks are the nucleons (isospin I =1/2) and the A particles
(I =3/2). Baryons containing s-quarks are collectively known as hyperons.
These particles, the A, 3, = and (2, are distinguished from each other by their
isospin and the number of s-quarks they contain.

Name N A | A X = Q
Isospin Iry1/2 3/2|0 1 1/2 0
Strangeness S 0 -1 -2 -3
Number of s-quarks 0 1 2 3

The antihyperons have strangeness +1, +2 or +3 respectively.

The discovery of baryons containing c- and b-quarks has caused this
scheme to be extended. The presence of quarks heavier than the s is sig-
nified by an subscript attached to the relevant hyperon symbol: thus the A}
corresponds to a (udc) state and the E}F has the valence structure (ucc).
Such heavy baryons will not, however, be handled in what follows.

15.1 The Production and Detection of Baryons

Formation experiments. Baryons can be produced in many different ways
in accelerators. In Sect. 7.1 we have already described how nucleon resonances
may be produced in inelastic electron scattering. These excited nucleon states
are also created when pions are scattered off protons.
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One can then study, for example, the energy (mass) and width (lifetime)
of the At resonance in the reaction

7t +p o ATt S p4 ot

by varying the energy of the incoming pion beam
and measuring the total cross section. The largest
and lowest energy peak in the cross section is found
at 1232 MeV. This is known as the A*+(1232).
The diagram shows its creation and decay in terms
of quark lines. In simple terms we may say that the
energy which is released in the quark-antiquark
annihilation is converted into the excitation energy
of the resonance and that this process is reversed
in the decay of the resonance to form a new quark-
antiquark pair. This short lived state decays about
0.5-10~23 5 after it is formed and it is thus only pos-
sible to detect the decay products, i.e., the proton
and the 7. Their angular distribution, however,
may be used to determine the resonances’ spin and parity. The result is found
to be JE =3/2%. The extremely short lifetime attests to the decay taking
place through the strong interaction. At higher centre of mass energies in
this reaction further resonances may be seen in the cross section. These cor-
respond to excited ATT states where the quarks occupy higher energy levels.
Strangeness may be brought into the game by re-
placing the pion beam by a kaon beam and one may
thus generate hyperons. A possible reaction is

K +p—>X* 5p+K .

The intermediate resonance state, an excited state
of the X0, is, like the At extremely short lived
and “immediately” decays, primarily back into a
proton and a negatively charged kaon. The quark
line diagram offers a general description of all those
resonances whose quark composition is such that
they may be produced in this process. Thus ex-
cited A°’s may also be created in the above reac-
tion. The cross sections of the above reactions are
displayed in Fig. 15.1 as functions of the centre of
mass energy. The resonance structures may be eas-
ily recognised. The individual peaks, which give us
the masses of the excited baryon states, are generally difficult to separate
from each other. This is because their widths are typically of the order of
100 MeV and the various peaks hence overlap. Such large widths are charac-
teristic for particles which decay via strong processes.
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Fig. 15.1. The total and elastic cross sections for the scattering of 7+ mesons off
protons (top) and of K~ mesons off protons (bottom) as a function of the mesonic
beam energy (or centre of mass energy) [PD98]. The peaks are associated with short
lived states, and since the total initial charge in wp scattering is +2e the relevant
peaks must correspond to the AT particle. The strongest peak, at a beam energy
of around 300 MeV/c is due to the ground state of the AT™ which has a mass
of 1232 MeV/c*. The resonances that show up as peaks in the K™p cross section
are excited, neutral ¥ and A baryons. The most prominent peaks are the excited
°(1775) und A°(1820) states which overlap significantly.
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In formation experiments, like those treated above, the baryon which is
formed is detected as a resonance in a cross section. Due to the limited number
of particle beams available to us this method may only be used to generate
nucleons and their excited states or those hyperons with strangeness S = —1.

Production experiments. A more general way of generating baryons is
in production experiments. In these one fires a beam of protons, pions or
kaons with as high an energy as possible at a target. The limit on the energy
available for the production of new particles is the centre of mass energy
of the scattering process. As can be seen from Fig. 15.1, for centre of mass
energies greater than 3 GeV no further resonances can be recognised and the
elastic cross section is thereafter only a minor part of the total cross section.
This energy range is dominated by inelastic particle production.

In such production experiments one does not look for resonances in the
cross section but rather studies the particles which are created, generally in
generous quantities, in the reactions. If these particles are short lived, then
it is only possible to actually detect their decay products. The short lived
states can, however, often be reconstructed by the invariant mass method. If
the momenta p, and energies E; of the various products can be measured,
then we may use the fact that the mass Mx of the decayed particle X is given
by

Mt = pyc® = (Zpic) = (ZE) - <Zpic> . (15.1)

In practice one studies a great number of scattering events and calculates
the invariant mass of some particular combination of the particles which
have been detected. Short lived resonances which have decayed into these
particles reveal themselves as peaks in the invariant mass spectrum. On the
one hand we may identify short lived resonances that we already knew about
in this way, on the other hand we can thus see if new, previously unknown
particles are being formed.

As an example consider the invariant mass spectrum of the A° + 7+ final
particles in the reaction

K +p—onat+a +A.

This displays a clear peak at 1385 MeV/c? (Fig. 15.2) which corresponds to
an excited Xt. The X** baryon is therefore identified from its decay into
»H**+ — 7t 4 A Since this is a strong decay all quantum numbers, e.g.,
strangeness and isospin, are conserved. In the above reaction it is just as
likely to be the case that a ¥*~ state is produced. This would then decay
into A° +7 . Study of the invariant masses yields almost identical masses for
these two baryons.! This may also be read off from Fig. 15.2. The somewhat

! The mass difference between the X*~ and the X** is roughly 4MeV/c? (see
Table 15.1 on p. 210).
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Fig. 15.2. Invariant mass spectrum of the particle combinations A°+7% (left) and
A’ + 7~ (right) in the reaction K~ 4+p — 7747~ +A’. The momentum of the
initial kaon was 1.11 GeV/c. The events were recorded in a bubble chamber. Both
spectra display a peak around 1385 MeV/ ¢2, which correspond to ©*t and ¥*~
respectively. A Breit-Wigner distribution (continuous line) has been fitted to the
peak. The mass and width of the resonance may be found in this way. The energy of
the pion which is not involved in the decay is kinematically fixed for any particular
beam energy. Its combination together with the A° yields a “false” peak at higher
energies which does not correspond to a resonance (from [El61]).

flatter peak at higher energies visible in both spectra is a consequence of the
possibility to create either of these two charged ¥ resonances: the momentum
and energy of the pion which is not created in the decay is fixed and so creates
a ”‘fictitious”’ peak in the invariant mass spectrum. This ambiguity can be
resolved by carrying out the experiment at differing beam energies. There
is a further small background in the invariant mass spectrum which is not
correlated with the above, i.e., it does not come from X** decay. We note
that the excited ¥ state was first found in 1960 using the invariant mass
method [Al160].

If the baryonic state that we wish to investigate is already known, then
the resonance may be investigated in individual events as well. This is, for
example, important for the above identification of the ©** since the A° itself
decays via A’ — p+7— and must first be reconstructed by the invariant mass
method. The detection of the A° is rendered easier by its long lifetime of
2.6-1071%5s (due to its weak decay). On average the A” transverses a distance
from several centimetres to a few metres, this depends upon its energy, before
it decays. From the tracks of its decay products the position of the A”’s decay
may be localised and distinguished from that of the primary reaction.

A nice example of such a step by step reconstruction of the initially cre-
ated, primary particles from a X~ +nucleus reaction is shown in Fig. 15.3.
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Fig. 15.3. Detection of a baryon decay cascade at the WA89 detector at the CERN
hyperon beam (based upon [Tr92]). In this event a X~ hyperon with 370 GeV
kinetic energy hits a thin carbon target. The paths of the charged particles thus
produced are detected near to the target by silicon strip detectors and further away
by drift and proportional chambers. Their momenta are determined by measuring
the deflection of the tracks in a strong magnetic field. The tracks marked in the
figure are based upon the signals from the various detectors. The baryonic decay
chain is described in the text.

The method of invariant masses could be used to show a three step process
of baryon decays. The measured reaction is

YTHA s p+ K4t 4T 1 A

The initial reaction takes place at one of the protons of a nucleus A. All of
the particles in the final state were identified (except for the final nucleus A’)
and their momenta were measured. The tracks of a proton and a 7~ could
be measured in drift and proportional chambers and followed back to the
point (3), where a A° decayed (as a calculation of the invariant mass of the
proton and the 7~ shows). Since we thus have the momentum of the A° we
can extrapolate its path back to (2) where it meets the path of a #—. The
invariant mass of the A° and of this 7~ is roughly 1320 MeV /c? which is the
mass of the =~ baryon. This baryon can in turn be traced to the target at
(1). The analysis then shows that the =2~ was in fact the decay product of a
primary Z*0 state which “instantaneously” decayed via the strong interaction
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into a 2~ and a . The complete reaction in all its glory was therefore the
following

Y H+ASEO LK A
|—>Ef+7r+
|—>A0+7r_

|—>p+7r_.

This reaction also exemplifies the associated production of strange particles:
the ¥~ from the beam had strangeness —1 and yet produces in the collision
with the target a Z*0 with strangeness —2. Since the strange quantum number
is conserved in strong interactions an additional K+ with strangeness +1 was
also created.

15.2 Baryon Multiplets

We now want to describe in somewhat more detail which baryons may be
built up from the u-, d- and s-quarks. We will though limit ourselves to
the lightest states, i.e., those where the quarks have relative orbital angular
momentum ¢ = 0 and are not radially excited.

The three valence quarks in the baryon must, by virtue of their fermionic
character, satisfy the Pauli principle. The total baryonic wavefunction

¢’cota1 = gspatial . Cﬂavour . Xspin : ¢c010ur

must in other words be antisymmetric under the exchange of any two of the
quarks. The total baryonic spin S results from adding the three individual
quark spins (s = 1/2) and must be either S = 1/2 or S = 3/2. Since we
demand that £ = 0, the total angular momentum J of the baryon is just the
total spin of the three quarks.

The baryon decuplet. Let us first investigate the J© = 3/2% baryons. Here
the three quarks have parallel spins and the spin wave function is therefore
symmetric under an interchange of two of the quarks. For £ = 0 states this
is also true of the spatial wave function. Taking, for example, the uuu state
it is obvious that the flavour wave function has to be symmetric and this
then implies that the colour wave function must be totally antisymmetric in
order to yield an antisymmetric total wave function and so fulfill the Pauli
principle. Because baryons are colourless objects the totally antisymmetric
colour wave function can be constructed as follows:

1
¢’colour = 76 Z Z Z Eapfy |qaqﬂq’y> ’ (15'2)

a=r,g,b B=r,g,b y=r,g,b
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where we sum over the three colours, here denoted by red, green and blue,
and e, is the totally antisymmetric tensor.

If we do not concern ourselves with radial excitations, we are left with
ten different systems that can be built out of three quarks, are J© = 3/27F
and have totally antisymmetric wave functions. These are

|AHH) = [ututu’)  |A) = [uutd?) [A%) = [uTdfdT) |AT) = |dTd"d")
) = [utulst)  [£90) = [ufdlsT)  [%0) = |dldlsT)
=¥0N — [utsTst =*) = [dfsTst
=% = | ) 1E) = )

|Q_> = ‘STSTST> .

Note that we have only given the spin-flavour part of the total baryonic wave
function here, and that in an abbreviated fashion. It must be symmetric
under quark exchange. In the above notation this is evident for the pure uuu,
ddd and sss systems. For baryons built out of more than one quark flavour
the symmetrised version contains several terms. Thus then the symmetrised
part of the wave function of, for example, the AT reads more fully:

IAT) = %{mﬂﬁd?” 'ttty + |dTuu®)}

In what follows we will mostly employ the abbreviated notation for the bary-
onic quark wave function and quietly assume that the total wave function
has in fact been correctly antisymmetrised.

If we display the states of this baryon decuplet on an I3 vs. S plot, we
obtain (Fig. 15.4) an isosceles triangle. This reflects the threefold symmetry
of these three-quark systems.

The baryon octet. We are now faced with the question of bringing the
nucleons into our model of the baryons. If three quarks, each with spin 1/2,
are to yield a spin 1/2 baryon, then the spin of one of the quarks must
be antiparallel to the other two, i.e., we must have 11]. This spin state is
then neither symmetric nor antisymmetric under spin swaps, but rather has
a mixed symmetry. This must then also be the case for the flavour wave
function, so that their product, the total spin-flavour wave function, is purely
symmetric. This is not possible for the uuu, ddd and sss quark combinations
and indeed we do not find any ground state baryons of this form with J = 1/2.
There are then only two different possible combinations of u and d quarks
which can fulfill the necessary symmetry conditions on the wave function of
a spin 1/2 baryon, and these are just the proton and the neutron.

This simplified treatment of the derivation of the possible baryonic states
and their multiplets can be put on a firmer quantitative footing with the help
of SU(6) quark symmetry, we refer here to the literature (see, e.g., [C179]).
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The proton and neutron wave functions may be schematically written as
") = [uTu’d*)  [nT) = |urdd").

We now want to construct the symmetrised wave function. For a proton with,
e.g., the z spin component mj=+1/2, we may write the spin wave function
as a product of the the spin wave function of one quark and that of the
remaining pair:

Xp(J=1,ms=1) = /2/3Xuu(1, DXa(3, — 1) — v/1/3 Xuu(1,0)Xa (3, 3).

(15.3)
Here we have chosen to single out the d-quark and coupled the u-quark pair.
(If we initially single out one of the u-quarks we obtain the same result, but
the notation becomes much more complicated.) The factors in this equation
are the Clebsch-Gordan coefficients for the coupling of spin 1 and spin 1/2.
Replacing X(1,0) by the correct spin triplet wave function (1]+{1)/v/2 then
yields in our spin-flavour notation

= /2/3[u"u’d*) — \/1/6 [uTutd") — /1/6 [utu’d). (15.4)

This expression is still only symmetric in terms of the exchange of the first
and second quarks, and not for two arbitrary quarks as we need. It can,
however, be straightforwardly totally symmetrised by swapping the first and
third as well as the second and third quarks in each term of this last equation
and adding these new terms. With the correct normalisation factor the totally
symmetric proton wave function is then

Ip") \/_ { 2|u"u"d) + 2 [uTd "y +2|druTa’) — [ulutd)

—[u’d"u?) — [dTuut) — |utuTd") — [utdTu®) — [dTuuT) . (15.5)

The neutron wave function is trivially found by exchanging the u- and d-
quarks:

1
InT) = T { 21d"d"u*) + 2|d"u*d") + 2|utd’d") — |dTd*u")

—[dTu’dty — [uTd’dby — |atdul) — |dtu’d) — [uTd¥dT) }. (15.6)

The nucleons have isospin 1/2 and so form an isospin doublet. A further
doublet may be produced by combining two s-quarks with a light quark. This
is schematically given by

|=01) = |utsTsT) |Z=T) = |d*sTsT) . (15.7)

The remaining quark combinations are an isospin triplet and a singlet:
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Fig. 15.4. The baryon J¥ = 3/2% decuplet (left) and the J¥ = 1/27 octet (right)
in I3 vs. S plots. In contradistinction to the mesonic case the baryon multiplets are
solely composed of quarks. Antibaryons are purely composed of antiquarks and so
form their own, equivalent antibaryon multiplets.

IS+ = Ju'ulsh)
|20T) = |uTdTst) |AT) = |uTd+sT) (15.8)
| = |dTdTst) .

Note that the uds quark combination appears twice here and depending upon
the relative quark spins and isospins can correspond to two different particles.
If the u and d spins and isospins couple to 1, as they do for the charged X
baryons, then the above quark combination is a X°. If they couple to zero we
are dealing with a A°. These two hyperons have a mass difference of about
80 MeV/c?. This is evidence that a spin-spin interaction must also play an
important role in the physics of the baryon spectrum. The eight JE =1/ 2"
baryons are displayed in an I5 vs. S plot in Fig. 15.4. Note again the threefold
symmetry of the states.

15.3 Baryon Masses

The mass spectrum of the baryons is plotted in Fig. 15.5 against strangeness
and isospin. The lowest energy levels are the JZ = 1/2T and JP = 3/27
multiplets, as can be clearly seen. It is also evident that the baryon masses
increase with the number of strange quarks, which we can put down to the
larger mass of the s-quark. Furthermore we can see that the J¥ = 3/27F
baryons are about 300 MeV /c? heavier than their J¥=1/2% equivalents. As
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Fig. 15.5. The masses of the decuplet and octet baryons plotted against their
strangeness S and isospin I. The angular momenta J of the various baryons are
shown through arrows. The J¥ =3/2% decuplet baryons lie significantly above their
JP=1/27 octet partners.

was the case with the mesons, this effect can be traced back to a spin-spin
interaction 5
A7 R o;-0;

Ves(aiq;) = 9" L

g o(z), (15.9)
which is only important at short distances. The observant reader may no-
tice that the 4/9 factor is only half that which we found for the quark-
antiquark potential in the mesons (13.10), this is a result of QCD consider-
ations. Eq. (15.9), it should be noted, describes only the interaction of two
quarks with each other and so to describe the baryon mass splitting we need
to sum the spin-spin interactions over all quark pairs. The easiest cases are
those like the nucleons, the A’s and the 2 where the constituent masses of
all three quarks are the same. Then we just have to calculate the expectation
values for the sums over o; - o; . Denoting the total baryon spin by S and
using the identity S = (s1 + s 4 s3)? we find in a similar way to (13.11):

3 3
4 —3for S=1/2,
o; O, = — Si‘s': 15.10
Z U 2 Z ! {—|—3f0rS:3/2. ( )
3,7=1 1,j=1
1<j 1<j

The spin-spin energy (mass) splitting for these baryons is then just
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Table 15.1. The masses of the lightest baryons both from experiment and as fitted
from (15.12). The fits were to the average values of the various multiplets and are
in good agreement with the measured masses. Also included in this table are the
lifetimes and most important decay channels of these baryons [PD98]. The four
charged A resonances are not individually listed.

s | 1 |Baryon Mass [MeV/c?] -y Primary Decay
theor.  exp. decay channels | type
P 938.3 stable? — —
0 |1/ 939
n 939.6 886.7 pe T. 100% | weak
— 1p—10 | DT 64.1 % | weak
i 0| A 1114 | 1115.7 2631071 | °, 357% | wenk
Rl
0
| + 10—10 | PT 51.6 % | weak
N 1 pX 1189.4 108010 1% | P2 o
3 Liose [ 1179 141926 | 7.4-1072° | Ay ~ 100% | elmgn.
3 - 1197.4 (1.48-107"° [nx~  99.8% | weak
1 =0 1315 [2.90 107 |A7° =~ 100% | weak
—2|1/p 1327
= 1321 [1.64-107° |An~ =~ 100% | weak
0 |32 A 1239 | 1232 | 0.55-10 2 | N« 99.4% | stron
g
- n¥t 1383
+
Sl 1| w0 [ 1381|1384 | 17.10 % AT 887% | strong
Y 12% | strong
l” n*- 1387
=~ =%0
— = 1532
2 | =212 ———7 1529 35 7-107% |Er  ~100% | strong
'Ti =
j=]
3 AK~ 68 % | weak
Q130 o |1682 | 16724 [0.82-1071 | =%~  23%| weak
=0 9% | weak
4
418 mog
-3+ ~—=——|¥(0)]> for the nucleons
2 9
9c3 my 4
48 1o
AMg =4 +3- ————[¢(0)]* for the A states, (15.11)
9c mya
413 1o
+3- §c_3m—; |¥(0)|2  for the Q baryon.
\ S

Here [1(0)|? is the probability that two quarks are at the same place. Some-
what more complicated expressions may be obtained for those baryons made
up of a mixture of heavier s- and lighter u- or d-quarks (see the exercises).
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With the help of this mass splitting formula a general expression for the
masses of all the /=0 baryons may be written:

M=) "mi+AM,. (15.12)

The three unknowns here, i.e., myq4, ms and as/y(0)|?, may be obtained
by fitting to the experimental masses. As with the mesons we assume that
as|¥(0)|? is roughly the same for all of the baryons. We so obtain the following
constituent quark masses: my,q = 363MeV/c?, ms ~ 538 MeV/c? [Ga8l].
The fitted baryon masses are within 1 % of their true values. (Table 15.1). The
constituent quark masses obtained from such studies of baryons are a little
larger than their mesonic counterparts. This is not necessarily a contradiction
since constituent quark masses are generated by the dynamics of the quark-
gluon interaction and the effective interactions of a three-quark system will
not be identical to those of a quark-antiquark one.

15.4 Magnetic Moments

The constituent quark model is satisfyingly successful when its predictions
for baryonic magnetic moments are compared with the results of experiment.
In Dirac theory the magnetic moment p of a point particle with mass M and
spin 1/2 is

eh
2M
This relationship has been experimentally confirmed for both the electron and
the muon. If the proton were an elementary particle without any substructure,
then its magnetic moment should be one nuclear magneton:

HDirac = (1513)

__eh
2M,

piN (15.14)

Experimentally, however, the magnetic moment of the proton is measured to
be Hp = 2.79 MUN -

Magnetic moments in the quark model. The proton magnetic moment
in the ground state, with £ =0, is a simple vectorial sum of the magnetic
moments of the three quarks:

Bp = By + By + Hg - (15.15)

The proton magnetic moment u;, then has the expectation value

P = (Bp) = (Yplry|tp) (15.16)
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where 1), is the total antisymmetric quark wave function of the proton. To
obtain p, we merely require the spin part of the wave function, X,. From
(15.3) we thus deduce

4 1

2 1
Hp = g(uu + pu — pa) + gHd = gHu = 3Hd; (15.17)

where p, q are the quark magnetons:

Zu,d el

,u/u,d (1518)

2mu,d

The other JF =1/2% baryons with two identical quarks may be described by
(15.17) with a suitable change of quark flavours. The neutron, for example,
has a magnetic moment

4 1

R 15.19
Hn = 3d = Zh (15.19)

and analogously for the ¥ we have

41
_ AL 15.2
pee = g = S (15.20)

The situation is a little different for the A°. As we know this hyperon
contains a u- and a d-quark whose spins are coupled to 0 and so contribute
neither to the spin nor to the magnetic moment of the baryon (Sect. 15.2).
Hence both the spin and the magnetic moment of the A° are determined
solely by the s-quark:

HA = W - (15.21)

To the extent that the u and d constituent quark masses can be set equal
to each other we have p, = —2u4q and may then write the proton and neutron
magnetic moments as follows

3

5 Hu, HUn = —Hu - (1522)

:U'p:2

We thus obtain the following prediction for their ratio

a2
N (15.23)

Hp 3’
which is in excellent agreement with the experimental result of —0.685.
The absolute magnetic moments can only be calculated if we can specify
the quark masses. Let us first, however, look at this problem the other way
round and use the measured value of pp, to determine the quark masses. From

eh

= 2. =2.
Lp 79 uN 792Mp

(15.24)
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and 5 5
e
Hp = ghu =5~ (15.25)
we obtain M
my = Tﬁ) =336 MeV/c?, (15.26)

which is very close indeed to the mass we found in Sect. 15.3 from the study
of the baryon spectrum.

Measuring the magnetic moments. The agreement between the experi-
mental values of the hyperon magnetic moments with the predictions of the
quark model is impressive (Table 15.2). Our ability to measure the mag-
netic moments of many of the short lived hyperons (7 & 1071%s) is due to
a combination of two circumstances: hyperons produced in nucleon-nucleon
interactions are polarised and the weak interaction violates parity maximally.
In consequence the angular distributions of their decay products are strongly
dependent upon the direction of the hyperons’ spins (i.e., their polarisations).

Let us clarify these remarks by studying how the magnetic moment of the
A0 is experimentally measured. Note that this is the most easily determined
of the hyperon magnetic moments. The decay

AN Ssptn

Table 15.2. Experimental and theoretical values of the baryon magnetic moments
[La91, PD98]. The measured values of the p, n and A’ moments are used to predict
those of the other baryons. The X° hyperon has a very short lifetime (7.4 - 1072°s)
and decays electromagnetically via X° — A° 4+ ~. For this particle the transition
matrix element (A°|u|X°) is given in place of its magnetic moment.

Baryon u/pn (Experiment) Quark model: u/uN

+2.792 847 386 £ 0.000 000 063 (4ppa — pa)/3 —

n | —1.91304275 =+ 0.00000045 (4p1q — pu)/3 —

A —0.613 + 0.004 s —
wt +2.458 +0.010 (4ppa — ps)/3 +2.67
0 (2pu + 214 — ps) /3 +0.79
0 5 A% | —-1.61 +0.08 (td — pa)/V3 —-1.63
$= | -1.160 +0.025 (4p1a — p1s)/3 ~1.09
20| —1.250 +0.014 (4ps — pu)/3  —1.43
== | —0.6507 +0.0025 (4ps — pa)/3  —0.49
Q- —2.02 +0.05 s —1.84
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Pk

« Precession

Proton beam

Fig. 15.6. Sketch of the measurement of the magnetic moment of the A°. The
hyperon is generated by the interaction of a proton coming in from the left with
a proton in the target. The spin of the A is, for reasons of parity conservation,
perpendicular to the production plane. The A° then passes through a magnetic
field which is orthogonal to the particle’s spin. After traversing a distance d in the
magnetic field the spin has precessed through an angle ¢.

is rather simple to identify and has the largest branching ratio (64 %). If the
A° spin is, say, in the positive £ direction, then the proton will most likely be
emitted in the negative Z direction, in accord with the angular distribution

W) x 1+ acosb where a =~ 0.64. (15.27)

The angle 6 is the angle between the spin of the A° and the momentum of
the proton. The parameter o depends upon the strength of the interference
of those terms with orbital angular momentum £=0 and £=1 in the p-n~
system and its size must be determined by experiment.

The asymmetry in the emitted protons then fixes the A polarisation.
Highly polarised A° particles may be obtained from the reaction

p+p =K "+ A +p.

As shown in Fig. 15.6, the spin of the A? is perpendicular to the production
plane defined by the path of the incoming proton and that of the A° itself.
This is because only this polarisation direction conserves parity, which is
conserved in the strong interaction.

If the A° baryon traverses a distance d in a magnetic field B, where the
field is perpendicular to the hyperon’s spin, then its spin precesses with the
Larmor frequency

wr, = “%B (15.28)

through the angle
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d
¢=wLAt = WL (15.29)

where v is the speed of the A° (this may be reconstructed by measuring the
momenta of its decay products, i.e., a proton and a pion). The most accurate
results may be obtained by reversing the magnetic field and measuring the
angle 2 - ¢ which is given by the difference between the directions of the A°
spins (after crossing the various magnetic fields). This trick neatly eliminates
most of the systematic errors. The magnetic moment is thus found to be
[PD94]

pua = (—0.613 £ 0.004) py - (15.30)

If we suppose that the s-constituent quark is a Dirac particle and that its
magnetic moment obeys (15.18), then we see that this result for pa is con-
sistent with a strange quark mass of 510 MeV/c2.

The magnetic moments of many of the hyperons have been measured in
a similar fashion to the above. There is an additional complication for the
charged hyperons in that their deflection by the magnetic field must be taken
into account if one wants to study spin precession effects. The best results
have been obtained at Fermilab and are listed in Table 15.2. These results
are compared with quark model predictions. The results for the proton, the
neutron and the A° were used to fix all the unknown parameters and so
predict the other magnetic moments. The results of the experiments agree
with the model predictions to within a few percent.

These results support our constituent quark picture in two ways: firstly
the constituent quark masses from our mass formula and those obtained from
the above analysis of the magnetic moments agree well with each other and
secondly the magnetic moments themselves are consistent with the quark
model.

It should be noted, however, that the deviations of the experimental values
from the predictions of the model show that the constituent quark magnetic
moments alone do not suffice to describe the magnetic moments of the hy-
perons exactly. Further effects, such as relativistic ones and those due to the
quark orbital angular momenta, must be taken into account.

15.5 Semileptonic Baryon Decays

The weak decays of the baryons all follow the same pattern. A quark emits
a virtual W* boson and so changes its weak isospin and turns into a lighter
quark. The W* decays into a lepton-antilepton pair or, if its energy suf-
fices, a quark-antiquark pair. In the decays into a quark-antiquark pair we
actually measure one or more mesons in the final state. These decays cannot
be exactly calculated because of the strong interaction’s complications. Mat-
ters are simpler for semileptonic decays. The rich data available to us from
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semileptonic baryon decays have made a decisive contribution to our cur-
rent understanding of the weak interaction as formulated in the generalised
Cabibbo theory.

We now want to attempt to describe the weak decays of the baryons
using our knowledge of the weak interaction from Chap. 10. The weak decays
take place essentially at the quark level, but free quarks do not exist and
experiments always see hadrons. We must therefore try to interpret hadronic
observables within the framework of the fundamental theory of the weak
interaction. We will start by considering the g-decay of the neutron, since
this has been thoroughly investigated in various experiments. It will then be
only a minor matter to extend the formalism to the semileptonic decays of
the hyperons and to nuclear 5-decays.

We have seen from leptonic decays such as uy~ — e~ + 7, + v, that the
weak interaction violates parity conservation maximally, which must mean
that the coupling constants for the vector and axial vector terms are of the
same size. Since neutrinos are left handed and antineutrinos are right handed
the coupling constants must have opposite signs (V—A theory). The weak de-
cay of a hadron really means that a confined quark has decayed. It is therefore
essential to take the quark wave function of the hadron into account. Fur-
thermore strong interaction effects of virtual particles cannot be neglected:
although the effective electromagnetic coupling constant is for reasons of
charge conservation not altered by the cloud of sea quarks and gluons, the
weak coupling is indeed so changed. In what follows we will initially take the
internal structure of the hadrons into account and then discuss the coupling
constants.

B-decay of the neutron. The §-decay of a free neutron
n—>p+e +7 (15.31)

(maximum electron energy Fo = 782 keV, lifetime 15 minutes) is a rich source
of precise data about the low energy behaviour of the weak interaction.

To find the form of the S-spectrum and the coupling constants of neutron
(-decay we consider the decay probability. This may be calculated from the
golden rule in the usual fashion. If the electron has energy E., then the decay
rate is

27 dos(FEo, Ee
dW(Ee):#MﬁF;f(dE“ )
e

where doy(Eo, E;)/dE, is the density of antineutrino-electron final states
with total energy Ep and the electron having energy E. and My, is the
matrix element for the S-decay.

dE, , (15.32)

Vector transitions. A (-decay which takes place through a vector coupling
is called a Fermi transition. The direction of the quark’s spin is unaltered in
these decays. The change of a d- into a u-quark is described by the ladder
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operator of weak isospin T} which changes a state with 7= —1/2 into one
with T=+1/2.

The matrix element for neutron S-decay has a leptonic and a quark part.
Conservation of angular momentum prevents any interference between vector
and axial vector transitions, i.e., a quark vector transition necessarily implies
a leptonic vector transition. Since we already have cy = —cp = 1 for leptons,
we do not need to worry further about their part of the matrix element.

The matrix element for Fermi decays may then be written as

3

G
(Myilp = S5 ev [{(uud | YT 4| udd)| (15.33)
=1

where the sum is over the three quarks. According to the definition (10.4)
the Fermi constant G includes the propagator term and the coupling to the
leptons. The initial neutron state has the wave function |udd) and the final
state is described by the quark combination |uud ). The wave functions of the
electron and the antineutrino can each be replaced by 1/ V'V, since we have
pR/h < 1.

The u- and d-quarks in the proton and neutron wave functions are eigen-
states of strong isospin. In 5-decay we need to consider the eigenstates of the
weak interaction. We therefore recall that while the ladder operators Iy of
the strong force map |u) and |d) onto each other, the T operators connect
the |u) and |d’) quark states. The overlap between |d) and |d') is, according
to (10.16), fixed by the cosine of the Cabibbo angle. Hence

(u|Ty|d) = (u|I4|d) - cos ¢ where cosfc ~ 0.98. (15.34)

The vector component of the matrix element is then

G > G
My = 7FCOSGC -cv(uud|ZIi,Jr [udd) = 7FCOSOC -ey-1.  (15.35)

i=1

Here we have employed the fact that the sum (uud|), I; |udd) must be
unity since the operator ), I, ; applied to the quark wave function of the
neutron just gives the quark wave function of the proton. This follows from
isospin conservation in the strong interaction and may be straightforwardly
verified with the help of (15.5) and (15.6). We thus see that the Fermi matrix
element is independent of the internal structure of the nucleon.

Axial transitions. Those (-decays that take place as a result of an axial
vector coupling are called Gamow- Teller transitions. In such cases the direc-
tion of the fermion spin flips over. The matrix element depends upon the
overlap of the spin densities of the particles carrying the weak charge in the
initial and final states. The transition operator is then ca Ty o.

The universality of the weak interaction means that this result should also
hold for free point quarks. Since quarks are always trapped inside hadrons, we
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need to consider the internal structure of the nucleon if we want to calculate
such matrix elements. From the constituent quark model we have

3
Myilgr = %CA (uud | ;1},+a| udd)| (15.36)
Since the squares of the expectation values of the components of o are
equal to each other, (3>, 0i.)? = (3, 0iy)? = (3, 0i,2)?, it is sufficient to
calculate the expectation value of o, = (uud|)_, I; y0; .| udd). One finds
from (15.5), (15.6) and some tedious arithmetic that

5
d I; Lo;,ludd) = = . 15.
(wd| Y2 For o dd) = 3 (15.37)

The total matrix element. In experiments we measure the properties of
the nucleon, such as its spin, and not those of the quarks. To compare theory
with experiment we must therefore reformulate the matrix element so that
all operators act upon the nucleon wave function. The square of the neutron
decay matrix element may be written as

2 2
g g
Mail = 5 oIz + 5 [(plTs oln)l* - (15.39)

We stress that I and o now act upon the wave function of the nucleon. The
quantities gy and ga are those which are measured in neutron (3-decay and
describe the absolute strengths of the vector and axial vector contributions.
They contain the product of the weak charges at the leptonic and hadronic
vertices.
Since the proton and the neutron form an isospin doublet, (15.38) may
be written as
IMyil* = (6% +393)/V7 . (15.39)

We note that the factor of 3 in the axial vector part is due to the expectation
value of the spin operator o2 = 02 + 05 + o2

In the constituent quark model gy and ga are related to the quark de-
pendent coupling constants cy and ca as follows:

gv = Gr cosfc ey, (15.40)

5
ga ~ Gr cosfg 3 CA - (15.41)

The Fermi matrix element (15.35) is independent of the internal structure
of the neutron and (15.40) is as exact as the isospin symmetry of the proton
and the neutron. The axial vector coupling, on the other hand, does depend
upon the structure of the nucleon. In the constituent quark model it is given
by (15.41). It is important to understand that the factor of 5/3 is merely an
estimate, since the constituent quark model only gives us an approximation
of the nucleon wave function.
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The neutron lifetime. The lifetime is given by the inverse of the total
decay probability per unit time:

1 Bo aw Bo on » dos(Eo, E)
2= S dE, = My L g R, . 15.42
T /m dE, /m n Ml dE, (15.42)

Assuming that the matrix element is independent of the energy, we can pull
it outside the integral. The state density os(Eo, E.) may, in analogy to (4.18)
and (5.21), be written as

(4r)? 5 dp. , dp,

V2dE, , 15.43
(2rh)s Ve 4B, P dE, (1543)

de (E07 Ee) =

where we have taken into account that we here have an electron and a neu-
trino and hence a 2-particle state density and V is the volume in which the
wave functions of the electron and of the neutrino are normalised. Since this
normalisation enters the matrix element (15.39) via a 1/V?2 factor, the decay
probability is independent of V.

In (15.42) we only integrate over the electron spectrum and so we need
the density of states for a total energy E(y with a fixed electron energy FEk,.
Neglecting recoil effects we have Eg = E. + E, and hence dEy = dFE, . Using
the relativistic energy-momentum relation E? = p?c? + m2c* we thus find

1 1
p2dpe = C—ZpeE'e dE, = c—aEe\/Eg —m2ctdE, (15.44)

and an analogous relation for the neutrino. Assuming that the neutrino is

massless we obtain

E2 —m2ct - (Ey — E,)?
(2mhic)®

E.
doy(Eo, E,) = (4m)? V2 dE, . (15.45)

To find the lifetime 7 we now need to carry out the integral (15.42). It
is usual to normalise the energies in terms of the electron rest mass and so
define

Eo
f(Eo) = / E/E2—1-(E — &) dE, where & = E/mec®. (15.46)
1

Together with (15.39) this leads to

5 .4
1 mac

il (9% +393) - F(Eo) - (15.47)

For (Ep > mec?) we have

f(Eo) ~ - (15.48)
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and so

11 E3

— % —_ 2 2 .
;N e v 30 s

(15.49)

This decrease of the lifetime as the fifth power of Ejy is called Sargent’s rule.

In neutron decays Eq is roughly comparable to mec? and the approxima-
tion (15.48) is not applicable. The decay probability is roughly half the size
of (15.49):

1 1 E§

— N —_— . 2 2 - —_—
o N e v 393) 5o

- 0.47. (15.50)

Experimental results. The neutron lifetime has been measured very pre-
cisely in recent years. The storage of ultra cold neutrons has been a valuable
tool in these experiments [Ma89, Go94a]. Extremely slow neutrons can be
stored between solid walls which represent a potential barrier. The neutrons
are totally reflected since the refraction index in solid matter is smaller than
that in air [Go79]. With such storage cells the lifetime of the neutron may
be determined by measuring the number of neutrons in the cell as a function
of time. To do this one opens the storage cell for a specific time to a cold
neutron beam of a known, constant intensity. The cell is then closed and left
undisturbed until after a certain time it is opened again and the remaining
neutrons are counted with a neutron detector. The experiment is repeated
for various storage times. The exponential decay in the number of neutrons
in the cell (together with knowledge of the leakage rate from the cell) gives
us the neutron lifetime. The average of the most recent measurements of the
neutron lifetime is [PD98§]

Tn = 886.7+1.9s . (15.51)

To individually determine ga and gv we need to measure a second quan-
tity. The decay asymmetry of polarised neutrons is a good candidate here.
This comes from the parity violating properties of the weak interaction: the
axial vector part emits electrons anisotropically while the vector contribution
is spherically symmetric.2 The number of electrons that are emitted in the
direction of the neutron spin N'T is smaller than the number N emitted in
the opposite direction. The asymmetry A is defined by

Nt Nt v
This asymmetry is connected to
A= ;’—A (15.53)
\%

2 The discovery of parity violation in the weak interaction was through the
anisotropic emission of electrons in the 3-decay of atomic nuclei [Wu57].
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by

AA+1)
1+3)2°
The asymmetry experiments are also best performed with ultra low energy
neutrons. An electron spectrometer with an extremely high spatial resolution
is needed. Such measurements yield [PD98]

A=—2 (15.54)

A=—0.1162 + 0.0013. (15.55)
Combining this information we have

A = —1.267+0.004,
gv/(fic)® = +1.153-1075GeV 2,
ga/(hc)® = —1.454-1075GeV 2. (15.56)

A comparison with (15.40) yields very exactly cy =1, which is the value
we would expect for a point-like quark or lepton. The vector part of the
interaction is conserved in weak baryon decays. This is known as conservation
of vector current (CVC) and it is believed that this conservation is exact. It
is considered to be as important as the conservation of electric charge in
electromagnetism.

The axial vector term is on the other hand not that of a point-like Dirac
particle. Rather than A = —5/3 experiment yields A ~ —5/4. The strong
force alters the spin dependent part of the weak decay and the axial vector
current is only partially conserved (PCAC = partially conserved axial vector
current).

Semileptonic hyperon decays. The semileptonic decays of the hyperons
can be calculated in a similar way to that of the neutron. Since the decay
energies Fy are typically two orders of magnitude larger than in the neutron
decay, Sargent’s rule (15.49) predicts that the hyperon lifetimes should be at
least a factor of 1010 shorter. At the quark level these decays are all due to
the decay s > u+e~ + Ve.

The two independent measurements to determine the semileptonic de-
cay probabilities of the hyperons are their lifetimes 7 and the branching
ratio Viemil. of the semileptonic channels. From

1 2 _ [MilZemi,
T x |Mfz| and  Viemil. = |M—fS:|r2m
we have the relationship
Vsemil.
Se:“ x |Mfi|§emi1. - (1557)

The lifetime may most easily be measured in production experiments.
High energy proton or hyperon (e.g., ¥~ ) beams with an energy of a few
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hundred GeV are fired at a fixed target and one detects the hyperons which
are produced. One then calculates the average decay length of the secondary
hyperons, i.e., the average distance between where they are produced (the
target) and where they decay. This is done by measuring the tracks of the
decay products with detectors which have a good spatial resolution and recon-
structing the position where the hyperon decayed. The number of hyperons
decreases exponentially with time and this is reflected in an exponential de-
crease in the number N of decay positions a distance ! away from the target:

N = Nye /" = Nye VL. (15.58)

The method of invariant masses must, of course, be used to identify which
sort of hyperon has decayed. The average decay length L is then related to
the lifetime 7 as follows

L = vt (15.59)

where v is the velocity of the hyperon. With high beam energies the secondary
hyperons can have time dilation factors v = E/mc? of the order of 100. Since
the hyperons typically have a lifetime of around 107!%s the decay length will
typically be a few metres — which may be measured to a good accuracy.

The measurement of the branching ratios is much more complicated. This
is because the vast majority of decays are into hadrons (which may therefore
be used to measure the decay length). The semileptonic decays are only
about one thousandth of the total. This means that those few leptons must
be detected with a very high efficiency and that background effects must be
rigorously analysed.

The experiments are in fact sufficiently precise to put the Cabibbo theory
to the test. The method is similar to that which we used in the case of the
(-decay of the neutron. Using the relevant matrix element and phase space
factors one calculates the decay probability of the decay under considera-
tion. The calculation, which still contains cy und cp, is then compared with
experiment.

Consider the strangeness-changing decay =~ — A° + e~ + .. The matrix
element for the Fermi decay is

Gr >
Mpilg = i |(uds |ZTi,+| dss)|, (15.60)
i1

where we have assumed that the coupling constant cy = 1 is unchanged. Ap-
plying the operator T'; to the flavour eigenstate |s) yields a linear combination
of Ju) and |c). Just as was the case for the S-decay of the neutron the ma-
trix element thus contains a Cabibbo factor, here sin fc. The Gamow-Teller
matrix element is obtained from

3

ga Gr

Miilgr = T (uds|Y T oi|dss)|. (15.61)
=1
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Of course the evaluation of the o operator depends upon the wave functions
of the baryons involved in the decay.

The analysis of the data confirms the assumption that the ratio A = ga /gv
has the same value in both hyperon and neutron decays. The axial current
is hence modified in the same way for all three light quark flavours.

15.6 How Good is the Constituent Quark Concept?

We introduced the concept of constituent quarks so as to describe the baryon
mass spectrum as simply as possible. We thus viewed constituent quarks as
the building blocks from which the hadrons can be constructed. This means,
however, that we should be able to derive all the hadronic quantum numbers
from these effective constituents. Furthermore we have silently assumed that
we are entitled to treat constituent quarks as elementary particles, whose
magnetic moments, just like the electrons’, obey a Dirac relation (15.13).
That these ideas work has been seen in the chapters treating the meson
and baryon masses and the magnetic moments. Various approaches led us to
constituent quark masses which were in good agreement with each other and
furthermore the magnetic moments of the model were generally in very good
agreement with experiment.

Constituent quarks are not, however, fundamental, elementary particles
as we understand the term. This role is reserved for the “naked” valence
quarks which are surrounded by a cloud of virtual gluons and quark-antiquark
pairs. It is not at all obvious why constituent quarks may be treated as
though they were elementary. Indeed we have seen the limitations of this
approach: in all those phenomena where spin plays a part the structure of
the constituent quark makes itself to some extent visible, for example in
the magnetic moments of the hyperons with 2 or 3 s-quarks and also in the
non-conserved axial vector current of the weak interaction. The picture of
hadrons as being composed of (Dirac particle) constituent quarks is just not
up to describing such matters or indeed any process with high momentum
transfer.
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Problems

1. Particle production and identification

A liquid hydrogen target is bombarded with a |p| =12 GeV/c proton beam.

The momenta of the reaction products are measured in wire chambers inside a

magnetic field. In one event six charged particle tracks are seen. Two of them

go back to the interaction vertex. They belong to positively charged particles.

The other tracks come from two pairs of oppositely charged particles. Each of

these pairs appears “out of thin air” a few centimetres away from the interaction

point. Evidently two electrically neutral, and hence unobservable, particles were
created which later both decayed into a pair of charged particles.

a) Make a rough sketch of the reaction (the tracks).

b) Use Tables 14.2, 14.3 and 15.1 as well as [PD94] to discuss which mesons
and baryons have lifetimes such that they could be responsible for the two
observed decays. How many decay channels into two charged particles are
there?

¢) The measured momenta of the decay pairs were:

1) |p,| =0.68GeV/c, |[p_| =0.27GeV/c, J (py,p_) = 11°%;

2) |p,| =0.25GeV/e, |p_| =2.16GeV/c, 4 (p,,p_) = 16°.
The relative errors of these measurements are about 5 %. Use the method of
invariant masses (15.1) to see which of your hypothesis from b) are compat-
ible with these numbers.
d) Using these results and considering all applicable conservation laws produce
a scheme for all the particles produced in the reaction. Is there a unique
solution?

2. Baryon masses
Calculate expressions analogous to (15.11) for the mass shifts of the & and ©*
baryons due to the spin-spin interaction. What value do you obtain for a;|+(0)/?
if you use the constituent quark masses from Sec. 15.37

3. Isospin coupling
The A hyperon decays almost solely into A°—+p+ 7~ and A° —n + 7°. Apply
the rules for coupling angular momenta to isospin to estimate the ratio of the
two decay probabilities.

4. Muon capture in nuclei

Negative muons are slowed down in a carbon target and then trapped in atomic
1s states. Their lifetime is then 2.02 us which is less than that of the free muon
(2.097 us). Show that the difference in the lifetimes is due to the capture reaction
2C4+pu~ — B+ v,. The mass difference between the B and '>C atoms is
13.37 MeV/c? and the lifetime of '?B is 20.2 ms. '?B has, in the ground state, the
quantum numbers J¥ = 17 and 7 = 20.2ms. The rest mass of the electron and
the nuclear charge may be neglected in the calculation of the matrix element.

5. Quark mixing
The branching ratios for the semileptonic decays ¥~ - n+e~ + U and ¥~ —
A + e + T, are 1.02 - 1072 and 5.7 - 1075 respectively — a difference of more
than an order of magnitude. Why is this? The decay £+ — n + et 4 v, has not
yet been observed (upper bound: 5 - 10_6). How would you explain this?
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6. Parity

a)

b)

The intrinsic parity of a baryon cannot be determined in an experiment; it
is only possible to compare the parity of one baryon with that of another.
Why is this?

It is conventional to ascribe a positive parity to the nucleon. What does this
say about the deuteron’s parity (see Sec. 16.2) and the intrinsic parities of
the u- and d-quarks?

If one bombards liquid deuterium with negative pions, the latter are slowed
down and may be captured into atomic orbits. How can one show that they
cascade down into the 1s shell (K shell)?

A pionic deuterium atom in the ground state decays through the strong in-
teraction via d + 7~ — n + n. In which 2L state may the two neutron
system be? Note that the two neutrons are identical fermions and that an-
gular momentum is conserved.

What parity from this for the pion? What parity would one expect from the
quark model (see Chap. 14)?

Would it be inconsistent to assign a positive parity to the proton and a
negative one to the neutron? What would then be the parities of the quarks
and of the pion? Which convention is preferable? What are the parities of
the A and the A, according to the quark model?



