Overview of Enterprise
Application Integration

The integration of applications within and between businesses has become
a hot topic. It is motivated by B2B (Business to Business), CRM (Customer
Relationship Management) and by the Internet in general. The technologies
that make this integration possible are called middleware. The aim of this
chapter is to present a general picture of the problems related to integration,
on the technologies used and the architectures that result. Technologies and
architectures are then described in more detail in the following chapters.

1.1 Problems to Solve

The business application integration market is valued at more than US$40
million for the year 2000 and US$60 million for 2001. The cost of integration
represents on an average 40% of the business information processing
budget. These enormous sums are due to the needs for companies to evolve
and to be competitive by continually adapting themselves to the needs and
constraints of the market. This situation leads them to define objectives that
will be achieved thanks to new working methods that use information tools.
New software must be bought or developed and must be able to co-exist
with old applications. All this software, of whatever origin, must be able to
exchange information. On the other hand, in order to be increasingly close
to the customer, a business must make its software accessible to the external
world.

Thus every company’s information processing manager sees themselves con-
fronted, at the software level, by the following problems:

e provide a consolidated view of the company’s data;

e integrate software from diverse sources;

e offer access to software to those inside and those outside the company;

Middleware and Enterprise Application Integration

e automatically connect the tasks related to a business function;
e reduce the reaction time of their information system;

e rapidly develop new applications.

Rapid application development is not the subject of this book. However, the
architectures and technologies that are proposed here can make big contri-
butions in accelerating the rate at which applications are developed.

1.1.1 A Consolidated View of Business Data

The information system must be able to offer a global picture of business data
that is coherent and up-to-date (e.g. clients, orders, partners, accounts). This
clarity is however far from being the rule. Many companies are organized by
product or product line. Typically, at the information level, this is translated
by an application and/or a database per product. Each database contains
the description of the clients who have bought the product (Figure 1.1)

Data coherence

Application A

File for
_> product A

customers

File for
—> product X
customers

Application X

Figure 1.1 Information system organised by product: the client's view is obscured

Today, businesses want to place the customer at the centre of their activities.
They want to have a global view of their customers, for example, to be able to
list the products bought by a given customer. Old information architectures
(Figure 1.1) therefore present two kinds of problem:

e The existing data models in each database are different and not necessar-
ily consistent. Each gives a partial view of the customer. It is necessary to
go through all the databases in order to discover all the products that a
customer has bought. This is not always possible...

Overview of Enterprise Application Integration

e Data incoherence leads to the fact that a customer x is designated in dif-
ferent ways in each database and is therefore difficult to recognize that
customers a and b in fact represent the same entity.

The view of globally coherent data therefore imposes their extraction, their
transformation to a common model and the definition of consistency rules
so that duplicates can be identified.

1.1.2 Application Integration

The dream of every information systems manager is to be able to make their
environment evolve easily. Now, the introduction of new software requires
that it must exchange data with existing software. Communication channels
must be constructed between each pair of applications before communica-
tion occurs. These connections can be complex and hard to manage if the two
inter-communicating applications execute on different machines.

In the example in Figure 1.2, applications A and B can communicate.
Assume that application A is old and stores its data in a local file E Let us
now assume that the new application, B, obtains its data by reading datain a
file F1 whose format is different from that of E Equally, assume that applica-
tions A and B run on two different machines. The creation of a communica-
tions link between these two applications implies the use of transfer software
and the reformating of data from file F for storage in file F1.

Application A Application B

File F File F1
Transfer Transfer
software software

Machine X Machine Y

Figure 1.2 Simple communication link between two applications

Middleware and Enterprise Application Integration

Observe that the assumptions made in the preceding example are quite
realistic. In order to make full use of the capacities of new generations
of machine, a great deal of software is designed to run on them. Existing
software, whose average age is 12 years, runs on machines of preceding
generations whose operating systems are generally non-standard or
proprietary.

Very often, to aquire some software that is useful for their company, an infor-
mation manager is lead to buy a new machine. It then happens that their
information environment becomes heterogeneous and therefore more com-
plicated to manage.

Progressively, over a period of year, because applications have been added,
the information systems of many companies resemble, if one examines the
communications relations between software items, what has been called
spaghetti systems (Figure 1.3).

Machine B
Machine A
Application a
Application A Application b
Application B Application ...
Application ... Application n
Application ...
Application Z
Machine C
Application 1
Application ...
Application p

Figure 1.3 Example of a spaghetti system

Overview of Enterprise Application Integration

Such a system is hard to manage and to develop. In order to avoid arriving at
a system that is totally knotted with inter-application connections, a global
solution must be devised. This solution must define a new architecture that
allows easy integration of new applications and modification of existing ones.

1.1.3 Availability of Applications to the
Entire Worid

Several factors lead to the need that access to certain company software
must be possible outside the company, no matter where in the world it is. Let
us consider some examples:

e Increasingly tight relationships between customers and suppliers leads
the latter to give their customers free access to their order capture sys-
tems. The customers can then search the list of products and prices, and
send their orders direct.

e In the area of banking, customers are apt to travel the world and to make
requests of their banks from anywhere in the world. The possession of a pri-
vate communications network by a company costs a considerable amount
and therefore constitutes a brake on their geographic development.

e Companies having many branches or subsidiaries must maintain a cer-
tain number of applications and connect them to the central site. The
problem of how to maintain the same version level of a piece of software
in all branches is a problem that is, as yet, only incompletely solved.

Therefore, at present, companies experience the need to increase their
geographical presence by offering easy access to their applications at the
lowest cost.

1.1.4 Automatic Connection of Tasks Related to a
Business Function

In order to adapt to market changes, companies must constantly redefine
their operational processes (e.g. order processing activities). These proces-
ses are composed of a sequence of work steps that are connected according
to a predefined sequence which depends on the expected goal and also on
the data exchanged. During the automation of a business, each step in the
automation process is represented by a piece of software. Very often the pas-
sage from one step to another consists of exchanging data performed in a
manual fashion or by a virtual information connection that does not operate
in real time (examples: file copy, block transfer).

Middleware and Enterprise Application Integration

The goal sought by EAl is to provide the technology for exchanging data and
also the function of connection of tasks in order completely to automate the
handling of a business process.

1.1.5 Decrease in Reaction Time for an
Information System

Today, companies want to reduce the time between the instant when a piece of
data is gathered by the information system and the instant when this data can
be used by all applications. This lapse of time is called the latency time of a
system. Such a need is clear in the banking world but also in many other areas.

Example: Not long ago, the French bank Z had a centralized database that
contained the balance of each customer’s account. When Mr Dupont
wanted to withdraw money, he was able to go to his favourite branch, ask for
the balance on his account and withdraw an amount, x. To do this, the
branch connected to the central database and downloaded Mr Dupont’s
account. The withdrawal was then made locally and transmitted to the cen-
tral database that evening after 6 p.m. During the night, the updates were
performed and the new balance of the accounts produced. This means that
if Mr Dupont was to go and ask for the balance of his account on the same
day in another branch of the bank, he would have been astonished to see
that the withdrawal of x had not been performed.

Typically, the latency time of this bank was one day. Today companies wish to
reduce this time so that it corresponds to new requirements in their area of
activity. This implies, at the information level, a high-performance system for
inter-application exchange of information. This is the goal of middleware.

1.2 Application Integration: Semantic Level
and System Level

In order to understand better what is done in a dialogue between two pieces
of software, let us consider the example of the fictional PointCom company
that wants to trade over the Internet (Figure 1.4). Let us assume that
PointCom has the Ariba purchasing software (Ariba is the name of the com-
pany supplying software that is also called Ariba) which connects, over the
Internet, to the market place software Oracle eXchange. The mechanisms of
elements interposed in this exchange can be analyzed as follows:

e The dialogue or scenario process. Ariba has its own way of handling a
purchase just as does Oracle eXchange and there is little chance that these

Overview of Enterprise Application Integration

Ariba Internet Oracl
purchasing rac'e
software HETEER

Figure 1.4 Example of application integration. eXchange is a market place product from Oracle. Ariba is the
name of a software company

two ways of working are the same. Let us imagine two people, the seller
and the buyer, who are discussing, for example, the purchase of a car. They
each have a scenario in their head which can be:

— The seller: make them try the car, make an offer, have the offer accepted,
complete the sale.

— The buyer: try the car, receive an offer, obtain other offers from other
sellers, choose a seller, negotiate the price, buy.

Two people can adapt their respective scenarios in order to be able to engage
in dialogue, but this is more difficult for two pieces of software. This means
that an item of work must be performed at the level of dialogue processes
when it is desired to integrate two software items. Such a scenario implies
the description of the different steps and their connection, listing the
hypotheses formed and handling exceptions:

The data model: The exchanged data are, in fact, business documents
(e.g. order forms) and not simple character strings. In the above example,
there is no reason why the order form provided by Ariba should conform
to what Oracle eXchange software expects. It is highly probable that these
two documents will contain lots of identical data, but it will not necessar-
ily be in the same format (example: the name of the customer is described
in four fields in one case and in six fields in the other!) A conversion job
from one model to another is therefore needed.

The communication system: This, here, is a matter of the communication
protocol used to exchange data. Here we come to the role of middleware.
A large part of this work is about the different technologies implementing
this exchange. Typically, in Internet contexts, the protocol used is HTTP
(HyperText Transfer Protocol).

If the three preceding elements are considered, the communication system
represents the exchange level of the system, the dialogue process and the

7

Middleware and Enterprise Application Integration

data model constitutes its semantic level. The first generation of middleware
technologies implemented the system level and the second (the new gener-
ation) the semantic one.

1.2.1 Open Applications Group (OAG)

All of the above shows the complexity of interoperability between software.
Only the existence of standards will allow the simplification of the con-
struction of information solutions composed of heterogeneous software
components. With this aim in mind, the Open Applications Group (OAG)
consortium was formed in 1995. This group contributes to the definition of
standards for the three elements used in an exchange. A model has been
created which contains:

Component definitions: Each application is modelled in the form of an
object and offers a list of operations that can be executed on request.

e An application architecture: Communication between components is per-

formed by exchanging a Business Object Document (BOD) according to the
request/reply or publish/subscribe communications models.

Scenario diagrams: The standard which describes inter-application dia-
logues is called OAGIS (Open Applications Group Integration Scenarii).
Currently 51 scenarios are available. Each description consists of a sum-
mary, an exchange diagram, the list of assumptions made, the definition
of the required components, connections of the exchanges and exception
handling.

The list of the middleware APIs (Application Programming Interfaces)
required for communication. The standard is called OAMAS (Open Appli-
cations Middleware API Specification).

e A data dictionary describing the elements of the API.

For a more detailed description of all the existing standards, the reader
should visit the OAG Internet site.

Sync
»
General Post journal
ledaer > Sub-ledgers
e Confirm BOD
p

Figure 1.5 Example scenario diagram in OAGIS

Overview of Enterprise Application Integration

1.2.2 The Client-Server Model

When several entities want to communicate between themselves, a commu-
nication protocol can be defined and accepted by all so as to avoid confu-
sion. Different communication schemes exist. Television gives us many
examples: debate moderated by a judge (the journalist) who gives the floor
to each participant in turn (or uses a more complex algorithm); face-to-face
interview between two people, one being the interviewer, the other the inter-
viewee. The goal of such organization is that each question gets a reply and
that dialogue occurs.

Figure 1.6 The master/pupil relation represents a particular communication structure

Over the years, different communications structures have been used to
exchange data between programs. One of them scored with its flexibility. It is
based on the interviewer/interviewee model and is characterized as
follows:

e Communication implies only two entities. This model assumes that every
communication involving elements of a group can be decomposed into
a set of exchanges between two entities.

e One entity has the initiative in the dialogue (the interviewer) and the other
waits for a request (interviewee).

e The interviewee entity is programmed to reply to a very precise set of
requests. (Here, the analogy with what happens on TV is broken!) The list
of permitted requests must be completely defined. This list is called the
interface of the interviewed entity.

Middleware and Enterprise Application Integration

In this model of communication, the interviewed entity is described as offer-
ing services. To each request, there corresponds a well-defined service. For this
reason, this entity is also called the server. The other entity, which requests
services, is thus called the client. The whole forms the client—server model.

The operation of the client-server communications model is the following:

e The client sends a message containing a request to a server.
e The server executes the service associated with the request sent by the client.

e The server returns a message to the client that contains the result of the
service it performed.

In this model, communication is always initiated by the client. The server is
in a reactive mode. The model does not specify the way in which communi-
cations are implemented. The server’s interface appears as a component that
is essential for communication. It describes the list of permitted requests.
Figure 1.7 shows the client-server model.

Server

Interface

Client /\
A

Figure 1.7 The client—server model

1.2.3 Three-tier Client-Server Model

At this point, it is interesting to see how the client-server model can be
applied in a concrete setting. A first possibility consists of defining a
client-server relationship between two applications. A second possibility
is to decompose an application into a set of elements that are connected
by this relation. Let us see how.

The functional analysis of an appilcation reveals three components:

1. The user interface component: This is most often graphic (windows) and
allows the user to interact with the application. Frequently this part must
be able to operate on different types of machine: PC, Macintosh, worksta-
tions or alphanumeric terminals. This component is called the graphical
user interface or (in Microsoft’s terminology) user service.

Overview of Enterprise Application Integration

2. The component that engages in actual processing: This contains the
application logic that represents the business rules. This component is
called the business services or process server.

3. The component that accesses data: This part contains procedures that
access data. It contains, therefore, the structure of the necessary data-
base(s). This component is called the data server.

The application of the client-server model to these three components of an

application leads to a model called the three-tier client-server model, each
stage communicating only with its immediate neighbours (see Figure 1.8):

Data
server

| Interface |

/

Processing
server

Interface

User
interface

Figure 1.8 The three-tier application model

e The ground floor is formed from the graphical user interface. This is the
entry point into the application.

o The first floor is formed of the business services.

e A client—server relation exists between the graphical user interface which
plays the role of client and the business services which play the role of
server.

e In order to be a server, the process server must have an interface that is
completely defined and that describes the services that are offered.

Middleware and Enterprise Application Integration

e The data server constitutes the second floor.

e A client-server relation exists between the process server which plays the
part of the client and the data server which plays the part of the server.

e In order to be a server, the data server component must have a completely
defined interface that describes the data access services offered.

It should be noted that the process server part plays two roles: That of a
server in relation to the graphical user interface and that of client in relation
to the data server.

The decomposition of an application following the three parts described
above has multiple advantages:

e Each part is physically independent of the others. Thus, the three stages
can run on three different machines, communication between the stages
being performed using middleware.

e Programming and maintenance of each of the stages can be performed
independently of the other stages as long as the interface is not changed.

The functional separation leads to making the core code of the application
(the process server) independent of the structure and the location of its data.
It is also independent of the way in which the data are provided by the user.

At this point, it is interesting to examine the middleware technologies that
allow the implementation of the client-server model as well as the integra-
tion of distributed applications.

1.3 Different Sorts of Middleware

The goal of integration is to reunite the elements which are distributed over
several machines across a network in order to offer certain services. Integra-
tion and distribution are two related but opposing concepts. In program-
ming, two sorts of element can be distributed and/or integrated: data and
programs. The technologies allowing their integration are designated by the
term middleware.

1.3.1 Integration of Data

There are two sorts of middleware for integrating data: On the one hand,
those techniques that allow remote access to data (called gateways), and
replication techniques on the other.

Overview of Enterprise Application Integration

Gateways

The aim of gateways is to give the user the impression that all their data
resides in a single relational database, although there is no such unique
database. The real data are located in different databases and are retrieved
using gateways in such a way that the retrieval is transparent to the user.
The advantages are many:

e Asingle database image does away with the handling of user transactions.

e Data can be moved without affecting the user’s application since it has
alogical and not a physical view of the data.

e A relational database allows the use of the SQL language (Structured
Query Language — the standard language for databases).

Many products exist on the market. ODBC from Microsoft, JDBC from Sun
and Open Gateways from Oracle can be mentioned.

Data

Application]

Figure 1.9 Gateways for accessing data

Replication

The replication mechanism consists of copying data from several databases.
Thus a single piece of data exists in many copies, on different machines over
the network. This technique is justified because it improves the perform-
ance of a system. The problem is to ensure that every modification on a data
instance is immediately carried out on all other instances of this data. This is
implemented by the replication technology. Typically, this function is an
integral part of databases that allow replication.

The replication of data is a technology that is different from data distribu-
tion. Replication uses distribution, but a replicated database is different from
a distributed database. In the former case, the same data exists in several
instances while in the second, each data item is unique but the set of data is
divided into groups that are distributed across several machines.

Middleware and Enterprise Application Integration

1.3.2 Integration of Processing: System Level

When two software components communicate, there must exist a link
between them and each must have an appropriate interface to connect to
the link. The addition of an application to an information environment
holding n components, can lead to the construction of n communication
connections and 2n application interfaces. One way to solve this problem is
to introduce the concept of a unique communication bus or middleware, to
which the applications connect using a clearly defined interface. The result
of one such approach is shown in Figure 1.10. It can be seen that all the
connections are grouped into a single system for the exchange of data.

[Application 1] [Application 2] [Application 3]

Middleware

[Application 4] [Application 5] [Application 6]

Figure 1.10 Middleware or communications bus for distributed applications

Such an architecture requires us to assume that the communications bus (or
middleware) allowing the exchange of data between two or more applica-
tions offers a certain number of services.

The following can be mentioned:

e The availability of middleware on different machines: The information
environment of every business is heterogeneous, that is to say that it is com-
posed of different types and makes of machine. Applications running on
these machines must be able to communicate.

e Reliable transfer: When the sending application hands a message to the
middleware, it must be sure that the destination will receive it once and
once only. This must remain true in the face of a network crash or the crash
of one of its machines.

14

Overview of Enterprise Application Integration

e Traffic adaptation: The rate of the communication bus must be able to
sustain an augmentation in the traffic due to the addition of applications.
The capacity of the middleware to adapt itself to the change (variation in
the number of applications, number and type of machines) is essential since
it forms the skeleton of an application system.

e The diversity of communication structures: An application might need to
communicate with other applications or send the same message to n des-
tinations. In the latter case, it is desirable that the sender can put one copy
of the message on the bus and that the bus will take on the task of sending
the message to each of its designated destinations.

e The use of names: The application sending a message denotes the desti-
nation not by its physical address but by a name. It is up to the transmis-
sion system to convert this name into a physical address.

This service allows the movement of application from one machine to
other machines without incurring consequences for the applications that
communicate with it.

e The concept of the transaction: The transaction concepts states that several
entities (e.g. applications) belong to an application, each one completes
its task or none of them do.

Let us assume, for example, that to organize a trip, a travel agent uses two appli-
cations. The first application performs flight reservations and the second per-
forms hotel reservations. It is assumed that if it is not possible to reserve a flight
to a given destination, it is useless to reserve a hotel there. In the same fashion,
the traveller does not want to travel to a town if there is no hotel room for them.

Thus the “travel” transaction will only be completed if the requests for the
flight and the hotel are satisfied. If one of them is not satisfied, no reserva-
tion is made and the transaction representing the trip is aborted.

Position of Middleware in the OSI [Open Systems Interconnection) Model

Middleware constitutes a communication structure that is independent of
operating systems and the nature of transmission systems. In the OSI model
which defines the different communication levels between information sys-
tems, middleware is located right at the top. It defines the communication
protocols between applications (Figure 1.11).

This inter-application communication structure rests on communication
structures at lower levels such as network protocols (TCP/IP, DECnet, SNA
or OSI) and/or mechanisms offered by operating systems (e.g. interrupt
processing).

Middleware and Enterprise Application Integration

Application-1 Application-2

Applications
| |
Application Application
. Presentation Presentation
Middleware
Session Session

Transport Transport
Data transport Network Network
services
Data Data
Physical Physical

a

Data transfer

Figure 1.11 Location of middleware in the OSI model

Middleware Using Remote Procedure Call

When a new application is designed and when it is desired to distribute it
over a number of platforms, there appears the problem of the unit of distri-
bution. When it is desired to decompose an application into distributable
elements, there occurs the task of defining the characteristics of these elem-
ents. Their “size” must represent the resulting processing time in relation to
the transmission time for the request which asks for its execution. This “size”
represents the granularity level of the distributed entity.

If we refer to the existing programming elements, the concept of procedure
(or function) appears as a good candidate for distribution. This concept is
known and understood by all and represents a very precise functional entity
with a completely defined interface.

In traditional programming, every application is composed of a main pro-
gram body and a set of procedures (Figure 1.12). The client-server model
can perfectly be applied within this scheme. The main program which calls
the procedures appears as the client for each of them and the server consists
of the set of procedures. Each procedure offers a service and the server is
formed from the set of these services. The interface to a service is exactly the

16

Overview of Enterprise Application Integration

PR Application x | __ _ _ ______ .
1 1
1 1
1

: Main program 1
! begin |
1 1
1 1
N R Procedure A |
i 1

: ______ begin |
1 1 1
1 1
| end 1
1 1
1 | TT===- 1
: Procedure B :
H 1

: ______ begin .
N e 1
1 1
[e end 1
1 1
1 1
! end 1
1 1
1 1
1 1

Figure 1.12 An application is composed of a main program and a set of procedures

interface to a procedure, that is its name and set of parameters. The server
interface is formed of the set of interfaces of the procedures that it contains.

This approach shows the importance of the server interface. This is com-
pletely defined. Our goal is, however, to make this set of procedures (the
sever) totally independent of the main program (the client). This independ-
ence clearly permits other clients to use the services of the server. These
other clients need not be written in the same language as the server and
must therefore communicate with it. This leads to the description of the
server interface in a language that is not a language used to program clients
and servers. This language is called IDL (Interface Definition Language).

In the distributed procedures model, the client calls the procedures that
compose the server as if they were local to the client. In fact, they can be on
any machine on the network (Figure 1.13). The middleware that supports
this communication between client and server is called Remote Procedure
Call middleware or RPC middleware.

At the client level, there is no difference between the call of a remote proced-
ure and the call of a local one. This means that the code necessary for the
preparation of the request message is external to the client. In the message-
oriented middleware, this code forms an integral part of the client and must
therefore be written by the application programmer. Here, this piece of

17

Middleware and Enterprise Application Integration

_—----| Client |_______ ----| Server |.____ -
4 N N

’

\
1 1
' Main program '
! begin !
1 1
1 1
I |- 1
1 1
1 (_/ 1
[I 1
1 1
1 1
1 1
I | m—_-—-— 1
1 1
1 1
1 1
1 / 1
1 | TTTT 7" 1
1 1
| I 1
1 1
1 1
1 1
\ end M
1 1

Figure 1.13 The client—server model applied to distributed procedures

Interface
written in
IDL

Main program I Y
begin

Client stub

Middleware RPC

Client stub

Figure 1.14 In RPC middleware, communications code is automatically generated

code is automatically generated from the IDL language which describes the
server’s interface used by the client (Figure 1.14). The piece of code associ-
ated with the client is called the client stub, and that associated with the
server is called the server stub.

Overview of Enterprise Application Integration

Principal Characteristics

RPC middleware can be characterized as follows:

e The client and server code is independent of the communication system.
The client does not know if the procedure is local or remote.

e The client code does not have to prepare messages nor to locate the
server. This work is done by the RPC middleware.

e The dialogue system is totally external to the client and server. It is
described in a specific language called IDL from which is automatically
generated the code necessary for communication.

e The communication structure is constructed when the code is compiled.
It is therefore completely defined before execution time.

e Communications are synchronous. After having made its procedure call,
the client program waits for the result. Only when the result arrives does it
resume processing.

e RPC technology is completely standard. Standardization includes the IDL
language as well as all the services necessary for communication.

e Many vendors today offer products that comply with the standards.
Therefore, it is possible to combine different products.

RPC technology exists today as products that are very stable. However, its
success is not as assured as message-oriented middleware. Its basic princi-
ple, procedure call, seems to be at too low a level. So, during the designing of
complex information systems, aspects of distribution must be considered
very early in the specification phase. Now, the concept of a procedure only
appears very late in the design phase. Using RPC middleware as a distribu-
tion system implies modification to the currently used methods for specifi-
cation and design by introducing the concept of server at the highest
possible level.

If the characteristics of RPC are compared with those desired of a communi-
cations bus (see Section 1.3.2), it can be seen that this technology offers every-
thing except the following:

e Reliability of transfer: If for any reason, the server or the network does not
work, the message will never be delivered and will be lost. Error handling
or crashes are entirely left in the hands of the client’s code.

e The transaction concept: Current standard RPC technology does not offer
transactions. This is a very serious limitation and for this reason, some

19

Middleware and Enterprise Application Integration

software vendors are offering non-standard products based on RPC which
implement the concept of the transaction.

e Message passing: The communications structure in RPC is one-to-one
and not one-to-many. This means that a client can only talk to a single
server at a time during a request.

RPC technology is available through products from several manufacturers
thanks to the OSF/DCE (Open Software Foundation/Distributed Computing
Environment) standard. Amongst the other middleware technologies, it is
located as the lowest communication structure.

Object-oriented Middleware: CORBA and COM

RPC middleware uses, as unit of distribution, the concept of the procedure.
This concept comes from programming and, unfortunately, is not present
at the analysis level, that is at the level where modelling takes place. This
limitation has led to research on identifying an entity that would be at a suf-
ficiently high level to be used in modelling and be sufficiently close to pro-
gramming concepts to be easily translated into a programming language.
Such an entity exists. It offers a language that is common to the user and to
the computer scientist. It is called an object.

In brief (but see Appendix A for more details), an object has a name, has
attributes that define its state and operations that describe its behaviour.
Objects belong to the real world. Thus, for example, a bank account can be
considered an object. Its number is its name, its possible attributes can be its
balance and the currency in which it is expressed, and its operations can be
opening, deposit, withdrawal, obtaining the balance or account closure. The
use of object technology allows complex information applications to be mod-
elled by combining objects using a collection of static and dynamic rela-
tionships. In this approach, an application looks like a set of co-operating
objects (Figure 1.15). From this fact, the object becomes the identified unit
of distribution.

Object technology has very interesting properties. In particular:

e The concept of encapsulation: This concept allows the separation of the
external aspects of an object, which constitute its interface (attribute
names and operation names), from the internal aspects (way in which
attributes and operations are implemented). The external aspect is
defined during the modelling phase and the internal is specified during
the programming phase. This concept allows one to talk of objects with-
out bothering about how they are implemented.

Overview of Enterprise Application Integration

Person Has .l Account Name
Name > Balance
Address _ Currency Attribute
Enquiry
Evaluate-money
Open
Close
Deposit Operation
Withdraw
Query

Figure 1.15 Example of an application composed of two objects, person and account

e An object system appears as a list of interfaces behind which is the code
associated with the attributes and operations of objects. It is also possible
to modify the code independently of the interfaces. This is a fundamental
point in object technology.

e The concept of inheritance. An object can inherit characteristics (attrib-
utes or operations) from another object. This mechanism makes models
more concise and eases software reuse.

If it is assumed that objects are distributed across the network, inter-object
communication corresponds to the request for the execution of an oper-
ation on an object (the server) by another object (the client). This request is
implemented using a specific communications bus called object-oriented
middleware (or ORB, the Object Request Broker).

This model provides functions similar to RPC technology. Thus the client
object does not know the location of the server object and the client does not
have to construct the request message.

Communication between client and server objects can be defined in a static
or dynamic fashion:

e Static communication is performed in the same way as in RPC. This form
of communication is described in a standardized object-oriented lan-
guage called OMG IDL (Object Management Group Interface Definition
Language). Client and server stubs are generated by the OMG IDL code
and they allow, respectively, the client and the server object to be con-
nected to the middleware object.

Middleware and Enterprise Application Integration

e Dynamic communication is established by the client at runtime. The

client can interrogate the middleware object to find the interfaces of the
objects available on the network. The chosen interface server has no way
of knowing if the request that it received was generated in a static or dyna-
mic fashion.

Static
communication

Server
object

Client

object
Dynamic
communication

4

Object-based middleware

Figure 1.16 Object-based middleware allows communications established in a static fashion

Object-oriented middleware uses the concept of interface which has the
following properties:

e An interface represents the services offered by the server object. These

services are thus directly associated with the object’s operations.

It permits the generation of new interfaces using inheritance. The infra-
structure of an object-oriented information system is formed from the set
of interfaces connected to the communications bus. Their update is facili-
tated by the inheritance mechanism that allows the introduction of new
objects while protecting the old ones.

o Aninterface can be associated with one or more services. Let us recall that

an interface describes a set of services but does not specify how or by
whom these services are performed. This decoupling of service descrip-
tion and the service proper allows the following:

— The possibility that there will be several implementations of a single
service. Thus there is no constraint on the server itself. In particular, it
can be written in something other than an object-oriented language.

— The connection of one server to several interfaces. The services offered
by a server can appear in different interfaces. Rather than duplicating

Overview of Enterprise Application Integration

the server’s code, this last option can be activated by different
interfaces.

— The conversion of an existing application into a server. To do this, it is
enough to connect it to an object interface for which this application
can offer one of the services. This approach allows the transformation
“on the quiet” of an application environment into an environment
composed of objects.

A New View of an Information System

The set of object interfaces in an information system represents the services
offered by this system. This leads to a new view of an information system. It
is no longer described as a set of applications but as offering a set of services
(Figure 1.17). One of the major benefits of object-oriented middleware is
that it contains a database that holds the list of all available interfaces. It is
therefore possible at any time to consult this list in order to find out what the
capabilities of the system are. Every client object can consult it and dynami-
cally determine the new services.

List of all
interfaces Interface (or i/f)
office services

Interface

financial services
object

object

BH Middleware object

Interface
construction
services
object

Interface
documentation
services
object

Figure 1.17 A new approach: an information system is described by the list of offered services

In such an environment, the addition of software simply means intro-
ducing one or more interfaces that describe the services offered by this
new software and attaching the software to these interfaces. If the soft-
ware must access existing services, communication among these ser-
vices must be described in the OMG IDL language.

Middleware and Enterprise Application Integration

Standards and Middleware Objects

In distributed object-oriented middleware, there are two models. The first
model has been in existence since 1990, and was established as an inter-
national standard by OMG. It is called CORBA (Common Object Request
Broker Architecture). The second model was proposed by Microsoft and is
called DCOM (Distributed Component Object Model).

Several products implement the CORBA standard. BEAObjectBroker from
BEA Systems, DSOM (Distributed System Object Model) from IBM, ORBIX
from Iona Technologies and ORBPlus from Hewlett-Packard. Some of these
products have become very mature thanks to their availability since the start
of the 1990s.

The Microsoft product is more recent (1996). In addition to running on
Windows platforms, it also runs on UNIX machines. So, the DCOM model
from Microsoft tries to position itself as an alternative to CORBA.

108[qo
vg4d090

E
5
o
L
[
2
(o)
o

COM object middleware
arema|ppIw 193[qo Yg400

198lqo
vg4d00

Figure 1.18 Object-based middleware is divided into two worlds. Will they understand each other?

From the above, it would appear that the CORBA model runs on all major
platforms, the Windows PC included, but the latter is dominated by the
Microsoft object model. So, all the software in this group is based on the COM
(Component Object Model) which is now distributed. To allow the CORBA
and COM models to communicate, their specifications have been compiled
by OMG.

In the CORBA world, the situation developed rapidly thanks to the great
influence of the Java language. The problems of inter-operability between
products was solved by standard 2.0 which specifies the communication

24

Overview of Enterprise Application Integration

protocol between CORBA agents. The new 3.0 standard published in 1998
concentrates on the idea of software components introduced by Java as the
Java Bean concept. This new concept of a component has as its goal making
easier the development of new applications. This simplification is wel-
come in the CORBA world, which is well known for the complexity of its
implementation.

Java RMI Middleware

Object-oriented middleware implementation remains complex despite the
new tools that have appeared on the market. On the other hand, object reuse
based on libraries is not very common; this is for the reason that it is not very
practicable. Thus, in order to correct these deficiencies a new higher-level
concept was introduced called the component.

The concept of a component appeared in the Java language where it is called
aJava Bean. A Java Bean can be seen as a container formed from one or more
basic objects and it offers a well-defined interface. These components form
the basic blocks that can be assembled to construct Java applications that
are called applets or servlets.

In the Java language, the basic unit is the component. A Java application can
be formed from one or more components and can be distributed across
a network. The middleware allowing components to be integrated is called
RMI (Remote Method Invocation). The resulting architecture is very similar
to that obtained using objects and their middleware. In both cases, the con-
cept of the stub is used to connect to the middleware. In the same way, RMI

Enterprise Enterprise
Java Stub Java
Bean Bean

RMI middleware

Machine A WAN/LAN Machine B

Figure 1.19 Java RMI Middleware

Middleware and Enterprise Application Integration

middleware requires the execution of a method on a remote object. During
this, it transfers activation parameters from the method to the network.

The big difference between object-oriented middlewares lies in the fact that
RMI can transfer a component as a parameter. Thus, with Java, it is not the
only data that can be transferred across the network but also code (or pro-
gram). Objects, in CORBA and DCOM technologies, are fixed. They remain
on the machine where they were installed. With Java RMI, components can
be exchanged for other components, and this allows code mobility.

For more detail on Java technology, the reader is invited to read Chapter 6.

Middleware for Business-internal Applications: MOM

MOM, or message-oriented middleware, forms the technology of choice for
implementing the communications bus concept for several applications to
allow them to exchange messages. For several years, object technologies
were also used to connect applications. However, the fact that they operate
in synchronous mode means that applications are always in a run state. This
represents a constraint that is difficult to satisfy in production environ-
ments. Unavailability of a destination application implies the loss of a mes-
sage which is not acceptable in a business system.

MOM technology, asynchronous by nature, supports the decoupling of inter-
communicating applications. Messages are stored while they are awaiting
delivery. The temporary unavailability of an application does not imply mes-
sage loss. The high level of reliability and the ease of handling in a produc-
tion environment have convinced designers to use this technology for the
integration of business applications.

MOM technologies have developed a great deal of late; they have developed
to such a point that one can talk about the appearance of new generation
of product.

The old generation used distributed structure that can be represented as a
communication bus. This bus solved the problem at the level of message
exchange. Products based on this concept have been available on the mar-
ket for several years. They have a high level of maturity and represent a
highly reliable technology. They are very often used in information systems
for industrial fabrication. For example, BMW'’s production lines use the
BEAmessage(Q product from BEA Systems to handle production. IBM also
offers a message-oriented middleware product, called MQSeries, that is
used in inter-bank exchanges.

The new generation bases itself on a centralized architecture offering a set of
services at a higher level. It allows the semantic exchange level to be reached.

Overview of Enterprise Application Integration

The terms hub and spoke are often used to describe it. A good example of
this new approach is the Advanced Queuing product from Oracle which is
used on the Amazon.com Internet server to transfer orders from the Internet
server to the back-office software. In order to show the characteristics of
these two generations of MOM better, we will consider them separately,
starting with the old technology. The new generation will be described in
Section 1.3.3.

Principal Characteristics

This message-oriented middleware technology is decentralized (each appli-
cation has one message queue for input and one for output) and is charac-
terized by the fact that it is not standardized. The best way to state its
principal characteristics is to examine one of the most advanced. If we refer
to BEAmessageQ), the following functions are available:

e Asynchronous or synchronous transmission of messages. BEAmessageQ
allows applications to communicate in an independent or inter-dependent
fashion. The asynchronous message exchange mechanism allows the
sending application (the client) to put its message in its output message
queue and continue with its processing. The middleware transmits the
message to the input queue of the receiving application (the server) and,
when the latter is available, it reads the message and processes it. Thus
client and server function as expected.

One-to-many Many-to-one
communication communication with
selective read

Figure 1.20 Examples of communication structures

In synchronous communication mode, when the client has put its message
in its output message queue, it must wait for a reply. No parallel processing
is possible between the client and server:

e Guaranteed message delivery: BEAmessageQ allows clients to label mes-
sages so as to guarantee their delivery. Each message thus labelled is
copied to disk so that it is not lost. The message remains on disk while the

27

Middleware and Enterprise Application Integration

original has not been delievered to its destination. In the case of a system,
server or network failure, the middleware automatically re-sends the mes-
sage until the server receives it. It is only then that the disk copy is deleted.
This system does not predict when the message will be processed by the
server but it guarantees that it will be processed.

e Availability on many platforms: The BEAmessageQ product is available on
more than 20 platforms. These include the Windows NT, UNIX (AIX, HP-
UX, Sun), OVMS, IBM MVS, etc., operating systems. Because there are no
standards, message-oriented middleware products are difficult to com-
bine. It is therefore important that a product operates on lots of platforms
so that it satisfies the needs of its users.

e Selective message reads: BEAmessageQ allows servers to read message in
an order different from that of arrival but following certain criteria. These
criteria depend on the sender, on the priority level of the message, on its
type and its class. They are defined by the user so that the content or the
aim of the message can be identified.

e® Message broadcast: The BEAmessageQ software contains an operation
that allows a client simultaneously to send a message to a group of servers
(multicast). The receiving applications are those which have explicitly
expressed the desire to receive such messages. Thus, the sender knows
neither the number nor the location of the destinations. The separation
of the sender and the distribution system allows changes to the latter
without affecting the sender’s code.

Advantages

Today, one of the advantages determined by message-oriented middleware
is its great reliability. The existing products have sufficient maturity to be
used in applications that are at the core of a business’ operations.

A second advantage is due to the fact that this technology uses traditional
programming. In particular, it does not appear to the latest object-oriented
programming techniques. This is important because the implementation of
message-oriented software implies intervention in the communicating
applications at the level of code.

Disadvantages

Applications exchanging messages must construct and interpret these
messages.

Thus, message-oriented technology imposes no restriction at the level of
message structure. Messages must be constructed by the sending application

Overview of Enterprise Application Integration

and interpreted by the receiver. This implies that the client application must
possess code to construct the message and that the server application must
have code to decode the message. The code for each of the applications also
contains, therefore, communications-related code (Figure 1.21).

Application A Application B
Application Application
code code
Communication Communication
code code

Message-oriented middleware

Figure 1.21 Using message queues, applications contain code for communications

This is not considered to be elegant from the architectural viewpoint,
because every modification in the communication system affects the appli-
cations themselves and the application programmer must also know the
communication system. This knowledge represents a not inconsiderable
expertise. For example, certain types of data are not represented in the same
way on different platforms. Current middleware products only perform very
limited transcoding and this job rests in the hands of the application
programmer.

No standard exists for this technology. This means that a user cannot com-
bine two middleware products each from a different vendor. It is equally
impossible to create messages using a standard format in the hope that they
will be portable across distinct middleware products. All of this implies that
a user must select a product and keep with it. This choice is important
because middleware represents the infrastructure of the information system
which cannot be easily modified.

29

Middleware and Enterprise Application Integration

Recent Developments

Message-oriented middleware technology is highly dynamic and in each
version of each product, new functions are offered. To show this tendency,
here are the principal functions offered by version 4.0 of BEAmessageQ:

e Self-describing messages: This function includes in the message all the elem-
ents for its interpretation. This means that one application can commun-
icate with another without precisely defining the structure of the messages
they exchange. Thus, the sender of a message can add data to an existing
message or change its length without causing problems for code in the
receiving application if the latter does not access the additional data. This
system can also transcode data from one format into another when the
exchange takes place between different platforms. This newly offered func-
tion shows the tendency to simplify matters for application designers, by
increasing the flexibility of the communications system and by progres-
sively integrating in it all the functions that are appropriate for it.

o Naming system: This system allows the naming of the destination not only
by the number of its message queue but also by a symbolic name.

® Large messages: The maximum size of message transferred is increased to
4 Mb. This allows the simplification of the exchange of complete files
between applications.

Application Application
A B

Figure 1.22 Entire files can be exchanged between applications thanks to the maximum message size
of 4 Mb

In conclusion, message-queue middleware offers to system designers a flex-
ible asynchronous tool that is reliable, has high performance, and allows
them better to solve the problem of how to integrate pre-existing applica-
tions. However, the absence of standards and the fact that the application
code must contain communications code have led some groups to see that
other ways of integrating applications should be found. These thoughts led
to the production of a new generation of MOM products that employ the
semantic level in message exchange. This new generation is described
in Section 1.2.

Overview of Enterprise Application Integration

Middleware for Applications External to a Business: HTTP and XML

Warning: In order to understand this technology, it is assumed that the
reader is familiar with the operation of Web servers. If this is not the case,
the reader is invited to read Section 1.4 in this chapter. They will then be able
to read this section with confidence.

The Internet environment allows the construction of applications using the
three-tier client-server model. The user interface stage is formed of one or
more HTML pages that are downloaded and then displayed on the user’s PC.
This page has the address of the processing server stage (which is located on
the Web server machine) in the form of a URL (Uniform Resource Locator).
It can also transmit requests by adding a set of parameters to a URL. These
requests are received by the Web server that transfers them to the applica-
tions processing server. This server replies by returning the data in HTML
format so that they can be displayed by the browser. This dialogue forms the
HTTP (HyperText Transfer Protocol) protocol.

This communication protocol is synchronous and it only transfers charac-
ters, a property that allows it to operate in any environment. On the other
hand, a URL provides a simple universal medium for denoting an entity on
the Internet. From this fact, HTTP is very similar to RPC, but is much simpler.
Its only weakness is the lack of standard defining the parameters that can be
passed. Microsoft has suggested using XML to describe this data. XML allows
data to be put into a form that is easy to transmit and decode. The combina-
tion of HTTP and XML is called SOAP (Simple Object Access Protocol). SOAP
is not a new technology but a combination of two already existing ones. It
simply denotes the use of XML with HTTP.

)
HTTP request = URL + XML parameters
HTML Web > Processing
— <-Sever... lq—| server
Reply in HTML format \)

Figure 1.23 The SOAP protocol

1.3.3 Integration of Processing: Semantic Level
Hub and Spoke Architecture

The concept of application integration is no longer limited to the system
level but also includes the semantic level. It is now possible to talk of
business application integration so as to emphasize several aspects, which

Middleware and Enterprise Application Integration

are as follows:

The nature of what is exchanged. Messages are no longer simple character
strings but business elements (order form, stock exchange form, etc.).

The fact that the elements exchanged have business significance implies
that they require particular forms of processing. For example, they could
be tracked individually, stored in various ways, subjected to the process-
ing associated with data warehousing.

The exchange data model imposes conversion mechanisms between
models.

Integration of two applications is the consequence of a business analysis.
The need to implement a new business process includes a sequence of
tasks that are implemented as a sequence of programs.

These new constraints induce functions that are very “heavy” such as task
sequencing or transformation of data models. Because these functions
make use of complex software, it is seemed more efficient to implement this
new type of middleware using a centralized architecture of the hub and
spoke type. The hub represents the centre of the activity and the spokes rep-
resent the links which connect the hub to applications.

Hub

In this scheme, the functions offered by the hub are as follows:

The handling of message queues: They are grouped at the level of the hub
and not decentralized at the level of each application. A unique queue
handler also allows the use of elaborate communications structure: from
one-to-one (question/response type) or one-to-many (broadcast or pub-
lish/subscribe type).

The workflow function: This function is activated by each message sent in
order to decide its destination. The destination is defined either by

— The message header: this contains the name of the destination
application.

— The value of certain parameters in the body of the message: for example,
if the message represents a order form, following the value of this, the
message will be sent to different people.

— The workflow to which the message belongs: this message belongs to a
business process which is described in a table to which the routing soft-
ware has access. This table contains the list of steps in the workflow and
therefore the name of the destination application.

Overview of Enterprise Application Integration

Application Application
A B
Adapter Adapter

Hub
Spoke
Queue Queue

Queue

Workflow :
Data

transformation

Figure 1.24 Hub and Spoke architecture

e Security and access rights function: In this kind of architecture, it is

Spoke

important to verify that a given application does really have the access
rights required to send message of a certain type to another application.
The access rights of each application and/or of each user are stored in
a database whose standard representation is LDAP (Lightweight Data
Access Protocol, a standard protocol for describing access rights in net-
works). This database is consulted before routing the message to the data
transformation function’s message queue.

The data transformation function: When a message is placed in its input
queue, this program is activated. It knows the transformation function for
transforming the sending application’s data model into the one used by
the receiving application, and it generates a new message which it sends
to the input queue of the destination application.

Spokes constitute the link between the hub and the application. This link is
formed of two parts: the network protocol part which allows the circulation
of messages and the adapter which is ad hoc software for connecting appli-
cations. This complex software is described in the following section.

Middleware and Enterprise Application Integration

Bod
Header Properties (XMIY)

Figure 1.25 MS message format

In the hub and spoke structures, the network protocol does not matter. It
must allow the reading of messages from and the sending of messages to the
message queues that are located most often in a database. On the other hand,
the structure of the messages must be specified. One attempt at a specifica-
tion, initiated by Sun, seems to hold the consensus of the major vendors. It is
called JMS (Java Message Service, a standard for asynchronous messages).
JMS is characterized by the fact that its message has the following three parts:

e The header: contains information allowing the identification and routing
of the message.

e Properties: this field allows the addition of information specific to the send-
ing application.

e Message body: five types of data format are possible:

StreamMessage: contains primitive Java values;

MapMessage: sequence of (name, value) pairs;

TextMessage: text in XML format;

ObjectMessage: serialized Java object;

ByteMessage: sequence of uninterpreted bytes.

In the message body, different data formats are possible but the consensus
favours XML. XML is an extensible language for the description of data. An
XML document is formed of labels surrounding each data element (before
and after). Associated with this document is a DTD (Document Type Defin-
ition) file which contains the description of the labels. This file (Figure 1.26)
allows the unambiguous interpretation of the XML document. The flexibility
and the power of expression in XML make it the language of choice for the
exchange of information between applications.

Adapters

Two applications are said to be integrated when they are able to exchange
information between each other. The use of exchange middleware implies
that these applications are connected to it. It offers a well-defined interface
which must be used by the applications in order to communicate. The
applications having not been designed for using middleware, two solutions

34

Overview of Enterprise Application Integration

<XML>
<DOCTYPE purchase order SYSTEM "file.dtd">
<Purchase order> \4'
<product> Apple </product> <schema>
<quantity> 100 </quantity> <elementname="Purchase order">
<unit price> 5 </unit price> <annotation>
</Purchase order> <info> A purchase order contains a product,
</XML> a quantity and a unit price </info>
</annotation>
<type>

<elementref="product"/>
<elementref="quantity"/>
<elementref="unit price"/>
</type>
</element>
<element name="product" type="string"/>
<element name="quantity" type="Integer"/>
<element name="unit price" type="float"/>
</schema>

Figure 1.26 XML and DTD files

are conceivable:

e Modify the application code so that they are able to use the middleware.

e Associate the applications with an external software module that knows
how to talk to the middleware as well as to the application.

The first solution is rarely used because very often the software was bought
and in this case it is impossible to modify. In the case in which they were
developed by the company, the document is very often unavailable and
no-one is ready to take the risk of modifying something which still works.

The second solution is almost always preferred and it leads to the develop-
ment of a software module called an adapter.

Structure of an Adapter

An adapter is a piece of software that was developed especially to connect a
given application to some particular middleware. It must allow the applica-
tion either to initialize a request or to receive a request. It must therefore
provide the following functions:

e Communicate with the application using its API. Each large piece of soft-

ware on the market has one or more well-defined APIs. For example, the
SAP business software has two APIs: BAPI and iDoc.

Middleware and Enterprise Application Integration

e When the application sends a request to another application, the adapter
must receive the type of request and the associated data through the
application API. It must then construct the message in the middleware
format (e.g. JMS and XML) and place the message in the message queue in
the hub.

e When a message comes from the hub, the adapter must read it and trans-
form it into one or more function calls that are offered by the application
API. This task is generally complex to be implemented by the developer
because it requires a very good knowledge of the application.

Application
API
Read
Translation or
to/from construction and > Hub
XML transmission WAN/LAN
of message

Adapter

Figure 1.27 Structure of an adapter

The integration of the application implies the development of one adapter
per application before integration. This is not, however, sufficient because if
an application communicates with several other applications, the messages
that it will exchange will vary according to the destination. It will therefore
be necessary that the adapter knows how to handle each of them. This
means that to say that an adapter exists for a given application does not have
much sense. It is also necessary to specify the dialogue for which it was
designed.

Data Transformation

Let us recall first of all that the data transformation function is different from
that of data encoding. The latter is concerned with the way in which data, for
example a whole number, is represented in binary. Here, all data being
coded as character strings, the transcoding problem is eliminated.

The messages that are exchanged represent business entities such as an
order form or a stock form. Data appearing in these business entities must

Overview of Enterprise Application Integration

be understandable by the communicating applications. One necessary con-
dition is that the data are structured in an identical fashion. For example, for
one application, the name of a person might be represented using four fields
(title, family name, middle name and first name), and in another applica-
tion, two fields are deemed enough (family name and first name). Some data
can be missing but understood. Thus a date for payment might be in one
case deduced from the delivery date (e.g. end of the same month) and in the
other case, it must be calculated.

The aim of the transformation function is to make the correspondence
between the data models in the two communicating applications. This job
can become very complex and tools exist on the market to make it easier
(e.g. the Mercator product from the Mercator company, market leader in
data transformation).

Two approaches can be considered when it is necessary to integrate several
applications.

The first approach consists of converting the data into a common model.
This implies two conversions: a conversion from the sending application’s
model to the common model, and a second conversion from the common
model to the destination application’s. The common model must not be
confused with the general corporate data model. The latter exists only very
rarely and if it existed, the common communications model would be, at
best, only a subset of the general model.

This approach has the advantage of separating the data models of each appli-
cation. Thus it is possible to change an application’s model without affecting
communications with the other applications. It has, however, the disadvan-
tage that it is necessary to perform two conversions for each exchange.

The second approach consists of implementing a one-to-one mapping
between each application model. The transformation is done between the
sending application’s data model and that of the receiver. If an application
communicates with n others, n transformations will be necessary. In this
scheme, there is no common data model to be defined. However, in terms of
the transformation links, this approach can lead to a spaghetti system.

Figure 1.28 shows two applications, A and A’, which communicate with three
other applications, X, Y and Z. The use of a common data model leads to
a star-shaped model (the number of transformations is optimized), and the
other model leads to a many-to-many scheme.

The Open Applications Group (OAG) has defined specifications to integrate
applications in particular at the level of data models. Currently, more than
100 models in XML format are available. For the OAG, a message is a

37

Middleware and Enterprise Application Integration

O P ONO O
Ol ¢ O
hONOE©

Figure 1.28 Two schemata for transforming data models

Business Object Document (BOD) which is described in XML. Some
standard formats exist for each industry. They are strongly recommended
since they represent a common data model that can be used in B2B
commerce.

Workflow

Application integration always corresponds to a business need. This is
defined by an objective and the process that will achieve it. The process con-
sists of the steps to which their correspond applications and documents
exchanged by these applications. Experience shows that when a company
wants to adapt to market changes, that will change the workflow and not the
tasks themselves.

The design of an integrating system must be accomplished in such a fashion
that workflow descriptions are external to applications. Thus, a message sent
by one application must not contain the name of the destination but, rather
the name of the stream to which this message belongs. The routing system,
which knows the different streams, decides on the destination. This approach
allows description in one and only one place, in a centralized fashion, at the
level of the hub and the workflow connected to a given type of processing.
The update of such a stream is facilitated because it is not affected by appli-
cations but only by the routing software which provides the modification
function for the tasks or for the workflow.

Security Functions

When two applications want to communicate across an information net-
work such as Internet, the issue of security is raised. This problem has
several aspects: client identification, access rights determination and the
transfer of the exchanged data.

Overview of Enterprise Application Integration

Application 2 Application 3
message queue

Routing
queue

Flow 1: App1, App2, App3

Figure 1.29 The chaining of tasks at the hub level

Client Identification

A client generally authenticates itself using a password. This can be
improved by mechanisms requiring two items for identification. This is the
case, for example, with smart cards which assume that the user has a card
and that they know the associated secret code. In distributed architectures,
aclient can have access to several applications and must identify themselves
to each one of them, a process that can become tiresome. Technologies have
been designed to permit the user to identify themselves once and once only
and to be able to access all the resources to which they are authorized.
The Kerberos system at MIT represents an implementation of this type of
technology, called single sign-on.

Client Access Rights

Having identified the client, the server must know its access rights for the
variously available resources. To do this, the server can either use access
control lists (e.g. each resource is associated with a list of authorized clients)
or a database containing the clients’ rights in the form of the LDAP standard.

Data Transfer

Communications security and Internet transactions must be secured. They
are implemented by combining cryptographic software and encoding using

39

Middleware and Enterprise Application Integration

Internet
> Se "

Questions:

Identify the customer
Discover their access rights
Protect their exchanges

Security agent

Figure 1.30 The problems of Internet security

keys (PKI, or Public Key Intrastructure). PKI uses an architecture that
includes digital certificates, cryptography and certification authorities. The
introduction of PKI in a company means assigning certificates to users and
to servers, providing cryptographic software, offering connections to certifi-
cate servers, making available tools to generate, renew or cancel certificates.
Of the existing technologies, the following can be cited:

40

SSL: A standardized security mechanism that is defined at the level of
network connections between two communicating machines. This tech-
nique is the most often used because it is the easiest to put in place.
It ensures confidentiality and reliability of exchanges, protects against
unauthorized eavesdropping, the counterfitting for the alteration of mes-
sages. This protocol allows the client and the server to authenticate them-
selves, to negotitate an encryption algorithm and keys before any data
exchange.

S/MIME (Secure/Multipurpose Internet Mail Extension): This is an exten-
sion of the MIME (Mulitpurpose Internet Mail Extension, an Internet
standard that defines mail message content types), allowing the sending
and reception of electronic messages in complete security and confiden-
tiality. It provides authentication, message integrity, sender anonymity
assurance and message content confidentiality.

RSA-RC4 (a product of RSA Security Inc.): This industrial standard pro-
vides rapid encoding of data using a key of 40, 56 or 128 bits. The length
of the key determines the level of resistance to external attack.

The industrial standard SET (Secure Electronic Transaction) for credit
card payment over the Internet.

Overview of Enterprise Application Integration

1.4 Middleware and e-Business
Architectures

The middle of the 1990s saw the emergence of a new set of technologies called
the Internet. The Internet represents a global network of networks allowing
computers that are connected to it to communicate with each other. The
Internet is interesting for this study because it suggests a new medium for
communication between entities that were previously called client and server.

Initially, in order to familiarize ourselves with the Internet, we will briefly
consider its architecture (there is more detail to be found in Chapter 8). In
the second part, we will see how it can be used in conjunction with middle-
ware technologies to provide very powerful architectures.

1.4.1 Using the Internet

The Internet aspect that interests us here is the World Wide Web (WWW).
(The WWW is formed of a set of multimedia documents distributed over
thousands of computers, and by a set of tools that allow access to these doc-
uments.) The Web allows access to multimedia documents, in particular
alphanumeric ones, that are stored on a global network of computers. To
gain access to these documents, the user must use a personal computer (PC)
and a connection to the telephone network. Their computer must contain a
special program called a browser.

This computer connected to the network and wishing to appear as a docu-
ment server must have a special piece of software called a Web server.

The WWW operates as follows (Figure 1.31):

e Having started the browser program, the user enters the address of a
document.

e The browser sends the request to the network, which knows how to locate
the destination machine and sends it the name of the document being
sought. The protocol used over the network is called HTTP (HyperText
Transfer Protocol). It runs on top of the standard TCP/IP network protocol.

e The Web server program retrieves the document from one of its disks and
sends it to the machine that requested it.

e On reception of the document, the browser processes it according to its
type. If the type is alphanumeric, the document is displayed on the user’s
screen; if the type is audio, the sound is generated by the sound card in the
PC, and so on.

41

Middleware and Enterprise Application Integration

User PC Server machine

Document address

Y

Browser

a
<
@ Internet

network
HTTP protocol

Figure 1.31 Use of the World Wide Web from a PC

The mechanism described above quite simply allows the transfer of files (or
documents). There are two very important points that emerge:

e Access to a document can be had from anywhere in the world. The only
condition is the use of a telephone and a computer.

e Every alphanumeric document is displayed on the user’s computer
screen. In order to be “displayable” on any type of machine, such docu-
ments must be written in a standard language called HTML (HyperText
Markup Language). Such documents can contain fields to capture data
and to display results. Therefore nothing prevents such a document from
being the graphical interface of an application.

It is thus possible, throughout the world, to download the part of an applica-
tion which forms its interface. In the three-tier client-server model introduced
above, this part forms the client’s graphical interface stage in the application.
There remains, however, communication with the rest of the application, that
is with the processing server. To this end, we will see another characteristic of
the WWW,.

Web Server

The Web server is a piece of software located on a machine connected to
the Internet that sends replies to user requests. The requests always refer to

42

Overview of Enterprise Application Integration

documents or files. The type of document dictates the action of the Web
server. It returns all the documents requested of it except those of type pro-
gram. In this particular case, the active Web server activates the program in
question, passing it the parameters that were received in the request and
finds the results in order to send them to the client that sent the request.

Thus, in this mode of operation, the WWW allows the execution of code at a
distance from the application.

1.4.2 Architectures Combining Internet and
Middleware Technologies

The mechanisms of the WWW allow the construction of applications using
the client-server model. Let us take the case of a two-tier application com-
posed of the user interface stage and the processing server stage. Let us
make two assumptions:

e The interface code is written in HTML and is stored in a file of type alpha-
numeric, called interface.html.

e The processing server is already in executable form and is stored in a file
of type program (or binary) called server.bin.

The WWW allows use to execute this two-tier application on any machines
anywhere. The mechanism is the following:

e It downloads the interface stage, that is the interface. html file (see above).

e The browser displays the interface.html file on the user’s screen. The user
has before them the interface to their application which executes on their
own machine. It can also capture data and send a request to the server.bin
document, that is to the processing server of their application.

o Therequest travels across the network and arrives at the Web server on the
machine on which the requested file is stored. This file, containing as it
does an executable image, is executed by the Web server which passes its
data that formed part of the request. Thus, the processing server part of
the application executes on the Web server machine.

e The program’s results in the form of an HTML document are returned to
the client by the Web server.

e The user’s browser displays the results it has received.

This description shows the fact that the PC user can execute the client part
(interface) of any application at all. For this, it is enough merely to download it.

43

Middleware and Enterprise Application Integration

In this approach, the HTTP protocol combined with the browser and Web
server appear as a particular type of middleware. The interest of this
approach can easily be understood. No application need reside on the PC.
Interface parts are downloaded on request. The gain in application mainte-
nance is enormous.

In the case of applications organized along the lines of the three-tier model,
it is quite possible to use, between the graphic interface and the processing
server, the HTTP protocol and, between this and the data server, message-
based, RCP or object-based middleware. Thus in Figure 1.32 nothing pre-
vents us from having the three components of the application on three
different machines.

MOM, RMI or object

middleware

Graphical Processing
interface server

stage stage

Figure 1.32 The three-tier client=server model allows the harmonious combination of Internet and middleware
technologies

The different architectures that are possible by combining these technolo-
gies are described in detail in Chapter 9. These architectures are classified
according to the model used by the Gartner Group (Figure 1.33) for describ-
ing the different business functions that can possibly be offered over the
Internet, presents in order of increasing complexity. This model includes
four stages which are: information publication, interaction with the site
server, transaction and B2B functions.

144

Overview of Enterprise Application Integration

A Complexity of
offered functions

Integrate

Time

Figure 1.33 Stages in the evolution of companies in the use of Internet technologies (Gartner
Group’s maturity model)

These architectures should be the richness and the power of middleware
technologies when they are combined over the Internet.

1.5 Object-oriented Modelling for
Constructing Architectures

In today’s industrial world, everyone is rushing to construct distributed
information systems. The appearance of the PC at the start of the 1980s was
the initiating element. The emergence of the Internet in the middle of the
1990s was software elements and marketing formed the detonator. Anyone
can see the interest in distributing data, but above all applications. In any
case, many of advantages arise from it, but a major disadvantage does also:
complexity. So

Distributed systems are complex to design and manage.

e Complex to design: A large system (or applications) can comprise a large
number of elements. It is necessary to define the functions offered by each
of them while keeping their reuse in mind.

e Complex to handle: The personnel in charge of the production of
information systems in a company sees with disquiet the emergence of

45

Middleware and Enterprise Application Integration

distributed software. Currently applications are monolithic. When they no
longer function correctly, the system manager knows on which machine
to look. Let us imagine the case of an application composed of ten com-
ponents on a network. When this application crashes, where are they to
look? How is one to know all these components and their locations?

In order to reduce this complexity, it is useful to make use of a method. The
one presented here is interesting for two reasons: it allows the design of distri-
buted systems but also, and this is its originality, it provides the information
necessary for processing, during production, of a distributed information
system.

The proposed method is called MethodF (MethodF is a registered name of
Digital Equipment Corporation) and was defined by Digital Equipment
Corporation. As with every software development method, MethodF con-
sists of phases of specification, analysis, design and implementation. Its
primary characteristics are the following (this method is described in more
detail in Appendix B):

e It starts with the specification of the system to be constructed and contin-
ues to the generation of code. It also includes the system management
aspect (see Figure 1.34).

e Itis object oriented. The main advantage in our eyes of the concept of an
object is that it forms a language that is common to domain expert for
whom the application is being constructed and the computing person.

e The object model thus obtained represents the expert’s system with their
invariants (object). This model is completely independent of the way in
which it is to be implemented.

e The specification of the system to be constructed is organized using the
scenario concept introduced by Ivar Jacobson in his OOSE method.
(OOSE, Object-Oriented Software Engineering.)

e UML (Unified Modelling Language) is the notation used in the analysis
and design stages.

e This method is only really interesting if it is used in conjunction with a
software modelling tool (The ROSE tool from Rational Corp. for whom the
creators of UML work.). Such a tool allows:

— storing model constructs during the design phase;

— reuse entirely or in part, those models that have already been con-
structed. Thus, the concept of reuse is applied not to the programming
level but to the design level.

46

Overview of Enterprise Application Integration

Scenario

—

/_ Manual modelling\

Static model Dynamic model

<— Automatic generation e

Figure 1.34 Global approach to the design, construction and management of a distributed system

— generation, during the implementation phase, automatically, the code
for objects (e.g. in C++) as well as the IDL code describing the inter-
object communication protocol.

e During the design phase, the dynamic behaviour of the objects is mod-
elled. This precious information is used later by the handler software.

1.6 Conclusion

The aim of this book is to show the importance of middleware as a technol-
ogy that responds to the current needs of industry. These needs are
expressed in terms of distribution and cooperation between applications or
between application components.

a7

Middleware and Enterprise Application Integration

Thus, different technologies implementing middleware are presented and
analyzed. It appears that their use profoundly influences the global architec-
ture of an information system. It implies a change in culture since it modifies
the structure of applications.

The advantages that result have a price, that of complexity. The fact of using
a complete methodology (Figure 1.34) integrating the problems of design,
software reuse and system management in the production phase will give
feelings of safety to every system manager who must, sooner or later, set out
along this road. The gains are as great as the effort expended.

48

