
Preface

As CMOS semiconductor technology strides towards billions of transistors on
a single die new problems arise on the way. They are concerned with the di-
minishing fabrication process features, which affect for example the gate-to-wire
delay ratio. They manifest themselves in greater variations of size and operating
parameters of devices, which put the overall reliability of systems at risk. And,
most of all, they have tremendous impact on design productivity, where the costs
of utilizing the growing silicon ‘real estate’ rocket to billions of dollars that have
to be spent on design, verification, and testing. All such problems call for new de-
sign approaches and models for digital systems. Furthermore, new developments
in non-CMOS technologies, such as single-electron transistors, rapid single-flux-
quantum devices, quantum dot cells, molecular devices, etc., add extra demand
for new research in system design methodologies.

What kind of models and design methodologies will be required to build
systems in all these new technologies? Answering this question, even for each
particular type of new technology generation, is not easy, especially because
sometimes it is not even clear what kind of elementary devices are feasible there.
This problem is of an interdisciplinary nature. It requires an bridges between
different scientific communities. The bridges must be built very quickly, and
be maximally flexible to accommodate changes taking place in a logarithmic
timescale. On one side of such a bridge lies the nature (physics, chemistry, or
biology) of the elementary devices that can be built in the chosen technology.
On the other side are the functional properties of the desired computational
operators. The recent developments in the area of DNA computing serve as a
very good example of interdisciplinary bridge construction.

This book is, however, not about front-end nanotechnologies and novel com-
putational mechanisms made possible on their basis. It is about one, relatively
old and well-known behavioral paradigm in computing, called concurrency, and
the ways concurrency is exhibited or can be exploited in relatively standard,
digital hardware devices. Nevertheless, our hope is that the book will contribute
to the series of publications aimed to be interdisciplinary. The above-mentioned
bridge here should not be too challenging to construct as the ‘banks of the river’
are not too far apart. They can be roughly termed theoretical computer science
and electronic system engineering. Understanding of most of this book by the
representatives of both communities should not require additional background
reading. So, thanks to this gap being not too wide, it seems possible to keep this
material to a highly technical level, which should hopefully enable and encour-
age researchers standing on either side to start, or continue, thinking about new
models, applications, design methods, algorithms, or software tools.

The book is aimed at inviting computer scientists working in the area of
concurrency to look in the direction of hardware technology, of what is practically
implementable regardless of theoretical bounds and restrictions. Remember Sean



VI Preface

Connery’s saying in one of his numerious action movies: “It is impossible ...
but it’s doable!” This is exactly what engineers and practitioners often have in
mind, when theoreticians tell them about computationally intractable problems
or exponential growths.

On the other hand, computer scientists often go for solutions to real-world
problems that are far too abstract and require layers of intermediate software
packages to implement. A hardware engineer (not perhaps with a soldering iron
these days!) can come up with an elegant and simple solution that can be realized
in a handful of logic gates or transistors. For example, controlling concurrent pro-
cesses and asynchronous interactions is relatively easy to implement in circuits.
Yet, complicated mechanisms are required to be built on top of operating system
kernels in software to support concurrency between different execution threads.
In the end, what is clear and transparent mathematically becomes obscure and
unpredicatble in realization.

This book also aims to give some messages to theoreticians, often relying on
abstract computational models that are far from physical reality. As an example,
many of us attended courses on data structures and algorithms, where we learnt
that a quick sort is much faster than a bubble sort (O(n log n) vs. O(n2)). That
analysis was done under the assumption that moving one element from one
location of the array to another location takes a constant time. However, a
circuit designer implementing such algorithms in hardware would immediately
disagree with such a complexity analysis. Today, wire delays are comparable to
gate delays, and moving data across a chip takes a time proportional to the length
of the move. For this reason, hardware designers would probably choose bubble
sort as the best approach to sort an array stored in a one-dimensional space,
since all moves are local (i.e., take a constant time). Instead, moves in a quick
sort are global, thus taking time O(n), and resulting in an overall complexity of
O(n2 logn). The question is, at which level of abstraction is a quick sort better
than a bubble sort? Definitely not at the physical level.

For many years, practical digital circuits were built using global clocking.
Although the clock was often not needed to perform the system’s main function
(barring, perhaps, hard real-time systems, but the real-time clock is another
issue!), using the clock to pulse time explicitly, at the very-high-frequency (up
to hundreds of megahertz) level, helped to construct complex circuits without
worrying about races and hazards in gates and flip-flops. The age of global
clocking is however coming to an end, whether designers welcome this fact or
not. There are fundamental problems with distributing the signal of the gigahertz
clock uniformly and reliably to every part of several-square-centimeter silicon
die with devices of less than 100 nanometers. The irony of the situation is that
while the clock used to be the bodyguard against hazards and unpredictable
asynchrony, it now becomes its first enemy! With the increasing clock frequency
the effects of parametric jitter, due to thermal fluctuations for example, that
may cause synchronization failures, become unavoidable. New ways of building
hardware, using distributed clocking, are being sought. One such paradigm is
called Globally Asynchronous Locally Synchronous (GALS) systems. It is based



Preface VII

on the idea of a compromise between two contradictory issues. One is the fact
that at the chip level communications have to be asynchronous and not rely on
one central timing engine. The other is the fact that the productivity crisis forces
designers to maximize the reuse of existing hardware solutions, the so-called
intellectual property (IP) cores. Since the latter have been typically designed
for clocked systems, they are deemed to remain intact and thus, when placed
in the ‘hostile’ asynchronous surrounding, must be protected by using special
wrappers. Whether this GALS paradigm, somewhat of a half-measure, is here to
stay with us for another decade or longer does not really matter, but there is a
clear meassage from the semiconductor technology people that ‘serious climatic
changes on the face of the die’ have approached us already.

It is worth emphasizing here, particularly for the computer science audience,
that temperature is one of the biggest threats to system design these days. Part
of this problem boomerangs back on the same old designer’s friend, the clock.
The clock is responsible for radiating at least 40% of the thermal energy on
modern microprocessor chips.

The problems with variations of temperature and other parameters, such as
switching thresholds of transistors, either in operation or at fabrication, add to
the motivation for searching for ways of living without the clock at all. And here
we come back to the subject of this book. Indeed, we must now look at self-timed
or asynchronous circuit design, which is often associated with the real, physical
world of concurrency. The history of research in asynchronous hardware design
has traditionally been a fertile field for research on concurrency and Petri nets.
Many new ideas about modeling and the analysis of concurrent systems, and
Petri nets in particular, grew out of the theory of asynchronous digital circuits.
For example, the theory of speed-independent circuits by D.E. Muller and W.C.
Bartky laid the foundation for the important concepts of feasible sequences,
cumulative states, finite equivalence classes, confluence, semimodularity, and so
on. Similarly, the theory and practice of digital hardware design have always been
watchful to the appearance of new results in concurrency models and analytic
tools, including Petri nets, CSP, CCS, BDD and symbolic traversal, partial-order
reductions, etc. Likewise, with clocked hardware, the sequential model of a finite
state machine played the role of the ‘theoretical mentor’ to keep logic design
well-disciplined.

The subject of concurrency and hardware design brings to our mind the
question of what is specific about this relation and how it is different, if at all,
from the use of concurrency in software engineering. One, perhaps, controversial
idea is the following, which is based on the notion of computation distribution.

Hardware, especially when clockless, is distributed by its nature. So, in hard-
ware design, the original concept of the system specification gradually becomes
more distributed and concurrent as it evolves from the specification to its imple-
mentation. Thus the hardware synthesis is the problem of distributing a global
system’s state between a set of local states, the states of registers and flip-flops.
In software design the process is somewhat reversed. One often starts with a
possibly ambitious object-oriented and highly concurrent model. In the end ev-



VIII Preface

erything must eventually be run on a single processor, or even a set of parallel
processors, where the computations are sequential by definition (unless and un-
til they become concurrent again at the microcode level thanks to superscalar
and asynchronous hardware!). The design process, seen as solving a synthesis
problem, must therefore schedule concurrent actions in a sequential time line,
collecting the local states into the global state of the C or machine-level pro-
gram. Both of these views are closely related, especially in the world of embedded
systems, increasingly implemented as Systems-on-a-Chip (SoCs), where the tra-
ditional understanding of the boundary between hardware and software becomes
very blurred. Because of that, it is most natural to consider the area of designing
embedded systems also within the scope of interest of this volume.

In the last four years we have been involved in several attempts to bring
the theory of concurrency and Petri nets closer to hardware design applica-
tions. These included two special workshops (1998, Lisbon, and 1999, Williams-
burg) and one advanced tutorial (2000, Aarhus) held within the annual Interna-
tional Conference on Applications and Theory of Petri Nets. Two conferences on
the Application of Concurrency to System Design have been held (1998, Auzu,
Japan, and 2002, Newcastle, UK). One collective monograph, Hardware Design
and Petri Nets, was published in 2000.

The papers collected in this book cover the scope of applications of con-
currency techniques in hardware design. They are organized into four parts.
Part I deals with formal models of digital circuits using process-based and net-
based descriptions, and demonstrates their interrelationship. The three contribu-
tions here cover the problem of process composition satisfying certain safety and
progress properties, the problem of the decomposition of signal transition graphs
for more efficient synthesis of asynchronous circuits, and finally the method of
translating delay-insensitive process algebra specification to Petri nets for their
subsequent synthesis into circuits. Part II introduces approaches to designing
asynchronous circuits. One of them is based on the idea of distributed clocking
of arrays of processing elements, which nicely complements the micropipeline
approach. The other presents new methods for the synthesis of asynchronous cir-
cuits using structural approximations and interface-preserving transformations
on signal transition graphs. The papers in Part III deal with design support for
embedded systems. One of them presents the functional model, the system archi-
tecture, and the mapping between functional blocks and architectural elements
within VCC, a widely used tool for system-level design. The other paper looks
at the design methodology for highly heterogenous embedded systems that is
currently implemented in the new-generation tool Metropolis. Finally, Part IV
addresses the problems of timed verification and performance analysis of hard-
ware using symbolic techniques. The first contribution introduces a methodology
for analyzing timed systems symbolically, from a formula characterizing sets of
timed states, and applies it to timed guarded command models of circuits. The
second paper presents a symbolic approach to analyzing the performance of
asynchronous circuits using discrete-time Markov chains, and shows a method
for battling the state-space explosion problem.



Preface IX

Acknowledgements. We are very much indebted to all the authors contribut-
ing to this book, and to David Kinniment, Alex Kondratyev, Maciej Koutny,
Oded Maler, and Fei Xia, who acted as external referees (note that the papers
were also cross-refereed internally), for their constructive criticism. Finally, we
would like to mention the excellent cooperation with Springer-Verlag during the
preparation of this volume.

September 2002 Jordi Cortadella
Alex Yakovlev

Grzegorz Rozenberg


