Kapitel 8: Funktionen in einer Variablen

Für Funktionen in einer Variablen werden folgende elementaren Probleme gelöst: Nullstellen von Funktionen erhält man über den **solve** - bzw. **fsolve** -Befehl, die Linearfaktorenzerlegung erfolgt mit **factor** und eine Partialbruchzerlegung von gebrochenrationalen Funktionen mit **convert**. Die Bestimmung von Extremwerten, Wendepunkte und Asymptoten ist im Abschnitt über die Kurvendiskussion zusammengefasst. Das Lösen der Einzelprobleme erfolgt hierbei im Wesentlichen durch **solve**, **diff**, **simplify** sowie **plot**. Speziell für die Entwicklung einer Funktion in eine Taylorreihe benötigt man den **taylor**-Befehl.

8.1 Bestimmung von Nullstellen

fsolve	worksheet
Problem	Gesucht sind Näherungen für die Nullstellen einer Funktion $f(x)$: f(x)=0
Befehl	fsolve (f(x)=0, x);
Parameter	f(x): Funktionsausdruck x: Variable der Funktion
Beispiel	$\sqrt{x} - 4x^2 = 0$ > f(x) := sqrt(x) - 4*x^2 : > fsolve(f(x)=0, x); 0. > fsolve(f(x)=0, x, x=0.12); .3968502630
Optionale Parameter	> fsolve(f(x)=0, x, x=x0x1); x=x0x1 gibt das Intervall an, in dem eine Nullstelle näherungsweise berechnet wird. > fsolve(f(x)=0, x, complex); berechnet auch komplexe Lösungen.
Hinweise	Ist $f(x)$ ein Polynom vom Grade n, dann werden mit der Option $complex$ alle Nullstellen (reelle als auch komplexe) des Polynoms $f(x)$ näherungsweise bestimmt.
Siehe auch	solve; → Näherungsweises Lösen einer Gleichung.

8.2 Linearfaktorzerlegung von Polynomen

factor	worksheet
Problem	Gesucht ist eine Zerlegung des Polynoms $f(x) = a_n x^n + a_{n-1} x^{\binom{n-1}{1}} + \dots + a_1 x + a_0$ in Linearfaktoren der Form $a_n x^n + a_{n-1} x^{\binom{n-1}{1}} + \dots + a_1 x + a_0 = a_n (x - x_1) (x - x_2) (x - x_n)$
Befehl	factor (f(x));
Parameter	f(x): Polynom vom Grade n
Beispiel	$f(x) = 7 x^6 - 17 x^5 + 20 x^4 - 20 x^3 + 13 x^2 - 3 x$
	> factor(f(x)); $x(7x-3)(x^2+1)(x-1)^2$
	<pre>> factor(f(x), complex);</pre>
	7. $(x+1. I) x (x-1. I) (x4285714286) (x-1.)^2$
Hinweise	Der factor -Befehl liefert falls möglich alle reellen Nullstellen und stellt das Polynom in diesen Nullstellen dar. Mit der Option <i>complex</i> werden auch die komplexen Nullstellen näherungsweise bestimmt und man erhält eine vollständige Zerlegung in Linearfaktoren.
Siehe auch	fsolve.

8.3 Partialbruchzerlegung gebrochenrationaler Funktionen

convert parfrac	worksheet
Problem	Gesucht ist eine Partialbruchzerlegung der gebrochenrationalen Funktion $ (a_n x^n + a_{n-1} x^{(n-1)} + + a_1 x + a_0) / (b_m x^m + b_{m-1} x^{(m-1)} + + b_1 x + b_0) $
Befehl	<pre>convert(f(x), parfrac, x);</pre>
Parameter	f(x): Gebrochenrationale Funktion x: Unabhängige Variable der Funktion
Beispiel	$f(x) = \frac{x^6 - 2x^5 + x^4 + 4x + 1}{x^4 - 2x^3 + 2x - 1}$
	> f(x) := (x^6-2*x^5+x^4+4*x+1) / (x^4-2*x^3+2*x-1) : > convert(f(x), parfrac,x); $x^2+1-\frac{1}{8}\frac{1}{x+1}+\frac{\frac{5}{2}}{(x-1)^3}+\frac{\frac{3}{4}}{(x-1)^2}+\frac{\frac{1}{8}}{x-1}$
Hinweise	-
Siehe auch	fsolve, factor.

8.4 Kurvendiskussion

	worksheet
Problem	Kurvendiskussion einer Funktion f(x) in einer Variablen x (1) Graph der Funktion (2) Symmetrie (3) Nullstellen (4) Lokale Extrema (5) Wendepunkte (6) Verhalten im Unendlichen
Befehl	Maple-Befehlsfolge
Parameter	f(x): Ausdruck in der Variablen x x: Unabhängige Variable
Beispiel	$f(x) = \frac{x}{\sqrt{x^4 + 2}}$ > f:=x->x/sqrt(x^4+2): (1) Funktionsgraph: plot-Befehl > plot(f(x), x=-1010); 0.6 0.4 0.2 -10 -8 -6 -4 -2 0 2 4 x 6 8 10 -0.2 -0.4

```
(2) Symmetrie: f(-x)=f(x) oder f(-x)=-f(x): simplify-Befehl
> simplify(f(x)/f(-x), symbolic);
-1
```

Die Funktion ist punktsymmetrisch zum Ursprung.

(3) Nullstellen: solve-Befehl

$$>$$
 solve(f(x)=0,x);

(4) Lokale Extrema: Erste Ableitung gleich Null, zweite ungleich Null.

Bestimmung der relevanten Ableitungen mit dem diff-Befehl.

```
> fs:=simplify(diff(f(x), x));

> fss:=simplify(diff(f(x), x$2));

> fsss:=simplify(diff(f(x), x$3));

fs := -\frac{x^4 - 2}{(x^4 + 2)^{(3/2)}}
fss := 2\frac{x^3(x^4 - 10)}{(x^4 + 2)^{(5/2)}}
fsss := -6\frac{x^2(x^8 - 28x^4 + 20)}{(x^4 + 2)^{(7/2)}}
```

Extrema: Nullstellen der ersten Ableitung: solve-Befehl

```
>e:=[solve(fs=0,x)];

e:=[2^{(1/4)},I2^{(1/4)},-2^{(1/4)},-I2^{(1/4)}]

>evalf(e);

[1.189207115,1.189207115 I,-1.189207115,-1.189207115 I]
```

Es gibt 2 reelle Kandidaten für lokale Extremwerte e[1] und e[3]. Ob diese Kandidaten auch Extremwerte darstellen entscheidet die 2. Ableitung

```
> subs (x=e[1],fss);
> evalf(%);
-\frac{1}{4}2^{(3/4)}\sqrt{4}-.8408964155
```

Da zweite Ableitung negativ, liegt hier ein lokales Maximum vor. Der Funktionswert ist

$$\frac{1}{4} \, 2^{(3/4)} \, \sqrt{4}$$

.8408964155

Da zweite Ableitung positiv, liegt hier ein lokales Minimum vor.

(5) Wendepunkte: Zweite Ableitung gleich Null, dritte ungleich Null

>w:=[solve(fss=0,x)];

$$w := [0,0,0,10^{(1/4)}, I10^{(1/4)}, -10^{(1/4)}, -I10^{(1/4)}]$$

>evalf(w);

[0., 0., 0., 1.778279410 , 1.778279410 *I*, -1.778279410 , -1.778279410

Es gibt 3 reelle Kandidaten für Wendepunkte w[1], w[4] und w[6]. Ob diese Kandidaten auch Wendepunkte darstellen entscheidet die 3. Ableitung

Da die dritte Ableitung Null, liegt für den Wert x=0 kein Wendepunkt vor. In Frage kommen nun noch die Werte 1.778279410 bzw. -1.778279410:

> subs (x=w[4],-fsss); evalf(%);
$$-\frac{5}{108}\sqrt{10}\sqrt{12}$$
-.5071505162

> subs (x=w[6],fsss); evalf (%);
$$\frac{5}{108}\sqrt{10}\sqrt{12}$$
 .5071505162

(6) Asymptotisches Verhalten: Das asymptotische Verhalten bestimmt man mit dem asympt-Befehl

$$\frac{1}{x} + O\left(\frac{1}{x^5}\right)$$

Hinweise

Falls der **solve**-Befehl keine befriedigenden Ergebnisse liefert, sollte der **fsolve**-Befehl verwendet werden, der eine Näherungsbsung der Nullstellen bestimmt. Mit **simplify** werden die Ausdrücke vereinfacht.

Siehe auch

subs, fsolve, simplify.

8.5 Taylorentwicklung einer Funktion

taylor	worksheet
Problem	Gesucht ist die Taylorentwicklung der Ordnung N für eine Funkt ion f(x) mit einer Variablen x
	$f(x) = f(x_0) + \left(\frac{\partial}{\partial x} f(x_0)\right) (x - x_0) + \dots +$
	$\frac{1}{N!} \left(\frac{\partial}{\partial x} \right)^{N} f(x_0) (x - x_0)^{N}$
Befehl	taylor(f(x), x=x0, N+1);
Parameter	f(x): Funktionsausdruck $x=x0$: Entwicklungspunkt N : Ordnung der Taylorreihe
Beispiel	$f(x) = e^x$
	an der Stelle $x_0 = 0$ bis zur Ordnung 5.
	>f:=x->exp(x):
	> taylor(f(x), x=0, 6);
	$1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \frac{1}{120}x^5 + O(x^6)$
	<pre>>p:= convert(%,polynom);</pre>
	$p := 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4 + \frac{1}{120}x^5$
	>plot([f(x), p], x=-24,color=[red,blue]); ¹
Hinweise	$O(x^6)$ bedeutet, dass Terme ab der Ordnung 6 abgeschnitten werden. Mit convert wird die Partialsumme in ein Polynom umgewandelt, welches dann z.B. mit dem plot -Befehl gezeichnet werden kann. Die allgemeine Taylorreihe mit einem allgemeinen Glied kann nicht durch den elementaren Befehlssatz von Maple bestimmt werden.
Siehe auch	convert, mtaylor; → Konvergenz von Potenzreihen: Konvergenzradius → Fehlerrechnung.

¹ Aus Platzgründen wird auf die Ausgabe der Graphik verzichtet.