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1 Introduction

There is a long philosophical tradition of addressing questions in phi-
losophy of science and epistemology by means of the tools of Bayesian
probability theory (c¢f. [Ear92,HowUrb89]). In the late *70s, an axiomatic
approach to conditional independence was developed within a Bayesian
framework. This approach in conjunction with developments in graph
theory are the two pillars of the theory of Bayesian Networks, which is
a theory of probabilistic reasoning in artificial intelligence. The theory
has been very successful over the last two decades and has found a wide
array of applications ranging from medical diagnosis to safety systems
for hazardous industries.

Aside from some excellent work in the theory of causation (cf.
[Pea00,SpiGlySch;01]), philosophers have been sadly absent in reaping
the fruits from these new developments in artificial intelligence. This is
unfortunate, since there are some long-standing questions in philosophy
of science and epistemology in which the route to progress has been
blocked by a type of complexity that is precisely the type of complex-
ity that Bayesian Networks are designed to deal with: questions in which
there are multiple variables in play and the conditional independences
between these variables can be clearly identified. Integrating Bayesian
Networks into philosophical research leads to theoretical advances on
long-standing questions in philosophy and has a potential for practical
applications.

In the remainder of this contribution we will give a short introduction
into the theory of Bayesian Networks (Section 2). We will then study
one of the applications of Bayesian Networks in philosophy in more de-
tail (Section 3) and finally discuss further possible applications and open
problems (Section 4).

2 Bayesian Networks in Artificial Intelligence

Bayesian Networks are a powerful tool to deal with probability distri-
butions over a large class of variables if certain (conditional) indepen-
dence relations between these variables are known. A probability dis-
tribution over n binary propositional variables contains 2" entries. The
number of entries will grow exponentially with the number of variables.
A Bayesian Network organizes these variables into a Directed Acyclical



BAYESIAN NETWORKS IN PHILOSOPHY 41

Graph (DAG), which encodes a range of (conditional) independences. A
DAG is a set of nodes and a set of arrows between the nodes under the
constraint that one does not run into a cycle by following the direction
of the arrows. Each node represents a propositional variable. Consider a
node at the tail of an arrow and a node at the head of an arrow. We say
that the node at the tail is the parent node of the node at the head and
that the node at the head is the child node of the node at the tail. There
is a certain heuristic that governs the construction of the graph: there 1s
an arrow between two nodes iff the variable in the parent node has a di-
rect influence on the variable in the child node. From DAG to Bayesian
Network, one more step is required. A Bayesian Network contains a
probability distribution for the variable in each root node (i.e., in each
unparented node), and a probability distribution for the variable in each
child node, conditional on any combination of values of the variables in
their parent nodes. When implemented on a computer, a Bayesian Net-
work performs complex probabilistic calculations with one keystroke (cf.
[Cow+99,Nea90,Pea88])).

3 An Example: Confirmation with an Unreliable
Instrument

In philosophy of science, and more specifically in confirmation theory,
there is a common idealization that the evidence in favor of a hypothesis
is gathered by fully reliable instruments. What happens if we relax this
idealization and permit that the evidence may have come from less than
fully reliable (LTFR) instruments, as is common in scientific experimen-
tation? Bayesian Networks proof to be useful to study situations like this.
Consider a very simple scenario. Let there be a hypothesis, a (test) conse-
quence of the hypothesis, a LTFR instrument and a report from the LTFR
instrument to the effect that the consequence holds or not. To model this
scenario, we need four propositional variables (written in italic script)
and their values (written in roman script):

I. HY P can take on two values: HYP, i.e., the hypothesis is true and
HYP, i.e., the hypothesis is false;

2. CON can take on two values: CON, i.e., the consequence holds and
CON, i.e., the consequence does not hold;



	
	
	

