
Wireless Java:
Developing with J2ME,

Second Edition

JONATHAN KNUDSEN

*0775_ch00_CMP3 2/3/03 7:37 PM Page i

Wireless Java: Developing with J2ME, Second Edition
Copyright ©2003 by Jonathan Knudsen

All rights reserved. No part of this work may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying, recording, or by
any information storage or retrieval system, without the prior written permission of
the copyright owner and the publisher.

ISBN (pbk): 1-59059-077-5
Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, we use the names only in an
editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

Technical Reviewer: Michael Yuan
Editorial Directors: Dan Appleman, Gary Cornell, Simon Hayes, Martin Streicher, Karen
Watterson, John Zukowski
Managing and Production Editor: Grace Wong
Copy Editor: Rebecca Rider
Proofreader: Gregory Teague
Compositor: Diana Van Winkle, Van Winkle Design Group
Indexer: Valerie Perry
Artist and Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc.,
175 Fifth Avenue, New York, NY, 10010 and outside the United States by
Springer-Verlag GmbH & Co. KG, Tiergartenstr. 17, 69112 Heidelberg, Germany

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.
Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.
For information on translations, please contact Apress directly at 2560 Ninth Street,
Suite 219, Berkeley, CA 94710. Phone 510-549-5930, fax: 510-549-5939, email
info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty.
Although every precaution has been taken in the preparation of this work, neither the
author nor Apress shall have any liability to any person or entity with respect to any
loss or damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

The source code for this book is available to readers at http://www.apress.com in the
Downloads section.

*0775_ch00_CMP3 2/3/03 7:37 PM Page ii

CHAPTER 5

Creating a User
Interface

MIDP APPLICATIONS ARE built to run on many different devices without modification.
This is particularly difficult in the area of the user interface because devices have
screens of all sizes, in grayscale and in color. Furthermore, devices vary widely in
their input capabilities, from numeric keypads to alphabetic keyboards, soft keys,
and even touch screens. The minimum screen size mandated by MIDP is 96 × 54
pixels, with at least one bit of color depth.1 As for input, MIDP is fairly open-
ended: devices are expected to have some type of keyboard, or a touch screen,
or possibly both.

Given the wide variety of devices that are compliant with MIDP, there are two
ways to create applications that work well on all devices:

• Abstraction: Specify a user interface in abstract terms, relying on the MIDP
implementation to create something concrete. Instead of saying something
like, “Display the word ‘Next’ on the screen above the soft button,” you say,
“Give me a Next command somewhere in this interface.”

• Discovery: The application learns about the device at runtime and tailors the
user interface programmatically. You might, for example, find out how big
the device’s screen was in order to scale your user interface appropriately.

The MIDP APIs support both methods. Abstraction is the preferred method
because it involves less code in your application and more work by the MIDP
implementation. In some cases, like games, you need to be more specific about the
user interface; these types of applications will discover the capabilities of a device
and attempt to tailor their behavior appropriately. MIDP’s user-interface APIs are
designed so that it’s easy to mix the two techniques in the same application.

1. Color depth is the number of bits that determine the color of a pixel on the screen. One bit
allows for two colors (usually black and white). Four bits allows for 16 colors, which could be
different levels of gray or a palette of other colors.

61

*0775_ch05_CMP4 2/4/03 12:13 PM Page 61

The View from the Top

MIDP contains user-interface classes in the javax.microedition.lcdui and
javax.microedition.lcdui.game packages. The device’s display is represented by
an instance of the Display class, accessed from a factory method, getDisplay().
Display’s main purpose in life is to keep track of what is currently shown, which is
an instance of Displayable. If you think of Display as an easel, a Displayable
instance is akin to a canvas on that easel.

MIDlets can change the contents of the display by passing Displayable
instances to Display’s setCurrent() method. This is the basic function of a
typical MIDlet:

1. Show a Displayable.

2. Wait for input.

3. Decide what Displayable should be next.

4. Repeat.

Displayable has a small family of subclasses that represent various types of
user interfaces. Figure 5-1 shows the lineage.

Figure 5-1. Displayables in the javax.microedition.lcdui and
javax.microedition.lcdui.game package

Displayable’s progeny are split between two branches that correspond to the
two methods for creating generalized user interfaces, abstraction and discovery.
The Screen class represents displays that are specified in abstract terms.

Chapter 5

62

*0775_ch05_CMP4 2/4/03 12:13 PM Page 62

(a) (b)

(c) (d)

Figure 5-2. The four children of Screen: (a) TextBox, (b) Alert, (c) List, and
(d) Form

These screens contain standard user-interface items like combo boxes, lists,
menus, and buttons. Four subclasses provide a wide range of functionality, as
illustrated in Figure 5-2.

The remainder of this chapter is devoted to explaining the simplest of these
four classes: TextBox and Alert. The next chapter explores the more flexible List
and Form.

For particularly demanding or idiosyncratic displays, you’ll have to create a
subclass of Canvas. Your MIDlet will assume responsibility for most of the drawing,
but you get much finer control over what is shown and how user input is handled.
Canvas supplies methods that allow your MIDlet to learn about its environment—
the size of the display, for example, and which kinds of events are supported by
the device. User interfaces built on Canvas discover the attributes of a device and
attempt to create something that looks reasonable. Chapter 10 explains Canvas-
based user interfaces in detail.

GameCanvas, new in MIDP 2.0, provides user interface functionality specifically
for game displays. Chapter 11 explains this new API.

Creating a User Interface

63

*0775_ch05_CMP4 2/4/03 12:13 PM Page 63

Using Display

Display manages a device’s screen. You can get a reference to the device’s display
by supplying a MIDlet reference to the static getDisplay() method. Typically,
you’ll do this in the startApp() method of a MIDlet:

public void startApp() {

Display d = Display.getDisplay(this);

// ...

}

You may be tempted to call getDisplay() in a MIDlet’s constructor, but
according to the specification, getDisplay() can only be called after the beginning
of the MIDlet’s startApp() method.

Once you’ve got a reference to a device’s Display, you’ll just need to create
something to show (an instance of Displayable) and pass it to one of Display’s
setCurrent() methods:

public void setCurrent(Displayable next)

public void setCurrent(Alert alert, Displayable nextDisplayable)

The second version is used when you want to show a temporary message (an
Alert) followed by something else. I’ll talk more about Alerts at the end of this
chapter.

Display’s getCurrent() method returns a reference to what’s currently being
shown. Note that a MIDlet may return a valid object from getCurrent() even if it is
not visible to the user. This could happen on a device running multiple MIDlets
simultaneously, for example. Note that the Displayable interface has a method
called isShown() that indicates whether the given object is actually being shown
on the device screen.

You can also query a Display to determine its capabilities, which is helpful
for applications that need to adapt themselves to different types of displays. The
numColors() method returns the number of distinct colors supported by this
device, while the isColor() method tells whether the device supports color or
grayscale. A Display for a device supporting 16 levels of gray, for example, would
return false from isColor() and 16 from numColors(). In MIDP 2.0, you can also
find out whether the device supports transparency by calling numAlphaLevels(),
which returns the number of transparency levels. The minimum return value is
two, indicating that image pixels with full transparency and full opacity are sup-
ported. Return values greater than two indicate that alpha blending is supported.
In MIDP 2.0, Display contains two additional pairs of methods. The first methods,
getColor() and getBorderStyle(), are used for finding out colors and line styles

Chapter 5

64

*0775_ch05_CMP4 2/4/03 12:13 PM Page 64

from the system user interface scheme. These methods are useful for drawing
custom items, a topic that is covered in Chapter 7. The other method pair,
flashBacklight() and vibrate(), invoke the corresponding features of the
device. These are more fully discussed in Chapter 11.

Event Handling with Commands

Displayable, the parent of all screen displays, supports a very flexible user
interface concept, the command. A command is something the user can invoke—
you can think of it as a button. Like a button, it has a title, like “OK” or “Cancel,”
and your application can respond appropriately when the user invokes the
command. The premise is that you want a command to be available to the user,
but you don’t really care how it is shown on the screen or exactly how the
user invokes it—keypad button, soft button, touch screen, whatever.

Every Displayable keeps a list of its Commands. You can add and remove
Commands using the following methods:

public void addCommand(Command cmd)

public void removeCommand(Command cmd)

Creating Commands

In MIDP, commands are represented by instances of the Command class. To create a
Command, just supply a name, a type, and a priority. The name is usually shown on
the screen. The type can be used to signify a commonly used command. It should
be one of the values defined in the Command class. Table 5-1 shows the type values
and their meanings.

Table 5-1. Command Types

NAME MEANING

OK Confirms a selection.

CANCEL Cancels pending changes.

BACK Moves the user back to a previous screen.

STOP Stops a running operation.

HELP Shows application instructions.

SCREEN Generic type for specific application commands.

Creating a User Interface

65

*0775_ch05_CMP4 2/4/03 12:13 PM Page 65

To create a standard OK command, for example, you would do this:

Command c = new Command("OK", Command.OK, 0);

To create a command specific to your application, you might do this:

Command c = new Command("Launch", Command.SCREEN, 0);

It’s up to the MIDP implementation to figure out how to show the commands.
In the Sun J2ME Wireless Toolkit emulator, commands are assigned to the two
soft buttons. A soft button is a button on the device keypad with no predefined
function. A soft button can serve a different purpose at different times. If there are
more commands than there are soft buttons, the commands that don’t fit will be
grouped into a menu that is assigned to one of the soft buttons.

A simple priority scheme determines who wins when there are more com-
mands than available screen space. Every command has a priority that indicates
how hard the display system should try to show the command. Lower numbers
indicate a higher priority. If you add a command with priority 0, then several more
with priority 1, the priority 0 command will show up on the screen directly. The
other commands will most likely end up in a secondary menu.

MIDP 2.0 adds support for long labels on commands. The MIDP implemen-
tation decides which label it will use based on the available screen space and the
size of the labels. You can create a command with a short and long label like this:

Command c = new Command("Run", "Run simulation", Command.SCREEN, 0);

The Command class provides getLabel(), getLongLabel(), and getCommandType()
methods for retrieving information about commands.

Responding to Commands

By themselves, Commands aren’t very exciting. They’ll show up on the screen, but
nothing happens automatically when a user invokes a command. An object called
a listener is notified when the user invokes any command in a Displayable. This
follows the basic form of the JavaBeans event model; a Displayable is a unicast
event source. A Displayable fires off an event every time the user invokes one of its
Commands.

The listener is an object that implements the CommandListener interface. To
register the listener with a Displayable, use the following method:

public void setListener(CommandListener l)

Chapter 5

66

*0775_ch05_CMP4 2/4/03 12:13 PM Page 66

Displayable is a unicast event source because it can only have one listener
object. (Multicast event sources can have multiple listeners and use an add…
method for adding listeners rather than a set… method.)

Implementing a CommandListener is a matter of defining a single method:

public void commandAction(Command c, Displayable s)

When a command is invoked, the Displayable that contains it calls the
commandAction() method of the registered listener.

TIP Event listeners should not perform lengthy processing inside
the event-handling thread. The system uses its own thread to call
commandAction() in response to user input. If your implementation
of commandAction() does any heavy thinking, it will tie up the system’s
event-handling thread. If you have anything complicated to do, use
your own thread.

A Simple Example

By way of illustration, consider the following class:

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class Commander extends MIDlet {

public void startApp() {

Displayable d = new TextBox("TextBox", "Commander", 20, TextField.ANY);

Command c = new Command(“Exit”, Command.EXIT, 0);

d.addCommand(c);

d.setCommandListener(new CommandListener() {

public void commandAction(Command c, Displayable s) {

notifyDestroyed();

}

});

Display.getDisplay(this).setCurrent(d);

}

public void pauseApp() { }

public void destroyApp(boolean unconditional) { }

}

Creating a User Interface

67

*0775_ch05_CMP4 2/4/03 12:13 PM Page 67

This MIDlet creates a TextBox, which is a kind of Displayable, and adds a
single command to it. The listener is created as an anonymous inner subclass.
In Sun’s toolkit, this MIDlet appears as shown in Figure 5-3.

Figure 5-3. A simple MIDlet with a single command, Exit

Figure 5-3 shows the Exit command being mapped to one of the MIDP simu-
lator’s soft buttons. If you add another command to this MIDlet, it will be mapped
to the other soft button. If you continue adding commands, the ones that don’t fit
on the screen will be put into an off-screen menu. For example, a screen with four
commands shows up in the MIDP simulator as illustrated in Figure 5-4a.

If you press the soft button for Menu, you’ll see the remainder of the com-
mands as shown in Figure 5-4b. Menu items can now be selected by pressing a
number or using the arrow keys for navigation. In the example shown in Figure 5-4,
the Exit command is given a higher priority (lower number) than the other com-
mands, which insures that it appears directly on the screen. The other commands,
with a lower priority, are relegated to the command menu.

Chapter 5

68

*0775_ch05_CMP4 2/4/03 12:13 PM Page 68

(a) (b)

Figure 5-4. This MIDlet has more commands than the device has soft buttons.
Invoking the (a) system-generated Menu command brings up the (b) remaining
commands.

Screens and Tickers

The remainder of this chapter and all of Chapter 6 are devoted to Screen and its
subclasses, which is the left branch of the hierarchy shown in Figure 5-1. Screen is
the base class for all classes that represent generalized user interfaces.

Canvas, by contrast, is a base class for specialized interfaces, such as those for
games. Canvas will be fully covered later, in Chapter 10.

In the coming sections, we’ll explore each of Screen’s child classes. Here, I’ll
briefly describe what all Screens have in common: a title and a ticker. The title is
just what you expect: a string that appears at the top of the screen. A ticker is
simply a bit of text that scrolls across the top of a Screen; it is named after old-
fashioned stock tickers.

In MIDP 2.0, the four methods I’m about to describe are moved from Screen
to Displayable. Thus, MIDP 2.0 extends the concept of title and ticker to all
Displayables, not just Screens. In MIDP 2.0, the Screen class has no methods.

The title is a text string displayed at the top of the screen. As you saw in
Figure 5-3, the title of the screen is “TextBox.” Subclasses of Screen have con-
structors that set the title, but the title may also be accessed using the following
methods:

public void setTitle(String newTitle)

public String getTitle()

The ticker is just as easy to access:

public void setTicker(Ticker newTicker)

public Ticker getTicker()

Creating a User Interface

69

*0775_ch05_CMP4 2/4/03 12:13 PM Page 69

The Ticker class is a simple wrapper for a string. To add a ticker to a screen,
you would do something like this:

// Displayable d = ...

Ticker ticker = new Ticker("This is the ticker message!");

d.setTicker(ticker);

Figure 5-5 shows a ticker in action.

Figure 5-5. A ticker scrolls across the top of a screen.

TextBox, the Simplest Screen

The simplest type of screen is the TextBox, which you’ve already seen in action.
TextBox allows the user to enter a string. Keep in mind that on a garden-variety
MIDP device, text input is a tedious process. Many devices only have a numeric
keypad, so entering a single character is a matter of one, two, or three button
presses. A good MIDlet requires minimal user input.

That said, your MIDlet may need some kind of input—perhaps a zip code, or a
short name, or some kind of password. In these cases, you’ll probably want to use
a TextBox.

A TextBox is created by specifying four parameters:

public TextBox(String title, String text, int maxSize, int constraints)

The title is used as the screen title, while text and maxSize determine the
initial text and maximum size of the text box. Finally, constraints can be used to
restrict the user’s input. Constants from the TextField class are used to specify the
type of input required:

• ANY allows any type of input.

• NUMERIC restricts the input to integers.

Chapter 5

70

*0775_ch05_CMP4 2/4/03 12:13 PM Page 70

• DECIMAL (new in MIDP 2.0) allows numbers with fractional parts.

• PHONENUMBER requires a telephone number.

• EMAILADDR input must be an e-mail address.

• URL input must be a web address.

It’s up to the implementation to determine how these constraints are
enforced. The toolkit emulators simply don’t allow invalid input; for example, a
NUMERIC TextBox doesn’t allow you to enter alphabetic characters.

The constraints above may be combined with the flags listed below. Constraints
limit the behavior of users, while flags define the behavior of the TextBox. All the
flags except PASSWORD are new in MIDP 2.0.

• PASSWORD characters are not shown when entered; generally, they are repre-
sented by asterisks.

• UNEDITABLE indicates text that cannot be edited.

• SENSITIVE is used to flag text that the implementation should not store.
Some input schemes store input from the user for later use in autocom-
pletion. This flag indicates that the text is off-limits and should not be saved
or cached.

• NON_PREDICTIVE indicates that you are expecting the user to enter text that
any text-predicting input scheme will probably not be able to guess. For
example, if you’re expecting the user to enter an order number like Z51002S,
you would use this flag to tell the input scheme to not bother trying to
predict the input.

• INITIAL_CAPS_WORD is used for input where each word should be capitalized.

• INITIAL_CAPS_SENTENCE indicates input where the first character of each
sentence should be capitalized.

If you don’t want the TextBox to perform any validation, use ANY or its
numerical equivalent, 0, for the constraints parameter in the constructor.

Creating a User Interface

71

*0775_ch05_CMP4 2/4/03 12:13 PM Page 71

The flags may be combined with any of the other constraints using the OR
operator. For example, to create a TextBox that constrains input to an e-mail
address but keeps the entered data hidden, you would do something like this:

Displayable d = new TextBox("Email", "", 64,

TextField.EMAILADDR | TextField.PASSWORD);

If you think about it, though, PASSWORD is probably more trouble than it’s
worth. The point of PASSWORD fields, at least on desktop machines, is to keep
someone walking past your computer screen from seeing your secret password.
For every character you enter, the password field shows an asterisk or some other
symbol. As you type your secret password, all that shows up on the screen is a line
of asterisks. On mobile phones and other small devices, this is less of a concern
because the screens are smaller and much more difficult to read than a typical
desktop monitor.

Furthermore, the difficulty of entering data on a small device means that it
will be hard to correctly enter passwords if you are typing blind. Mobile phones,
for example, typically require you to press keys several times to enter a single
letter. On Sun's toolkit emulator, pressing the ‘7’ key twice enters the letter ‘Q.’
On a real device, you would have to enter a password “gandalf” with the following
sequence of key presses: 4, 2, 6, 6, 3, 2, 5, 5, 5, 3, 3, 3. Without visual feedback, it
would be extremely easy to make a mistake when entering a password. (“Did I
press the 5 key two times or three times?”) The J2ME Wireless Toolkit emulator
shows the current character but previously typed characters are shown as
asterisks. Good passwords typically have mixed case, numbers, and possibly
punctuation; these would be hard to enter correctly.

In MIDP 2.0 applications, password fields (whether or not they use the
PASSWORD flag) should be protected with the SENSITIVE flag so that the password
doesn’t show up in any system dictionaries or pop up unexpectedly when the user
is entering other text.

MIDP 2.0 includes a single new method in the TextBox class called
setInitialInputMode(String characterSubset). This method is used to suggest
to the implementation what input mode would be best suited to the expected text.
You can only suggest the input mode, and you have no way of knowing whether
the implementation has honored the request. The string passed to the method can
be one of the constants from the J2SE java.lang.Character.UnicodeBlock class,
prepended with “UCB_”. For example, you might pass “UCB_BASIC_LATIN” or
“UCB_KATAKANA” to this method. You can also use input subsets defined by
java.awt.im.InputSubset by prepending them with “IS_”. For example,
“IS_LATIN” or “IS_KANJI” would be valid. Finally, MIDP 2.0 also defines the char-
acter subsets “MIDP_UPPERCASE_LATIN” and “MIDP_LOWERCASE_LATIN”.

Chapter 5

72

*0775_ch05_CMP4 2/4/03 12:13 PM Page 72

The input mode is complementary to the text constraints
and flags. You might specify ANY for the constraints, then call
setInitialInputMode("MIDP_LOWERCASE_LATIN") to request that the
implementation begin by allowing lowercase input. This doesn’t prevent the
user from changing the input mode, it just starts things off on the right foot.

Using Alerts

An alert is an informative message shown to the user. In the MIDP universe, there
are two flavors of alert:

• A timed alert is shown for a certain amount of time, typically just a few
seconds. It displays an informative message that does not need to be
acknowledged, like “Your transaction is complete,” or “I can’t do that right
now, Dave.”

• A modal alert stays up until the user dismisses it. Modal alerts are useful
when you need to offer the user a choice of actions. You might display a
message like “Are you ready to book these tickets?” and offer Yes and No
commands as options.

MIDP alerts can have an associated icon, like a stop sign or question mark.
Alerts may even have an associated sound, although this depends on the imple-
mentation. MIDP alerts are very much the same concept as modal dialogs in
windowing systems like MacOS and Windows. Figure 5-6 shows a typical Alert.

Figure 5-6. Alerts are similar to modal dialogs in a desktop windowing system.

Creating a User Interface

73

*0775_ch05_CMP4 2/4/03 12:14 PM Page 73

Alerts are represented by instances of the javax.microedition.lcdui.Alert
class, which offers the following constructors:

public Alert()

public Alert(String title, String alertText, Image alertImage, AlertType alertType)

Any or all of the parameters in the second constructor may be null. (Don’t
worry about the Image class right now; I’ll discuss it in the next chapter in the
section on Lists.)

By default, timed Alerts are created using a default timeout value; you can
find out the default value by calling getDefaultTimeout(). To change the Alert’s
timeout, call setTimeout() with the timeout value in milliseconds. A special value,
FOREVER, may be used to indicate that the Alert is modal.

You could create a simple timed Alert with the following code:

Alert alert = new Alert("Sorry", "I’m sorry, Dave...", null, null);

To explicitly set the timeout value to five seconds, you could do this:

alert.setTimeout(5000);

If, instead, you wanted a modal alert, you would use the special value FOREVER:

alert.setTimeout(Alert.FOREVER);

The MIDP implementation will automatically supply a way to dismiss a modal
alert. Sun’s reference implementation, for example, provides a Done command
mapped to a soft button. MIDP 2.0 exposes this command as the static member
DISMISS_COMMAND, allowing you to register your own command listener and
explicitly recognize this command. You can add your own commands to an Alert
using the usual addCommand() method. The first time you call addCommand(), the
system’s dismiss command is removed.

The default behavior for Alerts automatically advances to the next screen
when the Alert is dismissed or times out. You can specify the next screen by
passing it and the Alert to the two-argument setCurrent() method in Display.
If you call the regular one-argument setCurrent() method, the previous screen is
restored when the Alert is dismissed. Alert types serve as hints to the underlying
MIDP implementation. The implementation may use the alert type to decide what
kind of sound to play when the alert is shown. The AlertType class provides five
types, accessed as static member variables: ALARM, CONFIRMATION, ERROR, INFO, and
WARNING.

Chapter 5

74

*0775_ch05_CMP4 2/4/03 12:14 PM Page 74

MIDP 2.0 adds an indicator to an Alert. By default, no indicator is present, but
you can add one by passing a Gauge to Alert’s setIndicator() method. (Gauge is
presented in the next chapter in the section on Forms.) The indicator is handy for
showing progress in a network connection or a long computation.

The following example, TwoAlerts, shows both types of alert. It features a main
TextBox that is displayed when the MIDlet begins. Two commands, Go and About,
provide access to the alerts. The Go command shows a timed alert that contains a
message about a fictitious network error. The About command displays a modal
alert that could contain copyright information. A third command, Exit, provides a
way to exit the MIDlet. Keep in mind that all three commands may not fit on the
screen; some of them may be accessible from a secondary menu.

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class TwoAlerts

extends MIDlet

implements CommandListener {

private Display mDisplay;

private TextBox mTextBox;

private Alert mTimedAlert;

private Alert mModalAlert;

private Command mAboutCommand, mGoCommand, mExitCommand;

public TwoAlerts() {

mAboutCommand = new Command("About", Command.SCREEN, 1);

mGoCommand = new Command("Go", Command.SCREEN, 1);

mExitCommand = new Command("Exit", Command.EXIT, 2);

mTextBox = new TextBox("TwoAlerts", "", 32, TextField.ANY);

mTextBox.addCommand(mAboutCommand);

mTextBox.addCommand(mGoCommand);

mTextBox.addCommand(mExitCommand);

mTextBox.setCommandListener(this);

mTimedAlert = new Alert("Network error",

"A network error occurred. Please try again.",

null,

AlertType.INFO);

Creating a User Interface

75

*0775_ch05_CMP4 2/4/03 12:14 PM Page 75

mModalAlert = new Alert("About TwoAlerts",

"TwoAlerts is a simple MIDlet that demonstrates the use of Alerts.",

null,

AlertType.INFO);

mModalAlert.setTimeout(Alert.FOREVER);

}

public void startApp() {

mDisplay = Display.getDisplay(this);

mDisplay.setCurrent(mTextBox);

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {}

public void commandAction(Command c, Displayable s) {

if (c == mAboutCommand)

mDisplay.setCurrent(mModalAlert);

else if (c == mGoCommand)

mDisplay.setCurrent(mTimedAlert, mTextBox);

else if (c == mExitCommand)

notifyDestroyed();

}

}

Summary

MIDP’s main user-interface classes are based on abstractions that can be adapted
to devices that have different display and input capabilities. Several varieties of
prepackaged screen classes make it easy to create a user interface. Screens have a
title and an optional ticker. Most importantly, screens can contain Commands, which
the implementation makes available to the user. Your application can respond to
commands by acting as a listener object. This chapter described TextBox, a screen
for accepting user input, and Alert, a simple screen for displaying information. In
the next chapter, we’ll get into the more complex List and Form classes.

Chapter 5

76

*0775_ch05_CMP4 2/4/03 12:14 PM Page 76

