
Bluetooth for Java

BRUCE HOPKINS AND RANJITH ANTONY

fm  3/5/03  1:55 PM  Page i



Bluetooth for Java
Copyright © 2003 by Bruce Hopkins and Ranjith Antony

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-078-3

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Andrew Stringer
Editorial Directors: Dan Appleman, Gary Cornell, Simon Hayes, Karen Watterson, John Zukowski
Assistant Publisher: Grace Wong
Project Manager and Development Editor: Tracy Brown Collins
Copy Editor: Ami Knox
Compositor: Impressions Book and Journal Services, Inc.
Artist and Cover Designer: Kurt Krames
Indexer: Valerie Robbins
Production Manager: Kari Brooks
Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.
Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 9th Street, Suite 219,
Berkeley, CA  94710. Phone 510-549-5930, fax: 510-549-5939, email info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads
section.

fm  3/5/03  1:55 PM  Page ii



CHAPTER 3

Before You Get Started

OKAY, NOW THAT YOU KNOW the ins and outs of Bluetooth, you’re probably eager to
find out how to integrate Bluetooth with Java. Well, this chapter is all about doing
just that. But wait! Before you learn about how to use Bluetooth and Java, you
need to know when it is not a good idea to use the two technologies together.

When NOT to Use Bluetooth and Java

You should not use Bluetooth with Java for the following purposes:

• Signal strength indicator

• Voice applications

• Distance measuring

The next few sections explain why to avoid those scenarios.

Signal Strength Indicator

Let’s say that you have two Bluetooth units, and you want to know what the sig-
nal strength is between them. A good example is when you want to use the
services of a network access point. A signal strength indicator would let you know
if you were within range. Well, Java is not the ideal language for that sort of appli-
cation because that kind of information is not exposed to the level where a JVM
would have access to it. The JVM will let you know if you are within range or not
within range; there is no middle ground. In this scenario, you’re better off using
a native language for your device such as C or C++.

Voice Applications

Now, you’ve already read Chapter 2, and you realize that Bluetooth is a really
great technology because you have the ability to transmit voice and data 

33

ch03  2/27/03  2:19 PM  Page 33



information wirelessly to other Bluetooth devices. Suddenly, you get ideas bub-
bling in your head about how great it would be to create a speech-to-text
application on your Bluetooth-enabled phone. Unfortunately, Java (especially
J2ME) is not well suited to this arena just yet. Performance is a key factor in
voice-based applications, and once again, in this case, you’re better off using
a native language such as C. However, this application may be feasible to do in
Java if the Java Real-Time Technology can be incorporated.

Distance Measuring

The best wireless technology for accurately measuring distance is light waves and
not radio signals. Light waves are direct, and the calculations can be pretty sim-
ple because the speed of light (in various mediums) is pretty well documented.
Using radio signals to measure distance can be quite tricky, and one of the best
ways to do that is to use triangulation, like GPS transceivers do. Whether you are
using Java or C, Bluetooth might be a viable technology for triangulation, but def-
initely not for calculating or measuring accurate distances.

34

Chapter 3

NOTE   The key word here is accurate. You can definitely use
Bluetooth for proximity measurement (i.e., where in the
building is Bruce Hopkins?). In fact, the Ericsson BlipNet
does exactly that! See Chapter 11 for more information on
the Ericsson BlipNet.

So, to put it succinctly, you can only do what is possible using the constraints
of the Bluetooth technology and what the JVM exposes to you. If the JVM only
gives you access to the RFCOMM layer for communication, then you’re stuck
with it. If the OBEX layer is not exposed to the JVM, then don’t expect to be able
to send objects. To increase application portability, your Java Bluetooth vendor
should implement the Java Bluetooth specification created through the JCP.

Understanding the JCP

The JCP is the Java Community Process, and it is the formal procedure to get an
idea from a simple concept incorporated into the Java standard. This process
allows developers and industry experts to shape the future of the Java standard.
Popular APIs like Java USB, Java Real-Time, Java Printing, Java New I/O, J2ME
MIDP 1.0, J2ME MIDP 2.0, JDBC 3.0, EJB 2.0, and even JDK 1.4 all went through

ch03  2/27/03  2:19 PM  Page 34



the Java Community Process. If you want to add some new functionality to the
Java language, or if you want to suggest a new API, or if you think that some new
classes should have a package name of java.* or javax.*, then you need to go
through the JCP.

The Role of the JSR-82

A JSR is a Java Specification Request in the Java Community Process. The JSR-82
is the formal JCP name for the Java APIs for Bluetooth. When a proposed JSR is
approved, an Expert Group is formed by the specification lead. The specification
lead for the JSR-82 was Motorola, and together with the JSR-82 Expert Group,
they created the official Java Bluetooth APIs. The following companies partici-
pated in the JSR-82 Expert Group:

• Extended Systems

• IBM

• Mitsubishi

• Newbury Networks

• Nokia

• Parthus Technologies

• Research in Motion (RIM)

• Rococo Software

• Sharp Electronics

• Sony Ericsson

• Smart Fusion

• Smart Network Devices

• Sun Microsystems

• Symbian

35

Before You Get Started

ch03  2/27/03  2:19 PM  Page 35



• Telecordia

• Vaultus

• Zucotto

The JSR-82 Expert Group also had three individual experts: Peter Dawson,
Steven Knudsen, and Brad Threatt.

What Is the RI and TCK?

According to the Java Community process, the specification lead company is
responsible for creating a Reference Implementation (RI) and also a Technology
Compatibility Kit (TCK). The Reference Implementation is basically a proof of
concept to prove that the specification can be implemented. Other companies
are free to implement the JSR-82, and in order to certify that their vendor kit is
compliant to the JSR-82 standard, that vendor’s product must pass the TCK.

The JSR-82 specification actually has two Reference Implementations and
Technology Compatibility Kits. Why did they do this? Recall in Chapter 2 that the
Bluetooth SIG has adopted some preexisting protocols in the Bluetooth specifi-
cation, namely OBEX. The OBEX protocol was used with infrared technology for
object transmissions long before Bluetooth was even invented. The designers of
the Java Bluetooth specification decided not to tie OBEX to Bluetooth when cre-
ating the Java Bluetooth standard. Therefore, the JSR-82 actually consists of two
independent packages:

• javax.bluetooth (the 13 classes and interfaces that are needed to perform
wireless communication with the Bluetooth protocol)

• javax.obex (the 8 classes that are needed to send objects between devices,
independent of the transport mechanism between them)

So, to answer your next question, yes, you can use OBEX without Bluetooth.
Bluetooth is simply one of many transports with which OBEX can operate. 

The classes and interfaces that comprise the Java Bluetooth specification are
briefly described in Tables 3-1 and 3-2. These classes and their methods are cov-
ered as needed in the following chapters, and their APIs are listed in detail in
Appendix A and Appendix B.

36

Chapter 3

ch03  2/27/03  2:19 PM  Page 36



Table 3-1. Classes in the javax.bluetooth Package

CLASS NAME DESCRIPTION

DiscoveryListener The DiscoveryListener interface allows an

application to receive device discovery and service

discovery events.

L2CAPConnection The L2CAPConnection interface represents

a connection-oriented L2CAP channel.

L2CAPConnectionNotifier The L2CAPConnectionNotifier interface provides

an L2CAP connection notifier.

ServiceRecord The ServiceRecord interface describes

characteristics of a Bluetooth service.

DataElement The DataElement class defines the various data

types that a Bluetooth service attribute value 

may have.

DeviceClass The DeviceClass class represents the class of

device (CoD) record as defined by the Bluetooth

specification.

DiscoveryAgent The DiscoveryAgent class provides methods to

perform device and service discovery.

LocalDevice The LocalDevice class represents the local

Bluetooth device.

RemoteDevice The RemoteDevice class represents a remote

Bluetooth device.

UUID The UUID class defines universally unique 

identifiers.

BluetoothConnectionException This BluetoothConnectionException is thrown

when a Bluetooth connection (L2CAP, RFCOMM,

or OBEX) cannot be established successfully.

BluetoothStateException The BluetoothStateException is thrown when

a request is made to the Bluetooth system that the

system cannot support in its present state.

ServiceRegistrationException The ServiceRegistrationException is thrown

when there is a failure to add a service record to

the local Service Discovery Database (SDDB) or to

modify an existing service record in the SDDB.

37

Before You Get Started

ch03  2/27/03  2:19 PM  Page 37



Table 3-2. Classes in the javax.obex Package

CLASS NAME DESCRIPTION

Authenticator This interface provides a way to respond to

authentication challenge and authentication response

headers.

ClientSession The ClientSession interface provides methods for

OBEX requests.

HeaderSet The HeaderSet interface defines the methods that set

and get the values of OBEX headers.

Operation The Operation interface provides ways to manipulate

a single OBEX PUT or GET operation.

SessionNotifier The SessionNotifier interface defines a connection

notifier for server-side OBEX connections.

PasswordAuthentication This class holds user name and password

combinations.

ResponseCodes The ResponseCodes class contains the list of valid

response codes a server may send to a client.

ServerRequestHandler The ServerRequestHandler class defines an event

listener that will respond to OBEX requests made to

the server.

The Benefits of the Java Bluetooth API

There are two key advantages to using the official Java Bluetooth API versus a
C-based (or native) API:

• API is independent of the stack and radio

• Standardized Bluetooth API

API Is Independent of Stack and Radio

So what makes the official Java Bluetooth API better than a C/C++ Bluetooth API?
One of the principle reasons is that the JSR-82 API is independent of the stack

38

Chapter 3

ch03  2/27/03  2:19 PM  Page 38



and the Bluetooth hardware. That gives you the ability to write applications with-
out any knowledge of the underlying Bluetooth hardware or stack. And that’s
essentially what Java gives you today. If you write standard Java code (without
any native methods), you can run your code on basically any hardware platform
and on any OS with little or no modification. Whether it’s an appli-cation, applet,
midlet, servlet, or EJB, you can code your application on one platform and deploy
to another platform.

The Only Standardized Bluetooth API

If you have a C/C++-based Bluetooth SDK, then you are basically at the mercy of
the vendor. There is no standard for a C/C++-based Bluetooth SDK, so each ven-
dor is free to name functions and methods to whatever they choose. Vendor A
may have five profiles in its SDK, and Vendor B may only have three. If you want
to change Bluetooth hardware or stack libraries, then you’ll need to rewrite your
Bluetooth application and/or change its functionality. Because the JSR-82 is the
official Java API for Bluetooth, all vendors who implement the standard must
include a core set of layers and profiles in their Bluetooth SDK.

A JSR-82–compliant Bluetooth stack must include the following layers:

• Host Controller Interface (HCI)

• Logical Link Control and Adaptation Protocol (L2CAP)

• Service Discovery Protocol (SDP)

• RFCOMM

These profiles are also required:

• Generic Access Profile

• Service Discovery Application Profile

• Serial Port Profile

• Generic Object Exchange Profile

39

Before You Get Started

ch03  2/27/03  2:19 PM  Page 39



The first thing that may come to your mind is, “Hey, wait a minute, doesn’t
the Bluetooth specification contain more profiles than that? Why did they imple-
ment only a few profiles in Java?” Well, here are two major reasons:

First of all, the JSR-82 team wanted to get the Java Bluetooth specification in
the hands of developers as quickly as possible. Recall in Chapter 2 that Bluetooth
profiles are designed to be functional enough where higher profiles extend the
functionality of the lower, or base, profiles. Refer to Figure 2-9, which shows
a diagram of the relationship of the profiles of the Bluetooth specification.

Secondly, by implementing the base profiles (Generic Access Profile, Service
Discovery Application Profile, Serial Port Profile, and Generic Object Exchange
Profile), the SDK vendor or the application developer is free to implement the
higher profiles of the Bluetooth specification.

What You Need to Get Started

We know that this question has been on your mind for a while. Well, here’s a list of
what you’ll need:

• Bluetooth devices (at least two)

• Bluetooth host (at least one)

• Bluetooth stack

• Java Bluetooth API

Now let’s cover all these components in detail and describe how they all work
together.

Bluetooth Devices

Bluetooth devices were covered in Chapter 2, but just in case you forgot, take
another look at Figures 2-1, 2-2, and 2-3. Remember, Bluetooth devices are sim-
ply radios, so getting a single device is just like getting a single walkie talkie; it’s

40

Chapter 3

CROSS-REFERENCE   See “The Bluetooth Protocol Stack” and
“Profiles” in Chapter 2 for details on the Bluetooth protocol
stack and profiles just in case you forgot.

ch03  2/27/03  2:19 PM  Page 40



pretty useless. If your Bluetooth device is point-to-point capable, then that
means it can only talk to a single Bluetooth device at a time. If it is multipoint
capable, then it can talk to up to seven devices at a time. The Bluetooth device is
also known as the controller.

Bluetooth Host

The Bluetooth host is the computer that is physically connected to the Bluetooth
device. For the most part, this is your desktop PC, laptop, PDA, or smart phone.
Usually, the connection is USB, RS-232, or UART.

Now, you are definitely going to need two Bluetooth devices, but you can get
away with having only one Bluetooth host. How does this work? Well, if you have
a PC that has two serial ports or two USB ports (or both), then you can connect
both of your Bluetooth devices to your PC’s ports. In order for this to work, you
need to start two instances of your JVM; each JVM will have its own Bluetooth
device.

The Bluetooth host must meet the minimum requirements for the CLDC, so
you need at least 512k total memory for the JVM.

Bluetooth Stack

A Bluetooth stack is required in order for a Bluetooth host (the PC) to properly
communicate to the Bluetooth device (the controller). If you go back to 
Figure 2-6, which shows a diagram of the Bluetooth stack, the bottom layer of 
the stack is the Host Controller Interface! See, it does make sense. The Host
Controller Interface is literally the software required to interface the Bluetooth
host and the Bluetooth device (the controller).

Since this book is all about Java and Bluetooth, you might think that the
Bluetooth stack needs to be written completely in the Java language. Well, not
exactly. Some Bluetooth vendors have implemented a completely all-Java stack,
while others have implemented a Java interface (i.e., JNI or other means) to
a native stack. Either way, you need to access the stack through Java code,
whether or not the stack is in Java.

41

Before You Get Started

ch03  2/27/03  2:19 PM  Page 41



Java Bluetooth API

Finally, you’re going to need a set of libraries to interface with your stack. For the
most part, a company will sell you a Java Bluetooth API and Bluetooth stack
together in a kit. Just be sure to ask them what Bluetooth devices their kit sup-
ports.

Another question to ask your Java Bluetooth kit vendor is if their product is
JSR-82 compliant. Currently, JSR-82 can only be implemented on the J2ME plat-
form. JSR-82 cannot be implemented on the J2SE platform because the J2SE does
not support the Generic Connection Framework. Hopefully, the Generic
Connection Framework will be implemented by JDK 1.5.

42

Chapter 3

NOTE The official JSR to implement the GCF in the JDK is
JSR-197.

Does this mean that it is impossible to do Java and Bluetooth development
on the J2SE platform? No, it simply means that whatever Java Bluetooth kit that
you obtain for J2SE will not be compliant with JSR-82 until the Generic Con-
nection Framework is implemented in J2SE. The major ramification of this prob-
lem is that your J2ME and J2SE code may be drastically different from each other,
even if you are doing the same thing.

Java Bluetooth Vendor SDKs

So, who’s offering Java Bluetooth SDKs, and which are JSR-82 compliant?
Fortunately, there is a plethora of Java Bluetooth SDKs to fit the needs that your
application requires. Vendor support is available for Java Bluetooth development
on a wide range of operating systems and JVM platforms. Table 3-3 displays vari-
ous attributes of many Java Bluetooth SDKs.

ch03  2/27/03  2:19 PM  Page 42



Summary

This chapter has only skimmed the surface of how to integrate Java Bluetooth.
You learned about the advantages of using Java versus C for application develop-
ment. You also learned about JSR-82 as well as what it takes to get things up and
running.

In the next chapter, we’ll focus more on integrating Java and Bluetooth, as
well as introduce some example code.

43

Before You Get Started

Table 3-3. Java Bluetooth SDK Vendors*

COMPANY NAME JSR-82 JSR-82 SUPPORTED  SUPPORTED 

JAVAX.BLUETOOTH JAVAX.OBEX JAVA OPERATING

SUPPORT SUPPORT PLATFORMS SYSTEMS

Atinav Yes Yes J2ME, J2SE Win-32, Linux, Pocket PC

BlueGiga No No Waba JVM uClinux

Ericsson No No J2SE Win-32, Linux

Esmertec Yes No J2ME Win-32, Palm OS, Pocket 

PC, many others

Harald No No J2SE Win-32, Linux, others

Possio Yes Yes J2ME Win-32, Linux

Rococo Yes Yes J2ME, J2SE Win-32, Linux, Palm OS, 

Pocket PC

Smart Network Yes No J2ME HyNetOS

Devices

SuperWaba No No Waba JVM Palm OS

Zucotto No No J2ME, J2SE Win-32

* The information in this table is subject to change, so check the companion Web site

http://www.javabluetooth.com for up-to-date information. Palm OS is a registered trademark of Palm, Inc.

ch03  2/27/03  2:19 PM  Page 43




