
1. Preface

The objective of program analysis is to automatically determine the pro-
perties of a program. Tools of software development, such as compilers, per-
formance estimators, debuggers, reverse-engineering tools, program verifica-
tion/testing/proving systems, program comprehension systems, and program
specialization tools are largely dependent on program analysis. Advanced pro-
gram analysis can: help to find program errors; detect and tune performance-
critical code regions; ensure assumed constraints on data are not violated;
tailor a generic program to suit a specific application; reverse-engineer soft-
ware modules, etc. A prominent program analysis technique is symbolic ana-
lysis, which has attracted substantial attention for many years as it is not
dependent on executing a program to examine the semantics of a program,
and it can yield very elegant formulations of many analyses. Moreover, the
complexity of symbolic analysis can be largely independent of the input data
size of a program and of the size of the machine on which the program is
being executed.

In this book we present novel symbolic control and data flow represen-
tation techniques as well as symbolic techniques and algorithms to analyze
and optimize programs. Program contexts which define a new symbolic de-
scription of program semantics for control and data flow analysis are at the
center of our approach. We have solved a number of problems encountered
in program analysis by using program contexts. Our solution methods are
efficient, versatile, unified, and more general (they cope with regular and
irregular codes) than most existing methods.

Many symbolic analyses are based on abstract interpretation, which defi-
nes an abstraction of the semantics of program constructs in a given language,
and an abstraction of program input data. The abstraction of data and pro-
grams leads to a less complex view which simplifies many program analyses.
Some problems which were originally undecidable become decidable or can
be solved only with a very high computational effort. On the other hand,
information can get lost through abstraction; thus a solution of a problem
based on abstract interpretation may no longer be a solution of the original
problem. The art of symbolic program analysis is focused on the development
of a suitable abstract interpretation for a given program and its input data
which allows the problems of interest to be solved.



VIII 1. Preface

Previous approaches on symbolic program analysis frequently have several
drawbacks associated with them:

• restricted program models (commonly exclude procedures, complex bran-
ching and arrays),

• analysis that covers only linear symbolic expressions,
• insufficient simplification techniques,
• memory- and execution-time-intensive algorithms,
• either control flow or data flow can be modeled but not both,
• unstructured, redundant and inaccurate analysis information, and complex

extraction of analysis information,
• additional analysis is required to make the important relationship between

problem size and analysis result explicit,
• recurrences are frequently not supported at all, or separate analysis and

data structures are required to extract, represent, and resolve recurrence
systems.

Furthermore, for program analyses there is commonly a need to express
values of variables and expressions as well as the (path) condition under which
control flow reaches a program statement. Some approaches do not consider
path conditions for their analysis. Without path conditions the analysis ac-
curacy may be substantially reduced. We are not aware of any approach that
combines all important information about variable values, constraints bet-
ween them, and path conditions in a unified and compact data representation.
Moreover, it has been realized [98] that systems with interfaces for off-the-
shelf software are critical for future research tool and compiler development.
Approaches that rely on specialized representations for their analysis are of-
ten forced to reimplement standard symbolic manipulation techniques which
otherwise could be taken from readily available software packages. Symbo-
lic expressions are used to describe the computations as algebraic formulas
over a program’s problem size. However, symbolic expressions and recurren-
ces require aggressive simplification techniques to keep the program contexts
in a compact form. Hence, computer algebra systems (CASs) play an im-
portant role in manipulating symbolic expressions and finding solutions to
certain problems encountered in program analysis. During the last decade
CASs have become an important computational tool. General purpose CASs
[70], which are designed to solve a wide variety of mathematical problems,
have gained special prominence. The major general purpose CASs such as
Axiom, Derive, Macsyma, Maple, Mathematica, MuPAD, and Reduce, have
significantly profited from the increased power of computers, and are mature
enough to be deployed in the field of program analysis. One of the goals of this
book is to introduce techniques for closing the gap between program develop-
ment frameworks and CASs. Symbolic algebraic techniques have emerged in
the field of CASs to broaden the spectrum of program analyses for compilers
and program development tools.



1. Preface IX

We describe a novel and unified program analysis framework for sequen-
tial, parallel, and distributed architectures which is based on symbolic eva-
luation, and combines both data and control flow analysis to overcome or at
least to simplify many of the deficiencies of existing symbolic program ana-
lysis efforts, as mentioned above. At the center of our framework is a new
representation of analysis information, the program context, which includes
the following three components:

• variable values,
• assumptions about and constraints between variable values, and
• conditions under which control flow reaches a program statement.

A key advantage of our approach is that every component of program
contexts can be separately accessed at well-defined program points without
additional analysis. We describe an algorithm that can generate all program
contexts by a single traversal of the input program. Program contexts are spe-
cified as n-order logic formulas, which is a general representation that enables
us to use off-the-shelf software for standard symbolic manipulation techni-
ques. Computations are represented as symbolic expressions defined over the
program’s problem size. Instead of renaming data objects, our symbolic ana-
lyses try to maintain the critical relationship between a program’s problem
size and the resulting analysis information. This relationship is important for
performance-driven program optimization. Our symbolic analysis framework
accurately models assignment and input/output statements, branches, loops,
recurrences, arrays (including indirect accesses), and procedures. Recurren-
ces are detected, closed forms are computed where possible, and the result
can be directly retrieved from well-defined program points. Note that detec-
ting recurrences and finding closed forms for recurrences are decoupled. The
decoupling simplifies the extension of our recurrence solver with new recur-
rence classes. All of our techniques target both linear and nonlinear symbolic
expressions and constraints.

We intensively manipulate and simplify symbolic expressions and con-
straints based on a system which we have built on top of existing software.
We will describe a variety of new techniques for simplifying program contexts.
Furthermore, we have developed several novel algorithms for comparing sym-
bolic expressions, computing lower and upper bounds of symbolic expressions,
counting the number of solutions to a system of constraints, and simplifying
systems of constraints. While previous work mostly concentrated on symbolic
analysis for shared memory architectures, this research also supports symbo-
lic compiler analysis for distributed memory architectures covering symbolic
dependence testing, array privatizing, message vectorization and coalescing,
communication aggregation, and latency hiding.

We do not know of any other system that models a similar large class
of program constructs based on a comprehensive and unified analysis repre-
sentation (program context) that explicitly captures exact information about



X 1. Preface

variable values, assumptions about and constraints between variable values,
path conditions, and recurrence systems, and side-effect information about
procedure calls.

Empirical results based on a variety of Fortran benchmark codes demon-
strate the need for advanced analysis to handle nonlinear and indirect ar-
ray references, procedure calls, and multiple-exit loops. Furthermore, we will
show the effectiveness of our approach for a variety of examples including pro-
gram verification, dependence analysis, array privatization, communication
vectorization, and elimination of redundant communication.

Although symbolic program analysis has been applied to a variety of areas
including sequential program analysis, parallel and distributed systems, real-
time systems, etc., in this book we are mostly concerned with sequential,
parallel, and distributed program analysis.

We have implemented a prototype of our symbolic analysis framework
which is used as part of the Vienna High Performance Compiler (VFC, a
parallelizing compiler) and P 3T (a performance estimator) to parallelize, op-
timize, and predict the performance of programs for parallel and distributed
architectures. Although we examined our framework for Fortran programs on
sequential, parallel, and distributed architectures, the underlying techniques
are equally applicable to any similar imperative programming language.


