
2. Parallel Architectures 

2.1 Objectives 

• To introduce the principles and classification of parallel architectures. 
• To discuss various forms of parallel processing. 
• To explore the characteristics of parallel architectures. 

2.2 Introduction 

Parallel processing has emerged as an area with the potential of providing 
satisfactory ways of meeting real-time computation requirements in various 
applications and the quest for speed, which is a natural tendency of human beings, 
as discussed in Chapter 1. As such, various forms of parallel architectures have 
evolved and research is being carried out worldwide to discover new architectures 
that can perform better than existing architectures. With speed as the prime goal, 
the factors generally considered in developing a new architecture include the 
internal circuitry of processors or PEs, number of PEs, arrangement of PEs and 
memory modules in an architecture, the communication mechanism among the PEs 
and between the PEs and memory modules, number of instruction and data 
streams, nature of memory connections with the PEs, nature and types of 
interconnection among the PEs, and program overlapping. The internal circuitry of 
PEs plays a vital role in designing parallel architecture. Some parallel architectures 
are designed with small number of PEs of complex internal circuitry to enhance the 
overall performance of the architecture. Other architectures, on the other hand, are 
designed with a substantial number of PEs of simple internal circuitry to achieve 
the desired performance. The performance of an architecture can often be increased 
by adding more PEs. However, this is possible only up to a certain limit, as adding 
more PEs to the architecture incurs more communication overhead and it may not 
be cost effective beyond a limit. The arrangement of processors is also crucial to 
the design of a parallel architecture. Processors can be arranged in different forms 
using various types of interconnection strategies, such as static and dynamic. In a 
static form, the format of the architecture remains fixed and is not expandable by 
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adding more processors, while in a dynamic format more processors can be added 
under system control to meet a particular requirement. The communication 
mechanism among PEs in some architectures is straightforward, while in others the 
communication scheme is complicated and requires extra effort and circuitry. 
Similar to the arrangement of PEs, the arrangement of memory modules in an 
architecture is important and contributes to the development of varied forms of 
parallel architectures. The memory arrangement in some architectures is global, 
i.e., all PEs use a common memory or memory modules, which helps to establish 
communication among the processors, while others have memory modules 
associated with individual PEs and communication is established via messages 
passing among the PEs. Some forms of parallel architecture have evolved on the 
basis of the methodology an algorithm is implemented. A pipeline architecture is 
an example of this. There are also special forms of parallel architectures developed 
on the basis of merging the characteristics of various forms of existing parallel 
architectures. Many attempts have also been made to develop application-specific 
parallel architectures. For example, vector parallel architectures have been 
developed to execute vector intensive algorithms, DSP devices have been designed 
for efficient implementation of signal processing, e.g. digital filtering algorithms. 

Indeed, research and development in parallel computing is a continuing effort, 
and it is accordingly expected that various forms of parallel architectures will 
emerge in the future. Whatever may be the basis of development, each type of 
parallel processor has its own characteristics, advantages, disadvantages and 
suitability in certain application areas. 

2.3 Classifications 

A vast number parallel architecture types have been devised over the years. 
Accordingly, it is not easy to develop a simple classification system for parallel 
architectures. Moreover, various types of parallel architecture have overlapping 
characteristics to different extents. However, the various forms of parallel 
architecture can be distinguished under the following broad categories: 
 

• Flynn’s classification.  
• Classification based on memory arrangement and communication among 

PEs. 
• Classification based on interconnections among PEs and memory modules. 
• Classification based on characteristic nature of PEs. 
• Specific types of parallel architectures. 

2.3.1 Flynn’s Classification 

Michael J. Flynn introduced a broad classification of parallel processors based on 
the simultaneous instruction and data streams during program execution (Flynn, 
1966). It is noted here that instruction and data streams are two main steps that 
occur during program execution, as depicted in Figure 2.1. It shows that during 
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program execution the PE fetches instructions and data from the main memory, 
processes the data as per the instructions and sends the results to the main memory 
after processing has been completed. The instructions are referred to as an 
instruction stream, which flows from the main memory to the PE, and the data is 
referred to as the data stream, flowing to and from the PE. Based on these streams, 
Flynn categorised computers into four major classes, which are described below. 
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Figure 2.1. Instruction stream and data stream 

Single-instruction Single-data Stream 
The simple Von Neumann computer shown in Figure 2.2 falls under the category 
of single-instruction single-data (SISD) stream. An alternative representation of the 
architecture indicating instruction and data flow is shown in Figure 2.3. The SISD 
computer architecture possesses a central processing unit (CPU), memory unit and 
input/output (I/O) devices. The CPU consists of   an arithmetic and logic unit 
(ALU) to perform arithmetic and logical operations, control unit (CU) to perform 
control operations and registers to store small amounts of data. SISD computers are 
sequential computers and are incapable of performing parallel operations. 
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Figure 2.2. Von Neumann (SISD) computer architecture 
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Figure 2.3. SISD architecture with instruction and data flow 
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Single-instruction Multiple-data Stream 
The general structure of a single-instruction multiple-data (SIMD) parallel 
architecture is shown in Figure 2.4. This architecture possesses a single instruction 
stream, to process the entire data structure (multiple-data stream). In other words, 
in this configuration, a single program control unit or control processor controls 
multiple execution units or execution processors. Each execution processor is 
equipped with a local memory to store the data it will work on. Each execution 
processor executes the same instruction issued by the control processor on its local 
data. The execution processors are capable of communicating with each other 
when required. SIMD architectures are good for problems where the same 
operation is executed on a number of different objects, for example image 
processing. Some other suitable applications of SIMD architectures include matrix 
operations and sorting. Programming is quite simple and straightforward for this 
architecture. SIMD architecture could be divided into two subclasses according to 
the interconnections between the PEs. These are: vector architecture and array 
architecture. 

Organisation of the SIMD vector architecture is shown in Figure 2.5. The PEs 
are connected to each other via special data links. These links are used to perform 
simple data exchange operations like shifts and rotations (Hays, 1988). All the PEs 
are connected to the central control processor to obtain the instructions to be 
executed. 
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Figure 2.4. General structure of SIMD computer architecture 
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Figure 2.5. Vector architecture 
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The SIMD computer is often used as a synonym for array architecture. Unlike 
vector architecture, PEs in an array architecture are connected by interconnecting 
networks. A general form of array structure is shown in Figure 2.6, where a two-
dimensional grid of PEs executes instructions provided by the control processor. 
Each PE is connected to its four neighbours to exchange data. End-around 
connections also exist on both rows and columns, which are not shown in Figure 
2.6.  Each PE is capable of exchanging values with each of its neighbours. Each PE 
possesses a few registers and some local memory to store data. Each PE is also 
equipped with a special register called a network register to facilitate movement of 
values to and from its neighbours. Each PE also contains an ALU to execute 
arithmetic instructions broadcast by the control processor. The central processor is 
capable of broadcasting an instruction to shift the values in the network registers 
one step up, down, left or right (Hamacher et al., 2002). Array architecture is very 
powerful and will suit problems that can be expressed in matrix or vector format. 
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Figure 2.6. Array architecture 

Both array and vector architectures are specialised machines. They are mainly 
designed to solve numerical problems comprising substantial numbers of vector 
and/or matrix elements. The basic difference between vector and array 
architectures is that high-performance is achieved in vector architecture through 
exploiting a pipelining mechanism whereas in array architecture a large number of 
PEs are incorporated to boost the performance. None of the architectures is well 
suited to enhance the performance of general computation.  The most famous 
example of an array processor is ILLIAC-IV designed at the University of Illinois 
and built by Burroughs Corporation. It was developed using 64 processors. Other 
important examples of array processors include the Thinking Machine 
Corporation’s CM-2 processor, which could have up to 65536 processors, 
Maspar’s MP-1216 processors, which could accommodate 16384 processors, and 
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the Cambridge parallel processing Gamma II plus machine, which could 
accommodate up to 4096 processors (Hamacher et al., 2002). 

Multiple-instruction Single-data Stream 
The general structure of a multi-instruction single-data stream (MISD) architecture 
is shown in Figure 2.7. This architecture possesses a multiple instruction stream 
and single data stream. This architecture has not evolved substantially and thus, 
there are not many examples of the architecture (Hays, 1988). However, a major 
class of parallel architectures, called pipeline computers can be viewed as MISD 
architecture. Pipeline computers will be discussed later in this chapter. 
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Figure 2.7. General structure of MISD computer architecture 

For most applications, MISD computers are rather awkward to use, but can be 
useful in applications of a specialised nature (Akl, 1989; Kourmoulis, 1990). A 
typical example of one such specialised application is robot vision. For example, a 
robot inspecting a conveyor belt by sight may have to recognise objects that belong 
to different classes. An MISD machine can quickly carry out a classification task 
by assigning each of its processors a different class of objects and after receiving 
what the robot sees each processor may carry out tests to determine whether the 
given object belongs to its class or not. 

Multiple-instruction Multiple-data Stream 
Figure 2.8 shows the general structure of multiple-instruction multiple-data 
(MIMD) stream architecture. This architecture is the most common and widely 
used form of parallel architectures. It comprises several PEs, each of which is 
capable of executing independent instruction streams on independent data streams. 
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The PEs in the system typically share resources such as communication facilities, 
I/O devices, program libraries and databases. All the PEs are controlled by a 
common operating system. The multiple PEs in the system improves performance 
and increase reliability. Performance increases due to the fact that computational 
load is shared by the PEs in the system. Theoretically, if there are n  PEs in the 
system, the performance will increase by n  times in comparison to a single PE 
based system. System reliability is increased by the fact that failure of one PE in 
the system does not cause failure of the whole system. 
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Figure 2.8. General structure of MIMD computer architecture 

2.3.2 Classification Based on Memory Arrangement and 
Communication among PEs 

Parallel architectures can be classified into two major categories in terms of 
memory arrangement. These are: shared memory and message passing or 
distributed memory. In fact, these architectures constitute a subdivision of MIMD 
parallel architecture. Shared memory and distributed memory architectures are also 
called tightly coupled and loosely coupled architectures respectively. Each type of 
architecture has its advantages and disadvantages. 

Shared Memory Multiprocessor 
In a shared memory multiprocessor configuration multiple processors share a 
common memory unit comprising a single or several memory modules. All the 
processors have equal access to these memory modules and these memory modules 
are seen as a single address space by all the processors. The memory modules store 
data as well as serve to establish communication among the processors via some 
bus arrangement. Communication is established through memory access 
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instructions. That is, processors exchange messages between one another by one 
processor writing data into the shared memory and another reading that data from 
the memory.  

Programming this architecture is quite straightforward and attractive. The executable 
programming codes are stored in the memory for each processor to execute. The data related 
to each program is also stored in this memory. Each program can gain access to all data sets 
present in the memory if necessary.  The executable codes and shared data for the processor 
can be created and managed in different ways by designing parallel programming language 
or using existing sequential languages such as C/C++.  There is no direct processor-to-
processor communication involved in the programming process; instead communication is 
handled mainly via the shared memory modules. Access to these memory modules can 
easily be controlled through an appropriate programming mechanism such as multitasking. 
However, this architecture suffers from a bottleneck problem when a number of processors 
endeavour to access the global memory at the same time. This limits the scalability of the 
system. As a remedy to this problem most large, practical shared memory systems have 
some form of hierarchical or distributed memory structure such that processors can access 
physically nearby memory locations faster than distant memory locations. This is called 
non-uniform memory access. Figure 2.9 shows a general form of shared memory 
multiprocessor architecture. 

Shared memory multiprocessors can be of two types, namely uniform memory 
access (UMA) architecture and non-uniform memory access (NUMA) architecture. 
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Figure 2.9. Shared-memory multiprocessor 
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As the name suggests, the memory access time to the different parts of the 
memory are almost the same in the case of UMA architectures. UMA architectures 
are also called symmetric multiprocessors. An UMA architecture comprises two or 
more processors with identical characteristics. The processors share the same main 
memory and I/O facilities and are interconnected by some form of bus-based 
interconnection scheme such that the memory access time is approximately the 
same for all processors. All processors can perform the same functions under 
control of an integrated operating system, which provides interaction between 
processors and their programs at the job, task, file and data element levels 
(Stallings, 2003). The IBM S/390 is an example of UMA architecture. 

In the case of NUMA architectures the memory access time of processors 
differs depending on which region of the main memory is accessed. A subclass of 
NUMA system is cache coherent NUMA (CC-NUMA) where cache coherence is 
maintained among the caches of various processors. The main advantage of a CC-
NUMA system is that it can deliver effective performance at higher levels of 
parallelism than UMA architecture. 

Message Passing Multicomputer 
A distributed memory architecture is different from a shared memory architecture 
in that each unit of this architecture is a complete computer building block 
including the processor, memory and I/O system.  A processor can access the 
memory, which is directly attached to it. Communication among the processors is 
established in the form of I/O operations through message signals and bus 
networks. For example, if a processor needs data from another processor it sends a 
signal to that processor through an interconnected bus network demanding the 
required data. The remote processor then responds accordingly. Certainly, access to 
local memory is faster than access to remote processors. Most importantly, the 
further the physical distance to the remote processor, the longer it will take to 
access the remote data. On one hand this architecture suffers from the drawback of 
requiring direct communication from processor to processor, on the other hand, the 
bottleneck problem of shared memory architecture does not exist. A general form 
of shared memory architecture is shown in Figure 2.10. 

The speed performance of distributed memory architecture largely depends 
upon how the processors are connected to each other. It is impractical to connect 
each processor to the remaining processors in the system through independent 
cables. It can work for a very low number of processors but becomes nearly 
impossible as the number of processors in the system increases. However, attempts 
have been made to overcome this problem and as a result several solutions have 
emerged. The most common of these is to use specialised bus networks to connect 
all the processors in the system in order that each processor can communicate with 
any other processor attached to the system. 

2.3.3 Classification Based on Interconnections between PEs and 
Memory Modules 

Parallel architectures are also classified in terms of interconnecting network 
arrangements for communication among the various PEs included in the 
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architecture. In fact, this classification is quite specific to MIMD architectures as 
they, generally, comprises multiple PEs and memory modules. The various 
interconnecting communication networks used for establishing communication 
schemes among the PEs of a parallel architecture include: linear, shared single bus, 
shared multiple bus, crossbar, ring, mesh, star, tree, hypercube and complete graph. 
Among these interconnecting networks, linear, mesh, ring, star, tree, hypercube 
and complete graph are static connection structures whereas shared single bus, 
shared multiple bus and crossbar are dynamic interconnection structures as they are 
reconfigurable under system control (Hays, 1988). 

 
 
 

Interconnection 
network 

•  •  •  

PE1 

MM1 

P1 

PE2 

MM2 

P2 

PEn 

MMn 

Pn 

 

Figure 2.10. Distributed-memory multiprocessor 

Linear Network 
A number of nodes are connected through buses in a linear format to form a 
network of nodes as shown in Figure 2.11. Every node, except the nodes at the two 
ends, in this configuration is directly connected to two other nodes. Thus, to 
connect n  nodes in this configuration 1−n  buses are required and the maximum 
internodes distance is 1−n . 
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Figure 2.11. Linear interconnection structure 

Single Shared Bus Network 
The single shared bus interconnection structure, shown in Figure 1.12, is widely 
used in parallel architectures. A number of PEs and memory units are connected to 
a single bus in this case, through which communication is established among the 
PEs and memory units connected to it. 



 Parallel Architectures 33 

 
PE1 MM1 PE2 PEn MM2 MMn 

 

Figure 2.12. Single bus interconnection structure 

The operation of the single bus interconnection structure, in its simplest form, 
is as follows: when a processor issues a read request to a memory location it holds 
the bus until it receives the expected data from the memory module. It will require 
some time for the memory module to access the data from the appropriate location. 
The transfer scheme also will need some time and another request from any 
processor will not be initiated until the transfer is completed, which means the bus 
will remain idle for a certain amount of time that can be as high as two-thirds of the 
total time required for the transfer. This problem has been overcome by using a 
split transfer protocol scheme whereby the bus can handle a number of requests 
from different processors to different memory modules. In this case after 
transferring the address of the first request the bus starts the transfer of the next 
request so that two requests are executed in parallel. If none of the two requests has 
completed, the bus can be assigned a third request. When the first memory module 
completes its access cycle, the bus is used to send the data to the destination 
processor. As another module completes its access cycle the data is transferred 
using the bus, and the process continues.  The split transfer protocol increases the 
performance of the bus at the cost of complexity. The complexity increases due to 
maintaining synchronisation and coordination among the requests, processors and 
memory modules. 

One of the limitations of single bus interconnection is that a large number of 
processors and memory modules cannot be connected to a bus. The number of 
modules to be connected with the bus could be increased by using a wider bus with 
increased bandwidth. However, the bandwidth of a single bus is limited by the 
connection for the use of the bus and by the increased propagation delays caused 
by the electrical loadings when many modules are connected (Hamacher et al., 
2002). 

Multiple Shared Buses Network  
The single shared bus network cannot cope with large numbers of PEs and memory 
units as mentioned above. Multiple shared bus networks are used in such cases. 
The structure of a multiple shared bus network is shown in Figure 2.13, where each 
processor and memory are connected to one or more of the available buses, each of 
which possesses all the attributes of an independent system bus. Besides reducing 
the communication load per bus, a degree of fault tolerance is provided, since the 
system can be designed to continue operation, possibly with reduced performance, 
if an individual bus fails (Hays, 1988). 
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Figure 2.13. Multiple buses interconnection structure 

Crossbar Interconnection Network 
The structure of crossbar architecture is shown in Figure 2.14. In this architecture, 
all the PEs and memory modules are interconnected through a multibus crossbar 
network system where subscript m  denotes the memory and n  denotes the PEs. 
The crossbar architecture becomes very complex as the number of memory 
modules and PEs increases. 
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Figure 2.14. Crossbar interconnection structure 

Star Interconnection Network 
The star interconnection, as shown in Figure 2.15, is one of the simplest 
interconnection networks. In this configuration 1−n  buses are required to connect 
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n  nodes and the maximum internode distance is 2.  A node in this structure can 
communicate with any other node through the node in the centre. 

 

PE 

PE 

PE 

PE 

PE 

PE 

PE 

PE 

PE 

 

Figure 2.15. Star interconnection structure 

Ring Interconnection Network 
The ring network, shown in Figure 2.16, is also one of the simplest interconnection 
topologies.  This interconnection is very easy to implement. In the case of ring 
interconnection n  buses are required to connect n  nodes and the maximum 
internodes distance is 2/n .  Rings can be used as building blocks to form other 
interconnection structures such as mesh, hypercube and tree. A ring-based two-
stage tree structure is shown in Figure 2.17. However, the highest-level ring could 
be a bottleneck for traffic in this case.  Commercial machines such as Hewlett-
Packard’s Exemplar V2600 and Kendal Square Research’s KSR-2 have been 
designed using ring networks. 

Tree Interconnection Network 
Tree structure is another important and useful interconnection topology. There 
could be a number of levels in a tree structure. The general form of an n -level tree 
structure is shown in Figure 2.18.  In this case any intermediate node acts as a 
medium to establish communication between its parents and children. Through this 
mechanism communication could also be established between any two nodes in the 
structure. A tree structure can be highly effective if a small portion of traffic goes 
through the root node otherwise due to bottleneck problems performance 
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deteriorates rapidly. The possibility of bottleneck problems is less in a flat tree 
structure where there is a large number of nodes at the higher levels. 
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Figure 2.16. Ring interconnection structure 
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Figure 2.17. Two-stage tree networks based on ring networks 

Hypercube Interconnection Network 
Hypercube is a popular interconnection network architecture, especially for 

NUMA multiprocessors.  An n -dimensional hypercube can connect n2 nodes each 
of which includes a processor, a memory module and some I/O capability. A three-
dimensional hypercube is shown in Figure 2.19. The edges of the cube represent 
bi-directional communication links between two neighbouring nodes. The nodes 
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are normally labelled using binary addresses in a way that the addresses of the two 
neighbouring nodes differ by one bit position. Transferring messages from one 
node to another in a hypercube structure is accomplished with the help of binary 
addresses assigned to each of the nodes. In this transferring scheme the binary 
address of the source node and the destination nodes are compared from least to 
most significant bits and transfer to the destination is performed through some 
intermediate nodes in between.  For example, the transfer of message from node iP  

to a node jP  takes place as follows. First the binary addressees of iP  and jP are 

compared from least to most significant bits. Suppose they differ in bit position p . 

Node iP  then sends a message to the neighbouring node kP whose address differs 

from iP  in bit position p . Node kP then passes the message to its appropriate 
neighbours using the same scheme. The message gets closer to the destination node 
with each of these passes and finally reaches it after several passes. Consider, for 
example, that node 3P  in Figure 2.19 wants to send a message to node 6P . It will 

require two passes through node 2P . 
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Figure 2.18. Tree interconnection structure 

The hypercube structure is very reliable. If a faulty link is detected while 
passing a message from source to destination node through the shortest route; the 
message can be passed using another route. A hypercube is homogeneous in 
nature, as the system appears the same when viewed from any of its outside nodes. 
Thus, programming the hypercube is simple because all nodes can execute the 
same programs on different data when collaborating on a common task (Hays, 
2003). 

Many commercial multiprocessors have used hypercube interconnections 
including the Intel iPSC. A seven-dimensional hypercube has been used in this 
machine using 128 nodes.  The NCUBE’s NCUBE/ten used 1024 nodes in a 10-
dimensional hypercube. However, the hypercube structure has lost much of its 
popularity since the advent of the mesh interconnection structure as an effective 
alternative (Hamacher et al., 2002). 
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Figure 2.19. Hypercube interconnection structure 

Mesh and Torus Interconnection Network 
Mesh is a popular interconnection network structure used to connect large numbers 
of nodes. It came into being in the 1990s as an alternative to hypercube in large 
multiprocessors. A 16-node mesh structure is shown in Figure 2.20. To formulate a 

mesh structure comprising n  nodes )(2 5.0nn −  buses are required and the 

maximum internodes distance is )1(2 5.0 −n .  Routing in a mesh is established in 
various ways. One of the simplest and most popular ways is to choose the path 
between a source node in  and a destination node jn  then proceed in the horizontal 

direction from in  to jn . When the column in which jn  resides is reached the 

transfer proceeds in the vertical direction along that column.  The Intel’s Paragon is 
a well-known mesh-based multiprocessor.  If a wraparound connection is made 
between the nodes at opposite edges the result is a network that consists of a set of 
bi-directional rings in the X  direction connected by a similar set of rings in the 
Y direction.  This network is called a Torus (Hamacher et al., 2002). The average 
latency in a torus is less than in a mesh at the expense of complexity. Fujitsu’s 
AP3000 is a torus connection based machine. 

Complete Graph Interconnection Network 
In a complete graph interconnection structure several processors are connected in 
the complete graph format as depicted in Figure 2.21. Here, each node can directly 
communicate with any other node without going through or touching any 
intermediate node. However, it requires many buses. For a complete graph with 
n nodes the number of buses required is 2/)1( −nn  and the maximum internode 
distance is 1. 
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Figure 2.20. Mesh interconnection structure 
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Figure 2.21. Complete graph interconnection structure 

Switching or Dynamic Interconnection Structures 
Dynamic parallel architectures are reconfigurable under system control and the 
control is generally achieved through different kinds of switching circuits. One 
such switch is shown in Figure 2.22, which is an AND gate controlling the 
connection between two lines namely m  and n .  When line n  is high (say, a 
binary 1) indicating that a connection is required to be made with the line m , the 
control line will go high and the connection will be established. 

Another two-state switching element is shown in Figure 2.23. Each switch has 
a pair of input buses 1x  and 2x , and a pair of output buses 1y  and 2y , assisted by 
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some form of control mechanism. The buses connected to the switch could be used 
to establish processor-to-processor or processor-to-memory links. The switch S  
has two states, determined by a control line, the through or direct state, as depicted 
in Figure 2.23, where 11 xy =  (i.e., 1y  is connected to 1x ) and 22 xy =  and a cross 

state where 21 xy =  (i.e., 1y  is connected to 2x ) and 12 xy = . Using S as a 
building block, multistage switching networks of the type can be constructed for 
use as interconnection networks in parallel computers. 
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Figure 2.22. A typical crossbar switch 
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Figure 2.23. Two-states switching mechanisms 
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A three-stage switching network of this type is shown in Figure 2.24.  The 
network contains 12 switching elements and is intended to provide dynamic 
connections between the processors. By setting the control signals of the switching 
elements in various ways, a large number of different interconnection patterns is 
possible (Hays, 1988). The number of stages, the fixed connections linking the 
stages, and the dynamic states of the switching elements, in general, determines the 
possibilities. 

A comparison of features of a selected set of interconnection structures is given 
in Table 2.1. 
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Figure 2.24. Three-stage switching network 

2.3.4 Classification Based on Characteristic Nature of Processing 
Elements 

Parallel architectures are also classified in terms of the nature of the PEs 
comprising them. An architecture may consist of either only one type of PE or 
various types of PEs. The different types of processors that are commonly used to 
form parallel architectures are described below. 

CISC Processors 
The acronym CISC stands for Complex Instruction Set Computer. It is a type of 
processor that uses a complex, powerful instruction set capable of performing 
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many tasks including memory access, arithmetic calculations and address 
calculations. Some distinctive features of CISC processors are as follows: 

Table 2.1. Comparison of features of selected interconnection structures 

Network type Connections/PE Maximum 
distance 

Bandwidth Scalability 

Bus 1 2 Low Poor 

Crossbar 2 2 High Good 

Ring 2 2n  Low Good 

Complete graph 1−n  1 High Poor 

Torus 4 n  Good 
locally 

Good 

Hypercube n2log  n2log  Good Good 

• CISC instruction sets are large and powerful. 
• CISC instructions are executed slowly as each instruction is normally 

capable of doing many things. 
• CISC processors are comparatively difficult to program. 
• CISC architectures have pipelines and more registers. 
• CISC processors handle only a relatively low number of operations. 

CISC processors are generally used in desktop machines. The Motorola 68x0 
and the Intel 80x86 families are examples of CISC processors. 

RISC Processors 
The abbreviation RISC stands for Reduced Instruction Set Computer. RISC 
processors have a number of distinguishing characteristics, some of which are as 
follows: 

• RISC processors handle more operations than CISC processors. 
• Execution of instructions in a RISC processor is faster than in their CISC 

counterpart. 
• RISC processors support pipelined instruction execution. 
• RISC processors contain large number of registers, most of which can be 

used as general-purpose registers. 
• RISC processors are simple to program. 
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Current RISC processors include the M600-series PowerPC (Motorola/IBM), 
i960 (Intel), SPARC (Sun), ARM (Advanced RISC Machines), and Am 29000-
series (Advanced Micro Devices). 

DSP and Vector Processors 
DSP chips are specially designed to execute DSP algorithms and applications such 
as FFT, correlation, convolution and digital filtering. Such algorithms are used 
extensively in a variety of DSP applications such as radar, sonar, and weather 
forecasting. As most DSP operations require additions and multiplications together, 
DSP processors usually possess adders and multipliers, which can be used in 
parallel within a single instruction. DSP chips are also capable of handling multiple 
memory access in a single instruction cycle. One of the major differences between 
DSP chips and general-purpose processors is that DSP chips are required to deal 
with real-world problems frequently and they are designed to do so. TMS320C4x, 
DSP563xx, and DSP96002 are examples of DSP chips. 

Vector processors are designed to execute vector-intensive algorithms faster 
than other types of general-purpose and specialised processors. In fact, many 
algorithms are of regular nature and contain numerous matrix operations. Vector 
processors are very efficient at executing these types of algorithms. Examples of 
vector processors are the Intel i860 and i960. 

Homogeneous and Heterogeneous Parallel Architectures 
In a conventional parallel system all the PEs are identical. This architecture can be 
regarded as homogeneous. Figure 2.25 shows the homogeneous architecture of 
DSP chips and Figure 2.26 shows the homogeneous architecture of vector 
processors. However, many algorithms are heterogeneous, as they comprise 
functions and segments of varying computational requirements. Thus, 
heterogeneous architectures are designed to incorporate diverse hardware and 
software components in a heterogeneous suite of machines connected by a high-
speed network to meet the varied computational requirements of a specific 
application (Tan and Siegel, 1998). In fact, heterogeneous architectures represent a 
more general class of parallel processing system. The implementation of an 
algorithm on a heterogeneous architecture, having PEs of different types and 
features, can provide a closer match with the varying computing requirements and, 
thus, lead to performance enhancement. A typical heterogeneous architecture is 
shown in Figure 2.27, which comprises RISC processors, DSP processors and a 
vector processor. 

2.3.5 Specific Types of Parallel Architectures 

Various forms of parallel processors are evolving to cope with complex algorithms 
and short sample time requirements. Some of the specialised forms of parallel 
processors are described below. 
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Figure 2.25. Homogeneous architecture of DSP processors 
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Figure 2.26. Homogeneous architecture of vector processors 

Pipeline Architecture 
Pipeline is a very widely used parallel architecture, designed to execute pipelined 
instructions. Pipeline is an MISD type processor. However, it could be of MIMD 
type as well, depending upon the structures and operations.  

In the case of pipeline execution while one instruction is executed, the next 
instruction in the sequence is decoded, while a further one is fetched. The 
processor consists of a sequence of stages and the operands are partially executed 
at each stage and the fully processed result is obtained after the operands have 
passed through all the stages. A three-stage pipelined processing mechanism is 
shown in Figure 2.28. As shown, when operand 3 is being executed after having 
been fetched and decoded, operand 2 is being decoded after having been fetched 
and operand 1 is being fetched. All stages are busy at all times. In contrast in 
sequential processing when one stage is busy the other two remain idle. 
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Figure 2.27. Heterogeneous architecture 
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Figure 2.28. Three-stage pipeline processing 

A pipeline processor consists of a number of stages called segments, each 
segment comprising an input register and a processing unit. An n -stage pipeline 
processor is shown in Figure 2.29. The registers play their role as buffers 
compensating for any differences in the propagation delays through the processing 
units (Hays, 1988). Generally, the whole process is controlled by a common clock 
signal. All the registers change their state synchronously at the start of a clock 
period of the pipeline. Each register then receives a new set of data from the 
preceding segment except the first register, which receives data from an external 
source. In each clock period, all the segments transfer their processed data to the 
next segment and compute a new set of results. 
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Figure 2.29. A general n -stage pipeline processing structure 

From the operand point of view, pipeline is categorised into two types, namely, 
the instruction pipeline and arithmetic pipeline. Instruction pipelines are designed 
to speed up the program control functions of a computer by overlapping the 
processing of several different instructions namely fetch, decode and execute. 
Arithmetic pipelines are designed to execute special classes of operands very fast. 
These arithmetic operations include, multiplication, floating-point operations and 
vector operations. 

Example of an Arithmetic Pipeline 
The concepts of instruction and arithmetic pipelining are similar. However, at the 
implementation level an arithmetic pipeline is relatively complex. To develop an 
understanding of pipelining, an example arithmetic pipeline for floating-point 
addition is illustrated here.  Figure 2.30 shows a five-segment floating-point adder 
pipeline, where a  denotes a sequence of floating-point numbers, Ma  denotes the 

mantissa of the sequence and Ea  denotes the exponent of the sequence. b  denotes 

another sequence of floating-point numbers with Mb  and Eb  the mantissa and 

exponent, respectively. Let two sequences of floating point (normalised) numbers 
be added using a five-segment floating-point adder, as shown in Figure 2.30. An 
example of a five-segment floating-point operation is shown in Figure 2.31, where 
each of the five segments can contain a pair of partially processed scalar operands 
( ii ba , ). Buffering in the segments ensures that iS  only receives, as inputs, the 

results computed by segments 1−iS  during the preceding clock period. If the 
pipeline clock period is T  seconds long, i.e., the execution time of each segment, 
then it takes a total time of XT  to compute a single sum ii ba + , where ( )5=X  
represents the number of segments. This is approximately the time required to do 
one floating-point addition using a non-pipelined processor, plus the delay due to 
the buffer registers. Once all five segments of the pipeline are filled with data, a 
new sum emerges from the fifth segment every T  seconds. Figure 2.32 shows the 
time space diagram for the process for the first 10 clock cycles. Thus, the time 
required to perform N  consecutive additions can be calculated as follows: 

It follows from the time space diagram in Figure 2.32 that the time required to 
fill all five segments is ( ) TT 415 =− , therefore for X  segments this will be 

( )TX 1− , and the total execution time required to compute N  operations will be 

( )TXNT 1−+ , implying that the pipeline's speedup is: 
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Figure 2.30. Five-segment floating-point adder pipeline 
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For large N  the above approximates to ( ) XXS ≈ . It is therefore clear that a 
pipeline with X  segments is X -times faster than a non-pipelined adder. 

Figure 2.33 shows the equivalent block representation of the five-segment 
floating-point adder pipeline in Figure 2.30, using combinational circuits. Suppose, 
the time delays of the four segments are ns 601 =t , ns 702 =t , ns 1003 =t , 
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ns 804 =t , ns 805 =t  and the interface registers have a delay of ns 10=rt . The 

clock period is chosen as ns 1103 =+= rp ttt . An equivalent nonpipeline floating-

point adder will have a delay time ns 4005321 =++++= rn tttttt . In this case, the 

pipelined adder has a speedup of 64.3110400 =  over the non-pipelined adder. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.31. An example for operations of a five-segments floating-point adder 

Clock cycle 1 2 3 4 5 6 7 8 9 10 

Segment 1 T1 T2 T3 T4 T5 T6     

Segment 2  T1 T2 T3 T4 T5 T6    

Segment 3   T1 T2 T3 T4 T5 T6   

Segment 4    T1 T2 T3 T4 T5 T6  

Segment 5     T1 T2 T3 T4 T5 T6 

Figure 2.32. Time space diagram 

Consider two floating-point numbers,  
3

1 109504.0 ×=a , where, mantissa is 0.9504 and exponent is 3  

and , 2
1 108200.0 ×=b , where, mantissa is 0.8200 and exponent is 2. The activities of 

the different segments will be as follows: 
 
Segment 1: Fetch the values of a and b. 
Segment 2: Compare the exponent of the two numbers. Consider, the larger exponent

(which is 3) as the exponent of the result.  
Segment 3: Align the mantissa of b1 for exponent 3 giving 
                   3

1 109504.0 ×=a  

                   3
1 1008200.0 ×=b . 

Segment 4: Add mantissas of the two numbers, giving  
                   0.9504 + 0.0820 = 1.0324, which is the mantissa of the result. 
                   Thus, the result before normalisation will be 3

1 100324.1 ×=c . 

Segment 5: Finally, normalise the result giving 
                   4

1 1010324.0 ×=c , available at the output of the pipeline. 

 



 Parallel Architectures 49 

 Exponents Mantissas 

Input register 

Compare exponents 
by subtraction 

Register 

Align mantissas 

Choose exponent Add mantissas 

Adjust exponent Normalise result 

Output register 
Result 

a b 

Input register 

Register 

Register 

Output register 

Register 

a b 

 

Figure 2.33. Pipeline for floating-point addition 

Problem 2.1: Consider a four-segment pipeline processor executing 200 tasks. Let 
the time it takes to process a sub-operation in each segment be 

ns 20 . Determine the speedup of the pipeline system. 

Solution: The execution time for a non-pipeline system will be 

ns 160002020044 =××=NT  
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where number of tasks 200=N  and sub-operation process time for each segment 
ns 20=T . 

Execution time for a pipeline system will be, 

ns 406020)3200()3( =×+=+ TN  

Therefore, the speedup will be = 941.3
4060

16000 = . 

Multiple Pipeline 
Multiple pipeline architecture can be defined as a type of parallel architecture, 
formed using more than single independent pipeline in parallel. Thus, this 
architecture is a combination of pipeline and MIMD architectures.  

Multiple SIMD 
Multiple SIMD is a specific type of MIMD-SIMD architecture. More precisely, it 
can be defined as an MIMD type connection of a number of independent SIMD 
architectures. There are a number of control units for these architectures, each of 
which controls a subset of the PEs. 

Dataflow Architecture 
Another novel parallel architecture is the dataflow model. In this case, the program 
is represented by a graph of data dependencies as shown in Figure 2.34. The graph 
is mapped over a number of processors each of which is assigned an operation to 
be performed and the address of each node that needs the result. A processor 
performs an operation whenever its data operands are available. The operation of 
dataflow architectures is quite simple and resembles circular pipelining. A 
processor receives a message comprising data and the address of its destination 
node. The address is compared against those in a matching store. If the address is 
present, the matching address is extracted and the instruction is issued for 
execution. If not, the address is placed in the store for its partner to arrive. When 
the result is computed, a new message or token containing the result is sent to each 
of the destinations mentioned in the instructions (Culler et al., 1999). 

Systolic and Wavefront Arrays 
Systolic arrays comprise SIMD, MIMD and pipeline architectures. They are driven 
by a single clock and hence behave like SIMD architectures. However, they differ 
from SIMD in that each PE has the option to do different operations. The 
individual array elements, on the other hand, are MIMD processors and pipeline 
computations take place along all array dimensions. The systolic array also differs 
from conventional pipelined function units in that the array structure could be non-
linear, the pathways between PEs may be multidirectional and each PE may have a 
small amount of local instruction and data memory (Culler et al., 1999). Replacing 
the central clock of the systolic arrays with the concept of data flow forms 
wavefront arrays and hence wavefront arrays can be regarded as an extension of 
systolic arrays. 
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Figure 2.34. Data-flow graph 

Single-program Multiple-data Architecture 
The single-program multiple-data (SPMD) architecture combines the ease of SIMD 
programming with MIMD flexibility. This system is controlled by a single 
program and hence the name SPMD. 

2.4 Summary 

A large number of diverse types of parallel architectures are used worldwide. There 
is also no doubt that there are many other types in the research and/or development 
stage. However, not all of these suit particular applications.  Thus, it is necessary to 
figure out which parallel architecture would be appropriate for what types of 
applications. This has essentially been the motivation for the classification of 
parallel architectures. Flynn first classified parallel architectures based on the 
instruction and data streams. His classification gives a broad picture of parallel 
architectures and all parallel architectures could be classified in terms of this broad 
classification principle. However, this is not enough to fully distinguish one 
parallel architecture from another and as a result further classifications in terms of 
more distinctive features have evolved. Such features include memory 
arrangements, interconnection mechanisms, communication between PEs, memory 
access time, nature of the processors incorporated in an architecture and so on. For 
example, when all the processors in an architecture share a single memory, it is 
called shared memory architecture whereas when each processor uses its own local 
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memory it is called a distributed memory architecture. A number of architectures 
have evolved based on the interconnection mechanisms and arrangement of the 
PEs in the architecture. Homogeneous and heterogeneous types of parallel 
architecture evolved based on such issues, where a heterogeneous architecture 
comprises processors with different characteristics and a homogeneous architecture 
comprises processors with similar characteristics. 

2.5 Exercises 

1. Indicate the major classes of parallel architectures? Describe Flynn’s 
classification of computers.  

2. Distinguish between shared memory and distributed memory architectures.  

3. What do you understand by UMA and NUMA as used in parallel 
architectures?  

4. Indicate various characteristics of message passing architectures. How does 
message passing occur in a message passing architecture?  

5. Classify parallel architectures on the basis of interconnection networks. 
Distinguish between static and dynamic interconnection networks.  

6. Draw a comparative outline of various interconnection networks.  

7. Describe the function of switches used in dynamic interconnection 
architectures. Briefly explain the working mechanism of a switch.  

8. Distinguish between CISC and RISC architectures.  

9. Explain the distinctive features of homogeneous and heterogeneous parallel 
architectures.  

10. Indicate the characteristics of vector processor, array processor and DSP 
devices.  

11. What do you understand by pipeline mechanism? Describe the working 
mechanism of a pipeline architecture.  

12. Consider a four-segment pipeline processor executing 4000 tasks. Assume 
that the time it takes to process a sub-operation in each segment is equal to 

ns 30 . Determine the speedup for the pipeline system.  

13. Consider the time delay of the five segments in the pipeline of Figure 2.33 
as: ns 451 =t , ns 302 =t , ns 953 =t , ns 504 =t  and ns 705 =t . The delay 
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time of interface registers is ns 15=rt . (a) How long should it take to add 
100 pairs of numbers in the pipeline? (b) How can you reduce the total 
time to about half of the time obtained in part (a)?  

14. Illustrate that the speedup of a four-segment floating-point adder for a large 
number of tasks is nearly 4.  

15. How is a systolic array formed? Describe the features of a systolic array 
and warfront computers.  

16. Describe the basic working principles of data-flow architecture.  
 


