
2. Parallel Architectures

2.1 Objectives

• To introduce the principles and classification of parallel architectures.
• To discuss various forms of parallel processing.
• To explore the characteristics of parallel architectures.

2.2 Introduction

Parallel processing has emerged as an area with the potential of providing
satisfactory ways of meeting real-time computation requirements in various
applications and the quest for speed, which is a natural tendency of human beings,
as discussed in Chapter 1. As such, various forms of parallel architectures have
evolved and research is being carried out worldwide to discover new architectures
that can perform better than existing architectures. With speed as the prime goal,
the factors generally considered in developing a new architecture include the
internal circuitry of processors or PEs, number of PEs, arrangement of PEs and
memory modules in an architecture, the communication mechanism among the PEs
and between the PEs and memory modules, number of instruction and data
streams, nature of memory connections with the PEs, nature and types of
interconnection among the PEs, and program overlapping. The internal circuitry of
PEs plays a vital role in designing parallel architecture. Some parallel architectures
are designed with small number of PEs of complex internal circuitry to enhance the
overall performance of the architecture. Other architectures, on the other hand, are
designed with a substantial number of PEs of simple internal circuitry to achieve
the desired performance. The performance of an architecture can often be increased
by adding more PEs. However, this is possible only up to a certain limit, as adding
more PEs to the architecture incurs more communication overhead and it may not
be cost effective beyond a limit. The arrangement of processors is also crucial to
the design of a parallel architecture. Processors can be arranged in different forms
using various types of interconnection strategies, such as static and dynamic. In a
static form, the format of the architecture remains fixed and is not expandable by

24 Parallel Computing for Real-time Signal Processing and Control

adding more processors, while in a dynamic format more processors can be added
under system control to meet a particular requirement. The communication
mechanism among PEs in some architectures is straightforward, while in others the
communication scheme is complicated and requires extra effort and circuitry.
Similar to the arrangement of PEs, the arrangement of memory modules in an
architecture is important and contributes to the development of varied forms of
parallel architectures. The memory arrangement in some architectures is global,
i.e., all PEs use a common memory or memory modules, which helps to establish
communication among the processors, while others have memory modules
associated with individual PEs and communication is established via messages
passing among the PEs. Some forms of parallel architecture have evolved on the
basis of the methodology an algorithm is implemented. A pipeline architecture is
an example of this. There are also special forms of parallel architectures developed
on the basis of merging the characteristics of various forms of existing parallel
architectures. Many attempts have also been made to develop application-specific
parallel architectures. For example, vector parallel architectures have been
developed to execute vector intensive algorithms, DSP devices have been designed
for efficient implementation of signal processing, e.g. digital filtering algorithms.

Indeed, research and development in parallel computing is a continuing effort,
and it is accordingly expected that various forms of parallel architectures will
emerge in the future. Whatever may be the basis of development, each type of
parallel processor has its own characteristics, advantages, disadvantages and
suitability in certain application areas.

2.3 Classifications

A vast number parallel architecture types have been devised over the years.
Accordingly, it is not easy to develop a simple classification system for parallel
architectures. Moreover, various types of parallel architecture have overlapping
characteristics to different extents. However, the various forms of parallel
architecture can be distinguished under the following broad categories:

• Flynn’s classification.
• Classification based on memory arrangement and communication among

PEs.
• Classification based on interconnections among PEs and memory modules.
• Classification based on characteristic nature of PEs.
• Specific types of parallel architectures.

2.3.1 Flynn’s Classification

Michael J. Flynn introduced a broad classification of parallel processors based on
the simultaneous instruction and data streams during program execution (Flynn,
1966). It is noted here that instruction and data streams are two main steps that
occur during program execution, as depicted in Figure 2.1. It shows that during

 Parallel Architectures 25

program execution the PE fetches instructions and data from the main memory,
processes the data as per the instructions and sends the results to the main memory
after processing has been completed. The instructions are referred to as an
instruction stream, which flows from the main memory to the PE, and the data is
referred to as the data stream, flowing to and from the PE. Based on these streams,
Flynn categorised computers into four major classes, which are described below.

Processing
element

(PE)

Main
memory

(M)

Instruction

Data

Figure 2.1. Instruction stream and data stream

Single-instruction Single-data Stream
The simple Von Neumann computer shown in Figure 2.2 falls under the category
of single-instruction single-data (SISD) stream. An alternative representation of the
architecture indicating instruction and data flow is shown in Figure 2.3. The SISD
computer architecture possesses a central processing unit (CPU), memory unit and
input/output (I/O) devices. The CPU consists of an arithmetic and logic unit
(ALU) to perform arithmetic and logical operations, control unit (CU) to perform
control operations and registers to store small amounts of data. SISD computers are
sequential computers and are incapable of performing parallel operations.

CPU

Memory

Output

Input

Figure 2.2. Von Neumann (SISD) computer architecture

CU PE MM
DS

IS

IS

 CU: Control unit
 PE: Processing element
 MM: Memory module
 IS: Instruction stream
 DS: Data stream

Figure 2.3. SISD architecture with instruction and data flow

26 Parallel Computing for Real-time Signal Processing and Control

Single-instruction Multiple-data Stream
The general structure of a single-instruction multiple-data (SIMD) parallel
architecture is shown in Figure 2.4. This architecture possesses a single instruction
stream, to process the entire data structure (multiple-data stream). In other words,
in this configuration, a single program control unit or control processor controls
multiple execution units or execution processors. Each execution processor is
equipped with a local memory to store the data it will work on. Each execution
processor executes the same instruction issued by the control processor on its local
data. The execution processors are capable of communicating with each other
when required. SIMD architectures are good for problems where the same
operation is executed on a number of different objects, for example image
processing. Some other suitable applications of SIMD architectures include matrix
operations and sorting. Programming is quite simple and straightforward for this
architecture. SIMD architecture could be divided into two subclasses according to
the interconnections between the PEs. These are: vector architecture and array
architecture.

Organisation of the SIMD vector architecture is shown in Figure 2.5. The PEs
are connected to each other via special data links. These links are used to perform
simple data exchange operations like shifts and rotations (Hays, 1988). All the PEs
are connected to the central control processor to obtain the instructions to be
executed.

PEn

DS1

 IS

PE2

PE1

CU

MM2

MM1

MMn

•
•
•

•
•
•

 IS

DS2

DSn

Figure 2.4. General structure of SIMD computer architecture

Control

processor
PE

M

PE

M

PE

M

Figure 2.5. Vector architecture

 Parallel Architectures 27

The SIMD computer is often used as a synonym for array architecture. Unlike
vector architecture, PEs in an array architecture are connected by interconnecting
networks. A general form of array structure is shown in Figure 2.6, where a two-
dimensional grid of PEs executes instructions provided by the control processor.
Each PE is connected to its four neighbours to exchange data. End-around
connections also exist on both rows and columns, which are not shown in Figure
2.6. Each PE is capable of exchanging values with each of its neighbours. Each PE
possesses a few registers and some local memory to store data. Each PE is also
equipped with a special register called a network register to facilitate movement of
values to and from its neighbours. Each PE also contains an ALU to execute
arithmetic instructions broadcast by the control processor. The central processor is
capable of broadcasting an instruction to shift the values in the network registers
one step up, down, left or right (Hamacher et al., 2002). Array architecture is very
powerful and will suit problems that can be expressed in matrix or vector format.

Control
processor

PE22

PE12 PE11

PE21

PE1n

PEmn PEm1 . . .

 .
 .

 . . .

. . .

Grid of PEs

Instructions

Figure 2.6. Array architecture

Both array and vector architectures are specialised machines. They are mainly
designed to solve numerical problems comprising substantial numbers of vector
and/or matrix elements. The basic difference between vector and array
architectures is that high-performance is achieved in vector architecture through
exploiting a pipelining mechanism whereas in array architecture a large number of
PEs are incorporated to boost the performance. None of the architectures is well
suited to enhance the performance of general computation. The most famous
example of an array processor is ILLIAC-IV designed at the University of Illinois
and built by Burroughs Corporation. It was developed using 64 processors. Other
important examples of array processors include the Thinking Machine
Corporation’s CM-2 processor, which could have up to 65536 processors,
Maspar’s MP-1216 processors, which could accommodate 16384 processors, and

28 Parallel Computing for Real-time Signal Processing and Control

the Cambridge parallel processing Gamma II plus machine, which could
accommodate up to 4096 processors (Hamacher et al., 2002).

Multiple-instruction Single-data Stream
The general structure of a multi-instruction single-data stream (MISD) architecture
is shown in Figure 2.7. This architecture possesses a multiple instruction stream
and single data stream. This architecture has not evolved substantially and thus,
there are not many examples of the architecture (Hays, 1988). However, a major
class of parallel architectures, called pipeline computers can be viewed as MISD
architecture. Pipeline computers will be discussed later in this chapter.

 PEn

DS

 IS2

 PE2

 PE1 CU1

•
•
•

 MM2 MM1 MMn • • •

 IS2

 CU2

 CUn

•
•
•

• • •

DS

 ISn

 IS2

 ISn

 IS2

 IS2

 IS2

 ISn

Shared memory

Figure 2.7. General structure of MISD computer architecture

For most applications, MISD computers are rather awkward to use, but can be
useful in applications of a specialised nature (Akl, 1989; Kourmoulis, 1990). A
typical example of one such specialised application is robot vision. For example, a
robot inspecting a conveyor belt by sight may have to recognise objects that belong
to different classes. An MISD machine can quickly carry out a classification task
by assigning each of its processors a different class of objects and after receiving
what the robot sees each processor may carry out tests to determine whether the
given object belongs to its class or not.

Multiple-instruction Multiple-data Stream
Figure 2.8 shows the general structure of multiple-instruction multiple-data
(MIMD) stream architecture. This architecture is the most common and widely
used form of parallel architectures. It comprises several PEs, each of which is
capable of executing independent instruction streams on independent data streams.

 Parallel Architectures 29

The PEs in the system typically share resources such as communication facilities,
I/O devices, program libraries and databases. All the PEs are controlled by a
common operating system. The multiple PEs in the system improves performance
and increase reliability. Performance increases due to the fact that computational
load is shared by the PEs in the system. Theoretically, if there are n PEs in the
system, the performance will increase by n times in comparison to a single PE
based system. System reliability is increased by the fact that failure of one PE in
the system does not cause failure of the whole system.

 MM2

 MM1

 MMn

•
•
•

 PEn

 PE2

PE1

•
•
•

DS1

 IS2

 CU1
 IS1

DS2

DSn

 CU2

 CU3

•
•
•

 IS1 IS1

 IS2

 IS2

 ISn ISn ISn

Shared memory

Figure 2.8. General structure of MIMD computer architecture

2.3.2 Classification Based on Memory Arrangement and
Communication among PEs

Parallel architectures can be classified into two major categories in terms of
memory arrangement. These are: shared memory and message passing or
distributed memory. In fact, these architectures constitute a subdivision of MIMD
parallel architecture. Shared memory and distributed memory architectures are also
called tightly coupled and loosely coupled architectures respectively. Each type of
architecture has its advantages and disadvantages.

Shared Memory Multiprocessor
In a shared memory multiprocessor configuration multiple processors share a
common memory unit comprising a single or several memory modules. All the
processors have equal access to these memory modules and these memory modules
are seen as a single address space by all the processors. The memory modules store
data as well as serve to establish communication among the processors via some
bus arrangement. Communication is established through memory access

30 Parallel Computing for Real-time Signal Processing and Control

instructions. That is, processors exchange messages between one another by one
processor writing data into the shared memory and another reading that data from
the memory.

Programming this architecture is quite straightforward and attractive. The executable
programming codes are stored in the memory for each processor to execute. The data related
to each program is also stored in this memory. Each program can gain access to all data sets
present in the memory if necessary. The executable codes and shared data for the processor
can be created and managed in different ways by designing parallel programming language
or using existing sequential languages such as C/C++. There is no direct processor-to-
processor communication involved in the programming process; instead communication is
handled mainly via the shared memory modules. Access to these memory modules can
easily be controlled through an appropriate programming mechanism such as multitasking.
However, this architecture suffers from a bottleneck problem when a number of processors
endeavour to access the global memory at the same time. This limits the scalability of the
system. As a remedy to this problem most large, practical shared memory systems have
some form of hierarchical or distributed memory structure such that processors can access
physically nearby memory locations faster than distant memory locations. This is called
non-uniform memory access. Figure 2.9 shows a general form of shared memory
multiprocessor architecture.

Shared memory multiprocessors can be of two types, namely uniform memory
access (UMA) architecture and non-uniform memory access (NUMA) architecture.

Interconnection
network

PE1

MMn

Processors

• • •

MM1 • • • MM2

•
 •
 •

I/O1

I/O2

I/On

Shared memory

PE2 PEn

Figure 2.9. Shared-memory multiprocessor

 Parallel Architectures 31

As the name suggests, the memory access time to the different parts of the
memory are almost the same in the case of UMA architectures. UMA architectures
are also called symmetric multiprocessors. An UMA architecture comprises two or
more processors with identical characteristics. The processors share the same main
memory and I/O facilities and are interconnected by some form of bus-based
interconnection scheme such that the memory access time is approximately the
same for all processors. All processors can perform the same functions under
control of an integrated operating system, which provides interaction between
processors and their programs at the job, task, file and data element levels
(Stallings, 2003). The IBM S/390 is an example of UMA architecture.

In the case of NUMA architectures the memory access time of processors
differs depending on which region of the main memory is accessed. A subclass of
NUMA system is cache coherent NUMA (CC-NUMA) where cache coherence is
maintained among the caches of various processors. The main advantage of a CC-
NUMA system is that it can deliver effective performance at higher levels of
parallelism than UMA architecture.

Message Passing Multicomputer
A distributed memory architecture is different from a shared memory architecture
in that each unit of this architecture is a complete computer building block
including the processor, memory and I/O system. A processor can access the
memory, which is directly attached to it. Communication among the processors is
established in the form of I/O operations through message signals and bus
networks. For example, if a processor needs data from another processor it sends a
signal to that processor through an interconnected bus network demanding the
required data. The remote processor then responds accordingly. Certainly, access to
local memory is faster than access to remote processors. Most importantly, the
further the physical distance to the remote processor, the longer it will take to
access the remote data. On one hand this architecture suffers from the drawback of
requiring direct communication from processor to processor, on the other hand, the
bottleneck problem of shared memory architecture does not exist. A general form
of shared memory architecture is shown in Figure 2.10.

The speed performance of distributed memory architecture largely depends
upon how the processors are connected to each other. It is impractical to connect
each processor to the remaining processors in the system through independent
cables. It can work for a very low number of processors but becomes nearly
impossible as the number of processors in the system increases. However, attempts
have been made to overcome this problem and as a result several solutions have
emerged. The most common of these is to use specialised bus networks to connect
all the processors in the system in order that each processor can communicate with
any other processor attached to the system.

2.3.3 Classification Based on Interconnections between PEs and
Memory Modules

Parallel architectures are also classified in terms of interconnecting network
arrangements for communication among the various PEs included in the

32 Parallel Computing for Real-time Signal Processing and Control

architecture. In fact, this classification is quite specific to MIMD architectures as
they, generally, comprises multiple PEs and memory modules. The various
interconnecting communication networks used for establishing communication
schemes among the PEs of a parallel architecture include: linear, shared single bus,
shared multiple bus, crossbar, ring, mesh, star, tree, hypercube and complete graph.
Among these interconnecting networks, linear, mesh, ring, star, tree, hypercube
and complete graph are static connection structures whereas shared single bus,
shared multiple bus and crossbar are dynamic interconnection structures as they are
reconfigurable under system control (Hays, 1988).

Interconnection
network

• • •

PE1

MM1

P1

PE2

MM2

P2

PEn

MMn

Pn

Figure 2.10. Distributed-memory multiprocessor

Linear Network
A number of nodes are connected through buses in a linear format to form a
network of nodes as shown in Figure 2.11. Every node, except the nodes at the two
ends, in this configuration is directly connected to two other nodes. Thus, to
connect n nodes in this configuration 1−n buses are required and the maximum
internodes distance is 1−n .

PE1 PE2 PE3 PE4 PEn

Figure 2.11. Linear interconnection structure

Single Shared Bus Network
The single shared bus interconnection structure, shown in Figure 1.12, is widely
used in parallel architectures. A number of PEs and memory units are connected to
a single bus in this case, through which communication is established among the
PEs and memory units connected to it.

 Parallel Architectures 33

PE1 MM1 PE2 PEn MM2 MMn

Figure 2.12. Single bus interconnection structure

The operation of the single bus interconnection structure, in its simplest form,
is as follows: when a processor issues a read request to a memory location it holds
the bus until it receives the expected data from the memory module. It will require
some time for the memory module to access the data from the appropriate location.
The transfer scheme also will need some time and another request from any
processor will not be initiated until the transfer is completed, which means the bus
will remain idle for a certain amount of time that can be as high as two-thirds of the
total time required for the transfer. This problem has been overcome by using a
split transfer protocol scheme whereby the bus can handle a number of requests
from different processors to different memory modules. In this case after
transferring the address of the first request the bus starts the transfer of the next
request so that two requests are executed in parallel. If none of the two requests has
completed, the bus can be assigned a third request. When the first memory module
completes its access cycle, the bus is used to send the data to the destination
processor. As another module completes its access cycle the data is transferred
using the bus, and the process continues. The split transfer protocol increases the
performance of the bus at the cost of complexity. The complexity increases due to
maintaining synchronisation and coordination among the requests, processors and
memory modules.

One of the limitations of single bus interconnection is that a large number of
processors and memory modules cannot be connected to a bus. The number of
modules to be connected with the bus could be increased by using a wider bus with
increased bandwidth. However, the bandwidth of a single bus is limited by the
connection for the use of the bus and by the increased propagation delays caused
by the electrical loadings when many modules are connected (Hamacher et al.,
2002).

Multiple Shared Buses Network
The single shared bus network cannot cope with large numbers of PEs and memory
units as mentioned above. Multiple shared bus networks are used in such cases.
The structure of a multiple shared bus network is shown in Figure 2.13, where each
processor and memory are connected to one or more of the available buses, each of
which possesses all the attributes of an independent system bus. Besides reducing
the communication load per bus, a degree of fault tolerance is provided, since the
system can be designed to continue operation, possibly with reduced performance,
if an individual bus fails (Hays, 1988).

34 Parallel Computing for Real-time Signal Processing and Control

PE1 MM1 PE2 PEn MM2 MMn

Figure 2.13. Multiple buses interconnection structure

Crossbar Interconnection Network
The structure of crossbar architecture is shown in Figure 2.14. In this architecture,
all the PEs and memory modules are interconnected through a multibus crossbar
network system where subscript m denotes the memory and n denotes the PEs.
The crossbar architecture becomes very complex as the number of memory
modules and PEs increases.

PE1

PE2

PEn

MM1 MM2 MMm

Figure 2.14. Crossbar interconnection structure

Star Interconnection Network
The star interconnection, as shown in Figure 2.15, is one of the simplest
interconnection networks. In this configuration 1−n buses are required to connect

 Parallel Architectures 35

n nodes and the maximum internode distance is 2. A node in this structure can
communicate with any other node through the node in the centre.

PE

PE

PE

PE

PE

PE

PE

PE

PE

Figure 2.15. Star interconnection structure

Ring Interconnection Network
The ring network, shown in Figure 2.16, is also one of the simplest interconnection
topologies. This interconnection is very easy to implement. In the case of ring
interconnection n buses are required to connect n nodes and the maximum
internodes distance is 2/n . Rings can be used as building blocks to form other
interconnection structures such as mesh, hypercube and tree. A ring-based two-
stage tree structure is shown in Figure 2.17. However, the highest-level ring could
be a bottleneck for traffic in this case. Commercial machines such as Hewlett-
Packard’s Exemplar V2600 and Kendal Square Research’s KSR-2 have been
designed using ring networks.

Tree Interconnection Network
Tree structure is another important and useful interconnection topology. There
could be a number of levels in a tree structure. The general form of an n -level tree
structure is shown in Figure 2.18. In this case any intermediate node acts as a
medium to establish communication between its parents and children. Through this
mechanism communication could also be established between any two nodes in the
structure. A tree structure can be highly effective if a small portion of traffic goes
through the root node otherwise due to bottleneck problems performance

36 Parallel Computing for Real-time Signal Processing and Control

deteriorates rapidly. The possibility of bottleneck problems is less in a flat tree
structure where there is a large number of nodes at the higher levels.

PE

PE

PE

PE

PE

PE

PE

PE

Figure 2.16. Ring interconnection structure

Upper ring

Lower rings

PE

PE

PE PE

PE PE

PE PE

PE PE

Figure 2.17. Two-stage tree networks based on ring networks

Hypercube Interconnection Network
Hypercube is a popular interconnection network architecture, especially for

NUMA multiprocessors. An n -dimensional hypercube can connect n2 nodes each
of which includes a processor, a memory module and some I/O capability. A three-
dimensional hypercube is shown in Figure 2.19. The edges of the cube represent
bi-directional communication links between two neighbouring nodes. The nodes

 Parallel Architectures 37

are normally labelled using binary addresses in a way that the addresses of the two
neighbouring nodes differ by one bit position. Transferring messages from one
node to another in a hypercube structure is accomplished with the help of binary
addresses assigned to each of the nodes. In this transferring scheme the binary
address of the source node and the destination nodes are compared from least to
most significant bits and transfer to the destination is performed through some
intermediate nodes in between. For example, the transfer of message from node iP

to a node jP takes place as follows. First the binary addressees of iP and jP are

compared from least to most significant bits. Suppose they differ in bit position p .

Node iP then sends a message to the neighbouring node kP whose address differs

from iP in bit position p . Node kP then passes the message to its appropriate
neighbours using the same scheme. The message gets closer to the destination node
with each of these passes and finally reaches it after several passes. Consider, for
example, that node 3P in Figure 2.19 wants to send a message to node 6P . It will

require two passes through node 2P .

 PE

PE PE

PE PE PE PE

Root processor

Leaf processors

Figure 2.18. Tree interconnection structure

The hypercube structure is very reliable. If a faulty link is detected while
passing a message from source to destination node through the shortest route; the
message can be passed using another route. A hypercube is homogeneous in
nature, as the system appears the same when viewed from any of its outside nodes.
Thus, programming the hypercube is simple because all nodes can execute the
same programs on different data when collaborating on a common task (Hays,
2003).

Many commercial multiprocessors have used hypercube interconnections
including the Intel iPSC. A seven-dimensional hypercube has been used in this
machine using 128 nodes. The NCUBE’s NCUBE/ten used 1024 nodes in a 10-
dimensional hypercube. However, the hypercube structure has lost much of its
popularity since the advent of the mesh interconnection structure as an effective
alternative (Hamacher et al., 2002).

38 Parallel Computing for Real-time Signal Processing and Control

P3

(011)
P7

(111)

P1
(001)

P2
(010)

P4
(100)

P5
(101)

P6
(110)

P0
(000)

Figure 2.19. Hypercube interconnection structure

Mesh and Torus Interconnection Network
Mesh is a popular interconnection network structure used to connect large numbers
of nodes. It came into being in the 1990s as an alternative to hypercube in large
multiprocessors. A 16-node mesh structure is shown in Figure 2.20. To formulate a

mesh structure comprising n nodes)(2 5.0nn − buses are required and the

maximum internodes distance is)1(2 5.0 −n . Routing in a mesh is established in
various ways. One of the simplest and most popular ways is to choose the path
between a source node in and a destination node jn then proceed in the horizontal

direction from in to jn . When the column in which jn resides is reached the

transfer proceeds in the vertical direction along that column. The Intel’s Paragon is
a well-known mesh-based multiprocessor. If a wraparound connection is made
between the nodes at opposite edges the result is a network that consists of a set of
bi-directional rings in the X direction connected by a similar set of rings in the
Y direction. This network is called a Torus (Hamacher et al., 2002). The average
latency in a torus is less than in a mesh at the expense of complexity. Fujitsu’s
AP3000 is a torus connection based machine.

Complete Graph Interconnection Network
In a complete graph interconnection structure several processors are connected in
the complete graph format as depicted in Figure 2.21. Here, each node can directly
communicate with any other node without going through or touching any
intermediate node. However, it requires many buses. For a complete graph with
n nodes the number of buses required is 2/)1(−nn and the maximum internode
distance is 1.

 Parallel Architectures 39

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Figure 2.20. Mesh interconnection structure

PE PE

PE PE

PE

PE

Figure 2.21. Complete graph interconnection structure

Switching or Dynamic Interconnection Structures
Dynamic parallel architectures are reconfigurable under system control and the
control is generally achieved through different kinds of switching circuits. One
such switch is shown in Figure 2.22, which is an AND gate controlling the
connection between two lines namely m and n . When line n is high (say, a
binary 1) indicating that a connection is required to be made with the line m , the
control line will go high and the connection will be established.

Another two-state switching element is shown in Figure 2.23. Each switch has
a pair of input buses 1x and 2x , and a pair of output buses 1y and 2y , assisted by

40 Parallel Computing for Real-time Signal Processing and Control

some form of control mechanism. The buses connected to the switch could be used
to establish processor-to-processor or processor-to-memory links. The switch S
has two states, determined by a control line, the through or direct state, as depicted
in Figure 2.23, where 11 xy = (i.e., 1y is connected to 1x) and 22 xy = and a cross

state where 21 xy = (i.e., 1y is connected to 2x) and 12 xy = . Using S as a
building block, multistage switching networks of the type can be constructed for
use as interconnection networks in parallel computers.

m

n

Control line to
connect (m,n)

Figure 2.22. A typical crossbar switch

a

c b

S
2x

1y

2y

1x

Control c

S
2x

1y

2y

1x

Control 1

2x

1y

2y

1x

Control 0

Figure 2.23. Two-states switching mechanisms

 Parallel Architectures 41

A three-stage switching network of this type is shown in Figure 2.24. The
network contains 12 switching elements and is intended to provide dynamic
connections between the processors. By setting the control signals of the switching
elements in various ways, a large number of different interconnection patterns is
possible (Hays, 1988). The number of stages, the fixed connections linking the
stages, and the dynamic states of the switching elements, in general, determines the
possibilities.

A comparison of features of a selected set of interconnection structures is given
in Table 2.1.

S1,1

S2,1

S3,1

S4,1

S1,2

S2,2

S3,2

S4,2

S1,3

S2,3

S3,3

S4,3

Stage 1 Stage 2 Stage 3

I000

I001

I010

I011

I100

I101

I110

I111

I000

I001

I010

I011

I100

I101

I110

I111

Figure 2.24. Three-stage switching network

2.3.4 Classification Based on Characteristic Nature of Processing
Elements

Parallel architectures are also classified in terms of the nature of the PEs
comprising them. An architecture may consist of either only one type of PE or
various types of PEs. The different types of processors that are commonly used to
form parallel architectures are described below.

CISC Processors
The acronym CISC stands for Complex Instruction Set Computer. It is a type of
processor that uses a complex, powerful instruction set capable of performing

42 Parallel Computing for Real-time Signal Processing and Control

many tasks including memory access, arithmetic calculations and address
calculations. Some distinctive features of CISC processors are as follows:

Table 2.1. Comparison of features of selected interconnection structures

Network type Connections/PE Maximum
distance

Bandwidth Scalability

Bus 1 2 Low Poor

Crossbar 2 2 High Good

Ring 2 2n Low Good

Complete graph 1−n 1 High Poor

Torus 4 n Good
locally

Good

Hypercube n2log n2log Good Good

• CISC instruction sets are large and powerful.
• CISC instructions are executed slowly as each instruction is normally

capable of doing many things.
• CISC processors are comparatively difficult to program.
• CISC architectures have pipelines and more registers.
• CISC processors handle only a relatively low number of operations.

CISC processors are generally used in desktop machines. The Motorola 68x0
and the Intel 80x86 families are examples of CISC processors.

RISC Processors
The abbreviation RISC stands for Reduced Instruction Set Computer. RISC
processors have a number of distinguishing characteristics, some of which are as
follows:

• RISC processors handle more operations than CISC processors.
• Execution of instructions in a RISC processor is faster than in their CISC

counterpart.
• RISC processors support pipelined instruction execution.
• RISC processors contain large number of registers, most of which can be

used as general-purpose registers.
• RISC processors are simple to program.

 Parallel Architectures 43

Current RISC processors include the M600-series PowerPC (Motorola/IBM),
i960 (Intel), SPARC (Sun), ARM (Advanced RISC Machines), and Am 29000-
series (Advanced Micro Devices).

DSP and Vector Processors
DSP chips are specially designed to execute DSP algorithms and applications such
as FFT, correlation, convolution and digital filtering. Such algorithms are used
extensively in a variety of DSP applications such as radar, sonar, and weather
forecasting. As most DSP operations require additions and multiplications together,
DSP processors usually possess adders and multipliers, which can be used in
parallel within a single instruction. DSP chips are also capable of handling multiple
memory access in a single instruction cycle. One of the major differences between
DSP chips and general-purpose processors is that DSP chips are required to deal
with real-world problems frequently and they are designed to do so. TMS320C4x,
DSP563xx, and DSP96002 are examples of DSP chips.

Vector processors are designed to execute vector-intensive algorithms faster
than other types of general-purpose and specialised processors. In fact, many
algorithms are of regular nature and contain numerous matrix operations. Vector
processors are very efficient at executing these types of algorithms. Examples of
vector processors are the Intel i860 and i960.

Homogeneous and Heterogeneous Parallel Architectures
In a conventional parallel system all the PEs are identical. This architecture can be
regarded as homogeneous. Figure 2.25 shows the homogeneous architecture of
DSP chips and Figure 2.26 shows the homogeneous architecture of vector
processors. However, many algorithms are heterogeneous, as they comprise
functions and segments of varying computational requirements. Thus,
heterogeneous architectures are designed to incorporate diverse hardware and
software components in a heterogeneous suite of machines connected by a high-
speed network to meet the varied computational requirements of a specific
application (Tan and Siegel, 1998). In fact, heterogeneous architectures represent a
more general class of parallel processing system. The implementation of an
algorithm on a heterogeneous architecture, having PEs of different types and
features, can provide a closer match with the varying computing requirements and,
thus, lead to performance enhancement. A typical heterogeneous architecture is
shown in Figure 2.27, which comprises RISC processors, DSP processors and a
vector processor.

2.3.5 Specific Types of Parallel Architectures

Various forms of parallel processors are evolving to cope with complex algorithms
and short sample time requirements. Some of the specialised forms of parallel
processors are described below.

44 Parallel Computing for Real-time Signal Processing and Control

Host
processor

DSP DSP DSP DSP

Figure 2.25. Homogeneous architecture of DSP processors

Vector
processor

Host
processor

Vector
processor

Vector
processor

Figure 2.26. Homogeneous architecture of vector processors

Pipeline Architecture
Pipeline is a very widely used parallel architecture, designed to execute pipelined
instructions. Pipeline is an MISD type processor. However, it could be of MIMD
type as well, depending upon the structures and operations.

In the case of pipeline execution while one instruction is executed, the next
instruction in the sequence is decoded, while a further one is fetched. The
processor consists of a sequence of stages and the operands are partially executed
at each stage and the fully processed result is obtained after the operands have
passed through all the stages. A three-stage pipelined processing mechanism is
shown in Figure 2.28. As shown, when operand 3 is being executed after having
been fetched and decoded, operand 2 is being decoded after having been fetched
and operand 1 is being fetched. All stages are busy at all times. In contrast in
sequential processing when one stage is busy the other two remain idle.

 Parallel Architectures 45

RISC
processor

(Root)
DSP

Host
processor

RISC
processor

DSP

DSP RISC processor

Shared memory

Vector processor

Figure 2.27. Heterogeneous architecture

Operand 1

Operand 2

Operand 3

0t 2t
1t 3t

Fetch

Decode

Execute

Figure 2.28. Three-stage pipeline processing

A pipeline processor consists of a number of stages called segments, each
segment comprising an input register and a processing unit. An n -stage pipeline
processor is shown in Figure 2.29. The registers play their role as buffers
compensating for any differences in the propagation delays through the processing
units (Hays, 1988). Generally, the whole process is controlled by a common clock
signal. All the registers change their state synchronously at the start of a clock
period of the pipeline. Each register then receives a new set of data from the
preceding segment except the first register, which receives data from an external
source. In each clock period, all the segments transfer their processed data to the
next segment and compute a new set of results.

46 Parallel Computing for Real-time Signal Processing and Control

R1 C1

Segment 1

R2 C2

Segment 2

Rn Cn R

Segment n

Output
register

Figure 2.29. A general n -stage pipeline processing structure

From the operand point of view, pipeline is categorised into two types, namely,
the instruction pipeline and arithmetic pipeline. Instruction pipelines are designed
to speed up the program control functions of a computer by overlapping the
processing of several different instructions namely fetch, decode and execute.
Arithmetic pipelines are designed to execute special classes of operands very fast.
These arithmetic operations include, multiplication, floating-point operations and
vector operations.

Example of an Arithmetic Pipeline
The concepts of instruction and arithmetic pipelining are similar. However, at the
implementation level an arithmetic pipeline is relatively complex. To develop an
understanding of pipelining, an example arithmetic pipeline for floating-point
addition is illustrated here. Figure 2.30 shows a five-segment floating-point adder
pipeline, where a denotes a sequence of floating-point numbers, Ma denotes the

mantissa of the sequence and Ea denotes the exponent of the sequence. b denotes

another sequence of floating-point numbers with Mb and Eb the mantissa and

exponent, respectively. Let two sequences of floating point (normalised) numbers
be added using a five-segment floating-point adder, as shown in Figure 2.30. An
example of a five-segment floating-point operation is shown in Figure 2.31, where
each of the five segments can contain a pair of partially processed scalar operands
(ii ba ,). Buffering in the segments ensures that iS only receives, as inputs, the

results computed by segments 1−iS during the preceding clock period. If the
pipeline clock period is T seconds long, i.e., the execution time of each segment,
then it takes a total time of XT to compute a single sum ii ba + , where ()5=X
represents the number of segments. This is approximately the time required to do
one floating-point addition using a non-pipelined processor, plus the delay due to
the buffer registers. Once all five segments of the pipeline are filled with data, a
new sum emerges from the fifth segment every T seconds. Figure 2.32 shows the
time space diagram for the process for the first 10 clock cycles. Thus, the time
required to perform N consecutive additions can be calculated as follows:

It follows from the time space diagram in Figure 2.32 that the time required to
fill all five segments is () TT 415 =− , therefore for X segments this will be

()TX 1− , and the total execution time required to compute N operations will be

()TXNT 1−+ , implying that the pipeline's speedup is:

 Parallel Architectures 47

Segment S1

(fetch data)

Segment S2

(compare exponents)

Segment S3

(align mantissas)

Segment S4

(add mantissas)

Segment S5

(normalise results)

()E
M bbb ,=

a + b

()E
M aaa ,=

Figure 2.30. Five-segment floating-point adder pipeline

 () () 11 −+
=

−+
=

XN

NX

TXNT

NXT
XS

For large N the above approximates to () XXS ≈ . It is therefore clear that a
pipeline with X segments is X -times faster than a non-pipelined adder.

Figure 2.33 shows the equivalent block representation of the five-segment
floating-point adder pipeline in Figure 2.30, using combinational circuits. Suppose,
the time delays of the four segments are ns 601 =t , ns 702 =t , ns 1003 =t ,

48 Parallel Computing for Real-time Signal Processing and Control

ns 804 =t , ns 805 =t and the interface registers have a delay of ns 10=rt . The

clock period is chosen as ns 1103 =+= rp ttt . An equivalent nonpipeline floating-

point adder will have a delay time ns 4005321 =++++= rn tttttt . In this case, the

pipelined adder has a speedup of 64.3110400 = over the non-pipelined adder.

Figure 2.31. An example for operations of a five-segments floating-point adder

Clock cycle 1 2 3 4 5 6 7 8 9 10

Segment 1 T1 T2 T3 T4 T5 T6

Segment 2 T1 T2 T3 T4 T5 T6

Segment 3 T1 T2 T3 T4 T5 T6

Segment 4 T1 T2 T3 T4 T5 T6

Segment 5 T1 T2 T3 T4 T5 T6

Figure 2.32. Time space diagram

Consider two floating-point numbers,
3

1 109504.0 ×=a , where, mantissa is 0.9504 and exponent is 3

and , 2
1 108200.0 ×=b , where, mantissa is 0.8200 and exponent is 2. The activities of

the different segments will be as follows:

Segment 1: Fetch the values of a and b.
Segment 2: Compare the exponent of the two numbers. Consider, the larger exponent

(which is 3) as the exponent of the result.
Segment 3: Align the mantissa of b1 for exponent 3 giving
 3

1 109504.0 ×=a

 3
1 1008200.0 ×=b .

Segment 4: Add mantissas of the two numbers, giving
 0.9504 + 0.0820 = 1.0324, which is the mantissa of the result.
 Thus, the result before normalisation will be 3

1 100324.1 ×=c .

Segment 5: Finally, normalise the result giving
 4

1 1010324.0 ×=c , available at the output of the pipeline.

 Parallel Architectures 49

 Exponents Mantissas

Input register

Compare exponents
by subtraction

Register

Align mantissas

Choose exponent Add mantissas

Adjust exponent Normalise result

Output register
Result

a b

Input register

Register

Register

Output register

Register

a b

Figure 2.33. Pipeline for floating-point addition

Problem 2.1: Consider a four-segment pipeline processor executing 200 tasks. Let
the time it takes to process a sub-operation in each segment be

ns 20 . Determine the speedup of the pipeline system.

Solution: The execution time for a non-pipeline system will be

ns 160002020044 =××=NT

50 Parallel Computing for Real-time Signal Processing and Control

where number of tasks 200=N and sub-operation process time for each segment
ns 20=T .

Execution time for a pipeline system will be,

ns 406020)3200()3(=×+=+ TN

Therefore, the speedup will be = 941.3
4060

16000 = .

Multiple Pipeline
Multiple pipeline architecture can be defined as a type of parallel architecture,
formed using more than single independent pipeline in parallel. Thus, this
architecture is a combination of pipeline and MIMD architectures.

Multiple SIMD
Multiple SIMD is a specific type of MIMD-SIMD architecture. More precisely, it
can be defined as an MIMD type connection of a number of independent SIMD
architectures. There are a number of control units for these architectures, each of
which controls a subset of the PEs.

Dataflow Architecture
Another novel parallel architecture is the dataflow model. In this case, the program
is represented by a graph of data dependencies as shown in Figure 2.34. The graph
is mapped over a number of processors each of which is assigned an operation to
be performed and the address of each node that needs the result. A processor
performs an operation whenever its data operands are available. The operation of
dataflow architectures is quite simple and resembles circular pipelining. A
processor receives a message comprising data and the address of its destination
node. The address is compared against those in a matching store. If the address is
present, the matching address is extracted and the instruction is issued for
execution. If not, the address is placed in the store for its partner to arrive. When
the result is computed, a new message or token containing the result is sent to each
of the destinations mentioned in the instructions (Culler et al., 1999).

Systolic and Wavefront Arrays
Systolic arrays comprise SIMD, MIMD and pipeline architectures. They are driven
by a single clock and hence behave like SIMD architectures. However, they differ
from SIMD in that each PE has the option to do different operations. The
individual array elements, on the other hand, are MIMD processors and pipeline
computations take place along all array dimensions. The systolic array also differs
from conventional pipelined function units in that the array structure could be non-
linear, the pathways between PEs may be multidirectional and each PE may have a
small amount of local instruction and data memory (Culler et al., 1999). Replacing
the central clock of the systolic arrays with the concept of data flow forms
wavefront arrays and hence wavefront arrays can be regarded as an extension of
systolic arrays.

 Parallel Architectures 51

×

+

- /

 d c b

+

×
 r

 e f

a

() ()
() ()

fer

dccbf

cbbae

×=
+−=

−+×=

Figure 2.34. Data-flow graph

Single-program Multiple-data Architecture
The single-program multiple-data (SPMD) architecture combines the ease of SIMD
programming with MIMD flexibility. This system is controlled by a single
program and hence the name SPMD.

2.4 Summary

A large number of diverse types of parallel architectures are used worldwide. There
is also no doubt that there are many other types in the research and/or development
stage. However, not all of these suit particular applications. Thus, it is necessary to
figure out which parallel architecture would be appropriate for what types of
applications. This has essentially been the motivation for the classification of
parallel architectures. Flynn first classified parallel architectures based on the
instruction and data streams. His classification gives a broad picture of parallel
architectures and all parallel architectures could be classified in terms of this broad
classification principle. However, this is not enough to fully distinguish one
parallel architecture from another and as a result further classifications in terms of
more distinctive features have evolved. Such features include memory
arrangements, interconnection mechanisms, communication between PEs, memory
access time, nature of the processors incorporated in an architecture and so on. For
example, when all the processors in an architecture share a single memory, it is
called shared memory architecture whereas when each processor uses its own local

52 Parallel Computing for Real-time Signal Processing and Control

memory it is called a distributed memory architecture. A number of architectures
have evolved based on the interconnection mechanisms and arrangement of the
PEs in the architecture. Homogeneous and heterogeneous types of parallel
architecture evolved based on such issues, where a heterogeneous architecture
comprises processors with different characteristics and a homogeneous architecture
comprises processors with similar characteristics.

2.5 Exercises

1. Indicate the major classes of parallel architectures? Describe Flynn’s
classification of computers.

2. Distinguish between shared memory and distributed memory architectures.

3. What do you understand by UMA and NUMA as used in parallel
architectures?

4. Indicate various characteristics of message passing architectures. How does
message passing occur in a message passing architecture?

5. Classify parallel architectures on the basis of interconnection networks.
Distinguish between static and dynamic interconnection networks.

6. Draw a comparative outline of various interconnection networks.

7. Describe the function of switches used in dynamic interconnection
architectures. Briefly explain the working mechanism of a switch.

8. Distinguish between CISC and RISC architectures.

9. Explain the distinctive features of homogeneous and heterogeneous parallel
architectures.

10. Indicate the characteristics of vector processor, array processor and DSP
devices.

11. What do you understand by pipeline mechanism? Describe the working
mechanism of a pipeline architecture.

12. Consider a four-segment pipeline processor executing 4000 tasks. Assume
that the time it takes to process a sub-operation in each segment is equal to

ns 30 . Determine the speedup for the pipeline system.

13. Consider the time delay of the five segments in the pipeline of Figure 2.33
as: ns 451 =t , ns 302 =t , ns 953 =t , ns 504 =t and ns 705 =t . The delay

 Parallel Architectures 53

time of interface registers is ns 15=rt . (a) How long should it take to add
100 pairs of numbers in the pipeline? (b) How can you reduce the total
time to about half of the time obtained in part (a)?

14. Illustrate that the speedup of a four-segment floating-point adder for a large
number of tasks is nearly 4.

15. How is a systolic array formed? Describe the features of a systolic array
and warfront computers.

16. Describe the basic working principles of data-flow architecture.

