
1 Introduction

The method. This book introduces a systems engineering method which
guides the development of software and embedded hardware–software systems
seamlessly from requirements capture to their implementation. It helps the
designer to cope with the three stumbling-blocks of building modern software
based systems: size, complexity and trustworthiness. The method bridges the
gap between the human understanding and formulation of real-world prob-
lems and the deployment of their algorithmic solutions by code-executing ma-
chines on changing platforms. It covers within a single conceptual framework
both design and analysis, for procedural single-agent and for asynchronous
multiple-agent distributed systems. The means of analysis comprise as meth-
ods to support and justify the reliability of software both verification, by
reasoning techniques, and experimental validation, through simulation and
testing.

The method improves current industrial practice in two directions:

– On the one hand by accurate high-level modeling at the level of abstrac-
tion determined by the application domain. This raises the level of abstrac-
tion in requirements engineering and improves upon the loose character of
human-centric UML descriptions.

– On the other hand by linking the descriptions at the successive stages of the
system development cycle in an organic and effectively maintainable chain
of rigorous and coherent system models at stepwise refined abstraction
levels. This fills a widely felt gap in UML-based techniques.

Contrary to UML, the method has a simple scientific foundation, which adds
precision to the method’s practicality. Within the uniform conceptual frame-
work offered by the method one can consistently relate standard notions,
techniques and notations currently in use to express specific system features
or views, each focussed on a particular system aspect, such as its structure,
environment, time model, dynamics, deployment, etc. (see Sect. 7.1). Thereby
the method supports a rigorous integration of common design, analysis and
documentation techniques for model reuse (by instantiating or modifying the
abstractions), validation (by simulation and high-level testing), verification
(by human or machine-supported reasoning), implementation and mainte-
nance (by structured documentation). This improves upon the loose ties



2 1 Introduction

between different system design concepts as they are offered by the UML
framework.

Target audience. This book combines the features of a handbook and
of a textbook and thus is addressed to hardware–software system engi-
neers (architects, designers, program managers and implementers) and re-
searchers as well as to students. As a handbook it is conceived as a Mod-
eling Handbook for the Working Software Engineer who needs a practical
high-precision design instrument for his daily work, and as a Compendium
for Abstract State Machines (ASMs). As a textbook it supports both self-
study (providing numerous exercises) and teaching (coming with detailed
lecture slides in ppt and/or pdf format on the accompanying CD and website
http://www.di.unipi.it/AsmBook/). We expect the reader to have some
experience in design or programming of algorithms or systems and some ele-
mentary knowledge of basic notions of discrete mathematics, e.g. as taught in
introductory computer science courses. Although we have made an effort to
proceed from simple examples in the earlier chapters to more complex ones
in the later chapters, all chapters can be read independently of each other
and unless otherwise stated presuppose only an understanding of a rather
intuitive form of abstract pseudo-code, which is rigorously defined as ASM
in Sect. 2.2.2. We have written the text to enable readers who are more in-
terested in the modeling and less in the verification aspects to skip the proof
sections.1 The hurried reader may skip the numerous footnotes where we re-
fer to interesting side issues or to related arguments and approaches in the
literature.

There is another book through which the reader can learn the ASM
method explained in this book, namely [406], which contains the up-to-now
most comprehensive non-proprietary real-life ASM case study, covering in
every detail ground modeling, refinement, structuring, implementation, veri-
fication and validation of ASMs. The focus of that book however is an anal-
ysis of Java and its implementation on the Java Virtual Machine (including
a detailed definition and analysis of a compiler and a bytecode verifier), as
a consequence it uses only basic and turbo ASMs (see Sect. 2.2, 4.1). The
present book is an introduction to practical applications of the ASM method
via small or medium-size yet characteristic examples from various domains:
programming languages, architectures, embedded systems, components, pro-
tocols, business processes. It covers also real-time and asynchronous ASMs.
In addition it provides the historical and the theoretical background of the
method. We hope this book stimulates further technological and research de-
velopments, ranging from industrial applications to theoretical achievements.
1 Mentioning this possibility does not mean that we consider system verification as

an optional. It reflects the support the method presented in this book provides to
systematically separate different concerns within a well-defined single framework
so that one can ultimately tie the different threads together to achieve a design
which via its analysis is certifiable as trusted (see Sect. 2.1).



1.1 Goals of the Book and Contours of its Method 3

In various places we state some problems whose solution we expect to con-
tribute to the further advancement of the ASM method. They are collected
in a list at the end of the book.

In the rest of this introduction we state in more detail the practical and
theoretical goals of the book and survey its technical contents.

1.1 Goals of the Book and Contours of its Method

Through this book we want to introduce the reader into a hierarchical mod-
eling technique which

– makes accurate virtual machine models amenable to mathematical and
experimental analysis,

– links requirements capture to detailed design and coding,
– provides on the fly a documentation which can be used for inspection, reuse

and maintenance.

The open secret of the method is to use abstraction and stepwise refine-
ment, which often are erroneously understood as intrinsically “declarative”
or syntax-based concepts, on a semantical basis and to combine them with
the operational nature of machines. Such a combination (Sect. 1.1.1) can be
obtained by exploiting the notion of Abstract State Machines (Sect. 1.1.2) –
which gave the name to the method – and results in considerable practical
benefits for building trustworthy systems (Sect. 1.1.3). We also shortly de-
scribe here what is new in the ASM method with respect to the established
method of stepwise refining pseudo-code (Sect. 1.1.4) and what it adds to
UML based techniques (Sect. 1.1.5).

1.1.1 Stepwise Refinable Abstract Operational Modeling

The hardware and software system engineering method that this book intro-
duces is based upon semantical abstraction and structuring concepts which
resolve the tension deriving from the simultaneous need for heterogeneity,
to capture the richness and diversity of application domain concepts and
methods, and for unification, to guarantee a consistent seamless development
throughout. In fact it allows one to efficiently relate the two distant ends of
each complex system development effort, namely the initial problem descrip-
tion for humans and the code running on machines to solve the problem.
More precisely, using this method the system engineer can

– derive from the application-domain-governed understanding of a given
problem, gained through requirements analysis, a correct and complete
human-centric task formulation, called the ground model , which is the re-
sult of the requirements capture process, is expressed in application-domain



4 1 Introduction

terms, is easy to understand and to modify, and constitutes a binding con-
tract between the application domain expert (in short: the customer) and
the system designer,2

– refine the ground model by more detailed descriptions which result from
the relevant design decisions, taken on the way to the executable code
and documented by the intermediate models which typically constitute a
hierarchy of refined models,

– link the most detailed specification to generated code, to be run on various
platforms and implementing computers and to be shown to correctly solve
the problem as formulated in the ground model (the contract with the
customer).

The conceptual key for crossing these rather different and for complex
software systems numerous levels of abstraction is to maintain, all the way
from the ground model to the code, a uniform algorithmic view, based upon
an abstract notion of run, whether of agents reacting to events or of a vir-
tual machine executing sequences of abstract commands. Having to deal in
general with sets of “local actions” of multiple agents, an encompassing con-
cept of basic “actions” is defined as taking place in well-defined abstract
local states (which may depend on environmently determined items) and
producing well-defined next states (including updates of items in the envi-
ronment). We interpret simultaneous basic local actions as a generalized form
of Dijkstra’s guarded commands [185]: under explicitly stated conditions they
perform updates of finitely many “locations”, which play the role of abstract
containers for values from given domains of objects, considered at whatever
given level of abstraction. Those objects residing in locations, together with
the functions and relations defined on them, determine the abstract states
the computation is about.3 The simple and intuitive mathematical form we
adopt to represent this idea of transformations of abstract states for the sys-
tem engineering method explained in this book is the notion of Abstract State
Machines (ASM).4

2 This does not preclude evolution of the ground model during the development
process. Ground models need to be developed “for change”, but at each de-
velopment stage one version of a well-defined ground model is maintained; see
below.

3 Object-oriented methods in general and UML in particular share this first-order
logic “view of the world” as made up of “things” (“abstractions that are first-
class citizens in a model” [69]) and their “relationships”.

4 The idea of using “abstract” state transformations for specification purposes is
not new. It underlies the event driven version of the B method [5, 6] with its char-
acteristic separation of individual assignments from their scheduling. It underlies
numerous state machine based specification languages like the language of stat-
echarts [271] or Lampson’s SPEC [316], which besides parallelism (in the case of
SPEC including the use of quantifiers in expressions) and non-determinism offer
constructs for non-atomic (sequential or submachine) execution, see Chap. 4. It
underlies the wide-spectrum high-level design language COLD (see Sect. 7.1.2).
It also underlies rule-based programming, often characterized as repeated local-



1.1 Goals of the Book and Contours of its Method 5

1.1.2 Abstract Virtual Machine Notation

This book explains the three constituents of the ASM method : the notion of
ASM, the ground model technique and the refinement principle. The concept
of ASMs (read: pseudo-code or Virtual Machine programs working on ab-
stract data as defined in Sects. 2.2, 2.4) offers what for short we call freedom
of abstraction, namely the unconstrained possibility of expressing appropriate
abstractions directly, without any encoding detour, to

– build ground models satisfying the two parties involved in the system con-
tract, tailoring each model to the needs of the problem as determined by
the particular application, which may belong to any of a great variety of
conceptually different domains (see Sect. 2.1.1), and keeping the models
simple, small and flexible (easily adaptable to changing requirements),

– allow the designer to keep control of the design process by appropriate
refinement steps which are fine-tuned to the implementation ideas (see
Sect. 2.1.2).

Most importantly ASMs support the practitioner in exploiting their power
of abstraction in terms of an operational system view which faithfully reflects
the natural intuition of system behavior,5 at the desired level of detail and
with the necessary degree of exactitude. The underlying simple mathemati-
cal model of both synchronous and asynchronous computation allows one to
view a system as a set of cooperating idealized mathematical machines which
step by step – where the chosen level of abstraction determines the power of
a step – perform local transformations of abstract global states. Essentially
each single machine (driven by an agent, also called a thread) can be viewed
as executing pseudo-code on arbitrary data structures, coming with a clear
notion of state and state transition. This empowers the designer to work at
every level of development with an accurate yet transparent concept of sys-
tem runs for modeling the dynamic system behavior, whether the execution
is done mentally (for the sake of high-level analysis) or by real machines (for
the sake of high-level testing of scenarios). The availability of the concept of
a run at each level of abstraction provides the possibility of also modeling
non-functional features, like performance or reliability, or run time inspection
of metadata associated with components as offered by CORBA and COM.
Due to the mathematical nature of the concepts involved, established struc-
turing, validation and verification techniques can be applied to ASM models,
supporting architectural structuring principles and providing platform and

ized transformations of shared data objects (like terms, trees, graphs), where
the transformations are described by rules which separate the description of the
objects from the calculations performed on them and on whose execution various
constraints and strategies may be imposed.

5 See the observation in [399, Sect. 2.4] that even the knowledge base of experts
has an operational character and guarded command form: “in this situation do
that”, which is also the form of the ASM transition rules defined in Sect. 2.2.2.



6 1 Introduction

programming language-independent executable models which are focussed
on the application-domain-relevant problem aspects and lend themselves to
reuse in a design-for-change context.

1.1.3 Practical Benefits

The need to improve current industrial software engineering practice is widely
felt. To mention only a few striking examples: too many software projects fail
and are canceled before completion or are not delivered on time or exceed
their budget,6 the energy spent on testing code is ever increasing and tends to
represent more than half of the entire development cost, the number of errors
found in complex software is often rather high, there is almost no software
warranty whatsoever, but again and again the world is surprised by Trojan
horses and security holes, etc.

The major benefit the ASM method offers to practitioners for their daily
work is that it provides a simple precise framework to communicate and
document design ideas and a support for an accurate and checkable overall
understanding of complex systems. Using a precise, process-oriented, intuitive
semantics for pseudo-code on arbitrary data structures, the developer can
bind together the appropriate levels of abstraction throughout the entire
design and analysis effort. This implies various concrete benefits we are going
to shortly mention now.

First of all the ASM method supports quality from the beginning using hi-
erarchical modeling, based on ground modeling and stepwise refinement cou-
pled to analysis. The method establishes a discipline of development which
allows structuring (into appropriate abstractions), verification and validation
to become criteria for good design and good documentation.7 By its concep-
tual simplicity and the ease of its use, the ASM method makes the quality of
the models depend only on the expertise in the application or design domain
and on the problem understanding, not on the ASM notation. This is the
reason why we expect to contribute with this book to making the method
become part of every development activity which aims at ensuring that the
produced model has the desired properties (e.g. to satisfy the needs of the
future users), instead of waiting until the end of the development process to
let another team (or the users) remove bugs in the code.8

6 Some figures from the Standish Group 1998: 9% out of the 175 000 surveyed
software projects are delivered on time and under budget, 52% go over budget
by an average of 18%, 31% are canceled before completion.

7 A quote from the recommendations of the UK Defense Standard 00–54, 1999
(Requirements for Safety-Related Electronic Hardware in Defense Equipment):
“A formally-defined language which supports mathematically-based reasoning
and the proof of safety properties shall be used to specify a custom design.” See
http://www.dstan.mod.uk/data/00/054/02000100.pdf.

8 We believe it to be mistaken to relegate the specification and verification work,
if done at all, to separate so-called “formal methods” teams. The work of such



1.1 Goals of the Book and Contours of its Method 7

The freedom ASMs offer to model arbitrarily complex objects and oper-
ations directly, abstracting away from inessential details (e.g. of encoding of
data or control structures), allows one to isolate the hard part of a system and
to turn it into a precise model which exposes the difficulties of the system but
is simple enough to be understood and satisfactorily analyzed by humans.

As a by-product such core models and their refinements yield valuable
system documentation: (a) for the customers, allowing them to check the
fulfillment of the software contract by following the justification of the de-
sign correctness, provided in the form of verified properties or of validated
behavior (testing for missing cases, for unexpected situations, for the inter-
action of to-be-developed components within a given environment, etc.), (b)
for the designers, allowing them to explore the design space by experiments
with alternative models and to record the design rationale and structure for
a checkable communication of design ideas to peers and for later reuse (when
the requirements are changed or extended, but the design diagrams on the
whiteboard are already erased or the developers are gone),9 (c) for the users,
allowing them to get a general understanding of what the system does, which
supports an effective system operator training and is sufficiently exact to pre-
vent as much as possible a faulty system use,10 and (d) for the maintainers,
allowing them to analyse faulty run-time behavior in the abstract model.

Despite the abstract character of ASM models, which characterizes them
as specifications, they can and have been refined to machine executable ver-
sions in various natural ways (see Sect. 8.3). Due to their abstract character
they support generic programming, hardware–software co-design as well as
portability of code between platforms and programming languages – the ma-
jor goal of the “model driven architecture” approach to software development.
ASM models are in particular compatible with cross-language interoperable
implementations as in .NET. Since they are tunable to the desired level of
abstraction, they support information hiding for the management of software
development and the formulation of well-defined interfaces for component–
based system development. The general refinement notion supports a method
of stepwise development with traceable links between different system views

teams may contribute to a better high-level understanding of the system under
development, but if the program managers and the implementers do not under-
stand the resulting formalizations, this does not solve the fundamental problem
of keeping the models at the different abstraction levels in sync with the final
code – the only way to make sure the code does what the customer expects from
the agreed upon ground model. The ASM method is not a formal method in the
narrow understanding of the term, but supports any form of rigorous design jus-
tification. This includes in particular mathematical proofs, which represent the
most successful justification technique our civilization has developed for mental
constructions – the type of device to which models and programs belong. See
the footnote to the “language and communication problem” at the beginning of
Sect. 2.1.1.

9 In this way a design does not remain only in the head of its creator and can play
a role in later phases of the software life cycle.



8 1 Introduction

and levels. In particular this allows one to localize the appropriate design
level where changing requirements can be taken into account and where one
can check that the design change is not in conflict with other already realized
system features.

1.1.4 Harness Pseudo-Code by Abstraction and Refinement

As is well-known, pseudo-code and the abstraction-refinement pair are by no
means new in computer science, often they are even looked at with scepticism
– by theoreticians who complain about the lack of an accurate semantics for
pseudo-code, by practitioners who complain about the difficulty of under-
standing the mathematics behind formalisms like abstract data types, alge-
braic specifications, formal methods refinement schemes, etc. So what value
does the ASM method add to these omnipresent ideas and how does it avoid
the difficulty to apply them in practical software engineering tasks?

The ASM method makes the computational meaning of abstraction and
refinement available explicitly, in a mathematically precise but simple, easily
understandable and easily implementable pseudo-code-like setting, including
the crucial notion of runs. The formulation uses only standard mathemati-
cal and algorithmic terms, circumventing the unnecessary formalistic logico-
algebraic complications that practitioners so often rightly complain about, so
that the method comes as a set of familiar intuitive concepts which naturally
support the practitioners’ daily development work. To read and write ASMs
no knowledge of the underlying theory is needed, though it is the mathe-
matical underpinning which makes the method work. This is analogous to
the role of axiomatic set theory, which provides the precise setting in which
mathematicians work without knowing about the logical foundation.

Looking back into the history of computing reveals that the ingredients
of the concept of the Abstract State Machine were there for decades before
they appeared combined in the definition discovered in [248], triggered by a
purely foundational concern:11 (a) pseudo-code, (b) IBM’s concept of virtual
machines [305] and Dijkstra’s related concept of abstract machines [183] (both
born as operating system abstractions), and (c) Tarski structures as the most
general concept of abstract states [325, 265, 359, 210]. It is the mathemati-
cal character one can attach through the notion of ASM to the semantically
open-ended loose notions of pseudo-code and virtual machines which turns
these concepts into elements of a scientifically well-founded method; it is the
natural expression of fundamental intuitions of computing through ASMs and
the simplicity of their definition which make the ASM method comprehen-
sible for the practitioner and feasible for large-scale industrial applications.
10 An important example of an erroneous use of a system whose control is shared

by humans and computers, e.g. in modern aircrafts, is known as mode confusion.
See [322] and the notion of control state ASM in Sect. 2.2.6, which provides a
way to make the overall mode structure of a system transparent.

11 See Chap. 9 for details.



1.1 Goals of the Book and Contours of its Method 9

The ASM method does nothing else than putting the elementary definition
of local updates of abstract states together with Wirth’s original stepwise
refinement approach [429] and with the concept of ground model [71, 72, 76]
to link requirements capture to code generation in a coherent framework.
Historically speaking the ASM method “complete(s) the longstanding struc-
tural programming endeavour (see [164]) by lifting it from particular ma-
chine or programming notation to truly abstract programming on arbitrary
structures” [86, Sect. 3.1]. It also appears as a natural completion of the
evolution during the last century from programming to generic programming
and high-level platform-independent modeling: leading from programming-
any-which-way in the 1950s to programming-in-the-small in the 1960s to
programming-in-the-large in the 1970s to programming-in-the-world since
the 1990s12 where, due to the evergrowing hardware performance, security,
robustness and reusability play a larger role than time or space efficiency.

1.1.5 Adding Abstraction and Rigor to UML Models

UML exercises a strong attraction by the multitude it offers for radically
different interpretations of crucial semantical issues. On the tool side this is
reflected by the numerous “UML+. . .-systems”, e.g. UML+RUP, UML+XP,
UML+IBM Global Services Method, etc. However, this conceptual multitude
is not mediated (except for being simply declared to constitute so-called “se-
mantical variation points”), in addition it is represented by a limited graphi-
cal notation and prevents UML from supporting precise practical refinement
schemes (see Sect. 2.1.2, 3.2). Furthermore, the drive in UML to structure
models right from the beginning at the class level imposes a rather low level
of abstraction, typically close to procedural code, besides leading to the risk
of a conceptual explosion of the class hierarchy. It also makes it difficult to
model features which relate to multiple classes and which are often spread
in the class hierarchy (e.g. safety, security, logging), or to describe crosscut-
ting concerns relating to one feature at different class levels. Furthermore, it
has no clear semantical model of “atomic” versus “durative” actions and of
asynchronous computation of multiple threads.

The ASM method we explain in this book provides a means to han-
dle such architectural features in an accurate yet transparent way and at a
higher level of abstraction than UML, providing support for a truly human
centric yet precise algorithmic design and analysis, which is completely freed
from the shackles of programming language constructs and of specific typing
disciplines. For example, it provides a simple accurate semantics for stan-
dard diagram techniques (see the notion of control state ASMs in Sect. 2.2.6
and the ASM definition of UML activity diagrams in Sect. 6.5.1) and for use
cases and their refinements to rigorous behavioral models (see Chap. 3), it
12 The wording is taken from Garlan’s lectures on Software Architecture held at

the Lipari Summer School on Software Engineering, July 2002.



10 1 Introduction

supports component techniques (see Sect. 3.1.2 and [406]), it uniformly re-
lates sequential and asynchronous computations capturing the data exchange
of interacting objects (see Sect. 6), it provides a clear definition of “atomic”
and “composed” computation step (see Chap. 4), etc. To realize further de-
sign steps, high-level ASM models can be refined by object-oriented mappings
to classes, by introducing type disciplines where useful, by restricting runs
when needed to satisfy specific scheduling principles, etc.

1.2 Synopsis of the Book

This book was conceived to serve the double purpose of (a) a modeling hand-
book and textbook, teaching how to practically apply the ASM method for
industrial system design and analysis (including its management and its doc-
umentation), and of (b) an ASM compendium, providing the underlying the-
ory and a detailed account of ASM research. The domains of application
cover sequential systems (e.g. programming languages and their implemen-
tation), synchronous parallel systems (e.g. general and special-purpose ar-
chitectures), asynchronous distributed systems and real-time systems (net-
work and communication and database protocols, control systems, embedded
systems). This also determines the structure of the book, which leads from
the definition of basic single-agent ASMs in Chap. 2 with an illustration
of the principles of hierarchical system design by ground model construc-
tion and stepwise refinements in Chap. 3 to structured ASMs in Chap. 4,
synchronous multi-agent ASMs in Chap. 5, and asynchronous multi-agent
ASMs in Chap. 6. This is followed by Chap. 7 on the universality of ASMs,
Chap. 8 on ASM tool support (on computer-supported verification of ASMs
and on ASM execution and validation techniques). It concludes with Chap. 9,
which surveys the ASM research, together with its applications and industrial
exploitations, from its beginning to today and comes with an, as we hope,
complete annotated bibliography of ASM related papers from 1984–2002.

A detailed index (including also the major ASMs defined in this book) and
lists of figures and tables aid navigation through the text. The use of the book
for teaching is supported by numerous exercises, most of them coming with
solutions on the accompanying CD, and by pdf and powerpoint format slides
on the CD, covering most of the chapters or sections of the book. Additional
material (including lecture slides) and corrections are solicited and will be
made available on the ASM book web site at http://www.di.unipi.it/
AsmBook/. This includes the set of LATEX macros we have used to write the
ASMs in this book. They come with a tutorial explaining to the reader how
to write his own ASMs in a strikingly simple and elegant way using this set
of macros, which by its very nature can be extended and tailored to specific
needs.
Central themes of the chapters. In Chap. 2 we introduce the three con-
stituents of the ASM approach to system design and analysis: the concept of



1.2 Synopsis of the Book 11

abstract state machines, the ground model method for requirements capture,
and the refinement method for turning ground models by incremental steps
into executable code. The notion of basic ASMs is defined which captures
the fundamental concept of “pseudo-code over abstract data”, supporting its
intuitive understanding by a precise semantics defined in terms of abstract
state and state transition. Finite State Machines (FSMs) are extended by
control state ASMs.

In Chap. 3 we illustrate the ground model method for reliable requirements
capture (formulating six fundamental categories of guideline questions) and
the refinement method for crossing levels of abstraction to link the models
through well-documented incremental development steps. The examples are
control state ASMs for some simple devices (ATM, Password Change, Tele-
phone Exchange), a command-line debugger control model, a database recov-
ery algorithm, a shortest path algorithm and a proven-to-be-correct pipelined
microprocessor model. Sect. 3.2.3 presents Schellhorn’s scheme for modular-
izing and implementing ASM refinement correctness proofs.

In Chap. 4 some standard refinements for structuring ASMs are defined
and their applications illustrated. The building blocks of turbo ASMs are
sequential composition, iteration, parameterized (possibly recursive) subma-
chines; they permit us to integrate common syntactical forms of encapsulation
and state hiding, like the notion of a local state and a mechanism for returning
values and error handling. We characterize turbo ASM subcomputations as
SEQ/PAR-tree computations. Abstract State Processes realize the above con-
structs in a white-box view where interleaving permits us within a context of
parallel execution to also follow the single steps of a component computation.
As an illustration we provide succinct turbo ASMs for standard programming
constructs, including the celebrated Structured Programming Theorem and
forms of recursion which are common in functional programming.

In Chap. 5 multi-agent synchronous ASMs are defined which support
modularity for the design of large systems. They are illustrated by sync
ASMs for solving a typical industrial plant control problem (Production Cell)
and the Generalized Railroad Crossing problem (verified real-time gate con-
troller).

In Chap. 6 asynchronous multi-agent ASMs (async ASMs) are defined and
illustrated by modeling and analyzing characteristic distributed network al-
gorithms (for consensus, master–slave agreement, leader election, phase syn-
chronization, load balance, broadcast acknowledgement), a position-based
routing protocol for mobile ad hoc networks, a requirements capture case
study for a small embedded (Light Control) system, two time-constrained al-
gorithms which support fault tolerance for a distributed service (Kermit and
a Group Membership protocol), Lamport’s mutual exclusion algorithm Bak-
ery with atomic or with durative actions, and the event-driven UML activity
diagrams.



12 1 Introduction

In the foundational Chap. 7 we investigate the universality properties of
ASMs. We show that ASMs capture the principal models of computation
and specification in the literature, including the principal UML concepts. We
explain the ASM thesis, which extends Church’s and Turing’s thesis, and
prove its sequential version from a small number of postulates.

Chapter 8 is dedicated to tool support for ASMs. In Sect. 8.1 we deal
with techniques for mechanically verifying ASM properties, using theorem
proving systems or model checkers. We present a logic tailored for ASMs
and the transformation from ASMs to FSMs which is needed for model-
checking ASMs. In Sect. 8.3 we survey various methods and tools which have
been developed for executing ASMs for simulation and testing purposes. The
history of these developments is presented in Sect. 9.4.3, which is part of
Chap. 9, where we survey the rich ASM literature and the salient steps of
the development of the ASM method from the epistemological origins of the
notion of ASM.




