Quantenmechanik für Fortgeschrittene (QM II)

Mit 79 Abbildungen, 4 Tabellen und 101 Aufgaben

Professor Dr. Franz Schwabl

Institut für Theoretische Physik Technische Universität München James-Franck-Strasse 85747 Garching e-mail: schwabl@physik.tu-muenchen.de

Die Deutsche Bibliothek – CIP-Einheitsaufnahme Schwabl, Franz: Quantenmechanik für Fortgeschrittene: QM II / Franz Schwabl. – Berlin; Heidelberg; New York; Barcelona; Budapest; Hongkong; London; Mailand; Paris; Santa Clara; Singapur; Tokio: Springer, 1997 (Springer-Lehrbuch) ISBN 3-540-63382-0

ISBN 3-540-63382-0 Springer-Verlag Berlin Heidelberg New York

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, ins besondere die der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenwerarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfäll nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland vom 9. September 1965 in der jeweils geltenden Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtsgesetzes.

© Springer-Verlag Berlin Heidelberg 1997 Printed in Germany

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme,daß solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Satz: Reproduktionsfertige Vorlage vom Autor Einbandgestaltung: design & production GmbH, Heidelberg

SPIN: 10639186 56/3144 - 5 4 3 2 1 0 – Gedruckt auf säurefreiem Papier

Inhaltsverzeichnis

Tei	Teil I. Nichtrelativistische Vielteilchen-Systeme						
1.	Zwe	eite Qı	uantisierung	3			
	1.1	Identi	sche Teilchen, Mehrteilchenzustände und Permutations-				
		symm	etrie	3			
		1.1.1	Zustände und Observable von identischen Teilchen	3			
		1.1.2	Beispiele	6			
	1.2	Vollko	ommen symmetrische und antisymmetrische Zustände	8			
	1.3	Boson	ien	10			
		1.3.1	Zustände, Fock-Raum, Erzeugungs- und				
			Vernichtungsoperatoren	10			
		1.3.2	Teilchenzahloperator	13			
		1.3.3	Allgemeine Einteilchen- und Mehrteilchenoperatoren .	14			
	1.4	Fermi	onen	17			
		1.4.1	Zustände, Fock-Raum und Erzeugungs- und				
			Vernichtungsoperatoren	17			
		1.4.2	Ein- und Mehrteilchenoperatoren	19			
	1.5	Feldor	peratoren	21			
		1.5.1	Transformationen zwischen verschiedenen Basissystemen	21			
		1.5.2	Feldoperatoren	21			
		1.5.3	Feldgleichungen	23			
	1.6	Impul	sdarstellung	25			
		1.6.1	Impulseigenfunktionen, Hamilton-Operator	25			
		1.6.2	Fouriertransformation der Dichte	27			
		1.6.3	Berücksichtigung des Spins	28			
	Aufg	gaben .		29			
2.	Spin	n-1/2	Fermionen	33			
	2.1	Nichty	wechselwirkende Fermionen	33			
		2.1.1	Fermi-Kugel, Anregungen	33			
		2.1.2	Einteilchenkorrelationsfunktion	35			
		2.1.3	Paarverteilungsfunktion	36			
		2.1.4	Paarverteilungsfunktion, Dichtekorrelationsfunktionen				
			und Strukturfektor	30			

X Inhaltsverzeichnis

	2.2	Grundzustandsenergie und elementare Theorie des	
		O	41
		r - r - r - r - r - r - r - r - r - r -	41
		0	43
		2.2.3 Änderung der elektronischen Energieniveaus durch die	
		· ·	46
	2.3	0	49
	Auf	gaben	52
3.	Bos	sonen	55
	3.1	Freie Bosonen	55
		3.1.1 Paarverteilungsfunktion für freie Bosonen	55
		*3.1.2 Zweiteilchenzustände von Bosonen	57
	3.2	Schwach wechselwirkendes, verdünntes Bose-Gas	60
			60
		3.2.2 Bogoliubov-Theorie des schwach wechselwirkenden	
		Bose-Gases	62
			69
	Auf	${\rm gaben} \ldots {\rm '}$	72
4.		, 6	77
	4.1	O I	77
	4.2	,	84
	4.3	v i	88
	4.4	1	91
	4.5	1	92
	4.6	1	93
	4.7	0 1	94
	*4.8	Symmetrieeigenschaften	
		4.8.1 Allgemeine Symmetrierelationen	01
		4.8.2 Symmetrieeigenschaften der Responsefunktion für	
		hermitesche Operatoren	
	4.9	Summenregeln	
		4.9.1 Allgemeine Struktur von Summenregeln	
		4.9.2 Anwendung auf die Anregungen in He II	
	Auf	gaben	11
T.;4	torati	ur zu Toil I	12

Teil	II.	Relativistische	e Wellengleichungen

5 .	Au	fstellung von relativistischen Wellengleichungen 117
	5.1	Einleitung
	5.2	Klein-Gordon-Gleichung
		5.2.1 Aufstellung mittels des Korrespondenzprinzips 118
		5.2.2 Kontinuitätsgleichung
		5.2.3 Freie Lösungen der Klein-Gordon-Gleichung 122
	5.3	Dirac-Gleichung
		5.3.1 Aufstellung der Dirac-Gleichung
		5.3.2 Kontinuitätsgleichung
		5.3.3 Eigenschaften der Dirac-Matrizen 125
		5.3.4 Die Dirac-Gleichung in kovarianter Form 126
		5.3.5 Nichtrelativistischer Grenzfall und Kopplung
		an das elektromagnetische Feld
	Auf	gaben
_	_	
6.		entz-Transformationen und Kovarianz
		Dirac-Gleichung
	6.1	Lorentz-Transformationen
	6.2	Lorentz-Kovarianz der Dirac-Gleichung
		6.2.1 Die Lorentz-Kovarianz und Transformation von
		Spinoren
		6.2.2 Bestimmung der Darstellung $S(\Lambda)$
		6.2.3 Weitere Eigenschaften der S
		6.2.4 Transformation von Bilinearformen
		6.2.5 Eigenschaften der γ -Matrizen
	6.3	Lösungen der Dirac-Gleichung für freie Teilchen
		6.3.1 Spinoren mit endlichem Impuls
		6.3.2 Orthogonalitätsrelationen und Dichte
		6.3.3 Projektionsoperatoren
	Auf	gaben
7.	Dro	ehimpuls – Bahndrehimpuls und Spin
••	7.1	Passive und aktive Transformationen
	7.2	Drehungen und Drehimpuls
	•	gaben
8.		wegung im Coulomb-Potential
	8.1	Klein-Gordon-Gleichung mit elektromagnetischem Feld 165
		8.1.1 Ankopplung an das elektromagnetische Feld 165
		8.1.2 Klein-Gordon-Gleichung im Coulomb-Feld 166
	8.2	Dirac-Gleichung für das Coulomb-Potential 172
	Auf	gaben

9.		ktronen im elektromagnetischen Feld:	~ ~
		nerungsmethoden	
	9.1	Die Foldy-Wouthuysen-Transformation	
		9.1.1 Problemstellung	
		9.1.2 Transformation für freie Teilchen	
		9.1.3 Wechselwirkung mit elektromagnetischem Feld 1	
	9.2	Relativistische Korrekturen und Lamb-Verschiebung 1	
		9.2.1 Relativistische Korrekturen	
		9.2.2 Abschätzung der Lamb-Verschiebung	
	Aufg	gaben	.98
10.		sikalische Interpretation der Lösungen der	
		ac-Gleichung 2	
	10.1	Wellenpakete und Zitterbewegung	
		10.1.1 Superposition von Zuständen positiver Energie 2	
		10.1.2 Allgemeines Wellenpaket	203
	:	*10.1.3 Allgemeine Lösung der freien Dirac-Gleichung	
		im Heisenberg-Bild	207
	:	*10.1.4 Klein-Paradoxon, Potentialschwelle	208
	10.2	Löcher–Theorie	211
	Aufg	gaben	13
11.	Syn	nmetrien und weitere Eigenschaften	
	$\operatorname{\mathbf{der}}$	Dirac-Gleichung	215
*	*11.1	Aktive und passive Transformationen, Transformation von	
		Vektoren	215
	11.2	Invarianz und Erhaltungssätze	218
		11.2.1 Allgemeine Transformation	218
		11.2.2 Drehungen	219
		11.2.3 Translationen	219
		11.2.4 Raumspiegelung (Paritätstransformation) 2	220
	11.3	Ladungskonjugation	220
	11.4	Zeitumkehr (Bewegungsumkehr)	224
		11.4.1 Bewegungsumkehr in der klassischen Physik 2	
		11.4.2 Zeitumkehr in der Quantenmechanik	
		11.4.3 Zeitumkehrinvarianz der Dirac-Gleichung 2	
	:	*11.4.4 Racah-Zeitspiegelung	
*		Helizität	
		Fermionen mit Masse Null (Neutrinos)	
		gaben	
Lite	eratu	ır zu Teil II	253

Tail	TTT	Ral	atir	ricti	scha	Felder
теп	111.	ne	aur	V 15 L L	scne	reider

12.	Quantisierung von relativistischen Feldern	257
	12.1 Gekoppelte Oszillatoren, lineare Kette, Gitterschwingungen	257
	12.1.1 Lineare Kette von gekoppelten Oszillatoren	257
	12.1.2 Kontinuumsgrenzfall, schwingende Saite	263
	12.1.3 Verallgemeinerung auf drei Dimensionen, Zusammen-	
	hang mit dem Klein-Gordon-Feld	266
	12.2 Klassische Feldtheorie	269
	12.2.1 Lagrange–Funktion und Euler–Lagrange Bewegungs-	oeo
	gleichungen	
	12.3 Kanonische Quantisierung	
	12.4 Symmetrien und Erhaltungssätze, Noether Theorem	215
	12.4.1 Energie-Impuls-Tensor, Kontinuitätsgleichungen und	075
	Erhaltungssätze	215
	impuls und Ladung aus dem Noetherschen Theorem	277
	Aufgaben	
	Auigaben	200
13.	Freie Felder	285
	13.1 Das reelle Klein-Gordon-Feld	
	13.1.1 Lagrange-Dichte, Vertauschungsrelationen, Hamilton-	
	Operator	285
	13.1.2 Propagatoren	289
	13.2 Das komplexe Klein-Gordon-Feld	293
	13.3 Quantisierung des Dirac-Feldes	296
	13.3.1 Feldgleichungen	296
	13.3.2 Erhaltungsgrößen	297
	13.3.3 Quantisierung	298
	13.3.4 Ladung	302
	*13.3.5 Grenzfall unendlichen Volumens	
	13.4 Spin–Statistik–Theorem	
	13.4.1 Propagatoren und Spin-Statistik-Theorem	304
	13.4.2 Ergänzungen zum Antikommutator und Propagator	
	des Dirac–Feldes	
	Aufgaben	311
14.	Quantisierung des Strahlungsfeldes	315
	14.1 Klassische Elektrodynamik	315
	14.1.1 Maxwell–Gleichungen	
	14.1.2 Eichtransformationen	317
	14.2 Coulomb–Eichung	
	14.3 Lagrange–Dichte für das elektromagnetische Feld	
	14.4 Freies elektromagnetisches Feld und dessen Quantisierung \dots	320

14.5 Berechnung des Photon–Propagators	
Aufgaben	. 328
15. Wechselwirkende Felder, Quantenelektrodynamik	. 329
15.1 Lagrange-Funktionen, wechselwirkende Felder	. 329
15.1.1 Nichtlineare Lagrange-Funktionen	. 329
15.1.2 Fermionen in einem äußeren Feld	
15.1.3 Wechselwirkung von Elektronen mit dem Strahlungs-	
feld: Quantenelektrodynamik (QED)	. 330
15.2 Wechselwirkungsdarstellung, Störungstheorie	
15.2.1 Wechselwirkungsdarstellung (auch Dirac-Darstellung)	
15.2.2 Störungstheorie	
15.3 S-Matrix	
15.3.1 Allgemeine Formulierung	
15.3.2 Einfache Übergänge	
*15.4 Wicksches Theorem	
15.5 Einfache Streuprozesse, Feynman-Diagramme	. 348
15.5.1 Der Term erster Ordnung	
15.5.2 Mott-Streuung	
15.5.3 Prozesse zweiter Ordnung	. 355
15.5.4 Feynman-Regeln der Quantenelektrodynamik	. 365
*15.6 Strahlungskorrekturen	. 368
15.6.1 Selbstenergie des Elektrons	. 368
15.6.2 Selbstenergie des Photons, Vakuumpolarisation	. 374
15.6.3 Vertexkorrekturen	. 376
15.6.4 Ward-Identität und Ladungsrenormierung	. 377
15.6.5 Anomales magnetisches Moment des Elektrons	. 380
Aufgaben	. 383
Literatur zu Teil III	. 385
Anhang	387
A Alternative Herleitung der Dirac-Gleichung	
B Formeln	
B.1 Standarddarstellung	
B.2 Chirale Darstellung	
B.3 Majorana-Darstellungen	
C Projektionsoperatoren für den Spin	
C.1 Definition	
C.2 Ruhsystem	
C.3 Bedeutung des Projektionsoperators $P(n)$ im allge-	. 550
meinen	391
D Wegintegraldarstellung der Quantenmechanik	
E Kovariante Quantisierung des elektromagnetischen Feldes,	. 555
Gupta-Bleuler-Methode	. 397

	E.1	Quantisierung und Feynman-Propagator 397
	E.2	Die physikalische Bedeutung von longitudinalen und
		skalaren Photonen
	E.3	Der Feynman-Photonen-Propagator
	E.4	Erhaltungsgrößen
\mathbf{F}	Die A	nkopplung von geladenen skalaren Mesonen an das elek-
	troma	agnetische Feld
Sachver	zeichr	nis