Contents

Cyclic Theory, Bivariant K-Theory and the Bivariant
Chern-Connes Character
Joachim Cuntz ... .. ... 1

Cyclic Homology
Boris Tsygan .. ... 73

Noncommutative Geometry, the Transverse Signature

Operator, and Hopf Algebras

[after A. Connes and H. Moscovici]

Georges Skandalis (translated by Raphaél Ponge and Nick Wright) ... .. 115



Cyclic Theory, Bivariant K-Theory
and the Bivariant Chern-Connes Character*

Joachim Cuntz

1 Introduction ....... .. .. .. .. . ...
2 Cyclic Theory .. ... e

2.1 Preliminaries ............ouiii
2.2 Cyclic homology via the cyclic bicomplex............. ... ... ...
2.3 Operators on differential forms . .......... ... .. ... ... ... ....
2.4  The periodic theory ......... ..
2.5 Cyclic homology via the X-complex ............. ... ... ......
2.6 Cyclic homology as non-commutative de Rham theory ...........
2.7 Homotopy invariance for cyclic theory......... ... .. ... ... ...
2.8 Morita Invariance ......... ... e
2.9 EXCISION. ..ot
2.10 Chern character for K-theory elements.........................

3  Cyclic Theory for locally convex algebras .................

3.1 General modifications . ......... ... . i
3.2 De Rham theory for differentiable manifolds ....................
3.3 Cyclic homology for Schatten ideals.............. ... ... ... ...
3.4 Cyclic cocycles associated with Fredholm modules ...............

4  Bivariant K-Theory ............ ..

4.1 Bivariant K-theory for locally convex algebras ..................
4.2 The bivariant Chern-Connes character .........................

5 Infinite-dimensional Cyclic Theories.......................

5.1 Entire cyclic cohomology .. ........ ... i
5.2 Local cyclic cohomology ...........oo i

* Research supported by the Deutsche Forschungsgemeinschaft



2 Joachim Cuntz

A Locally convex algebras .......... ... ... .. .. . .. ... 61
A.1 Algebras of differentiable functions ............... .. ... .. ...... 62
A.2 The smooth tensor algebra ........ ... . ... ... L. 62
A.3 The free product of two m-algebras ........................... 63
A.4 The algebra of smooth compact operators ...................... 64
A5 The Schatten ideals fP(H) . ... 65
A.6 The smooth Toeplitz algebra.......... ... ... ... ... o ..., 65
B Standard extensions............. ... .. .. .. ... 66
B.1 The suspension extension . ..............uiuiuiininennenenaen.. 66
B.2 The free extension .. ............ i 67
B.3 The universal two-fold trivial extension. ........................ 67
B.4 The Toeplitz extension ... ........ ... uiiiinnennn.. 68
References. ... ... . 69

1 Introduction

The two fundamental “machines” of non-commutative geometry are (bivari-
ant) topological K-theory and cyclic homology. In the present contribution we
describe these two theories and their connections. Cyclic theory can be viewed
as a far reaching generalization of the classical de Rham cohomology, while
bivariant K-theory includes the topological K-theory of Atiyah-Hirzebruch as
a special case.

The classical commutative theories can be extended to a degree of general-
ity which is quite striking. It is important to note however that this extension
is by no means simply based on generalizations of the existing classical meth-
ods. The constructions are quite different and give, in the commutative case,
a new approach and an unexpected interpretation of the well-known classical
theories. One aspect is that some of the properties of the two theories become
visible only in the non-commutative category. For instance, both theories have
certain universality properties in this setting.

Bivariant K-theory has first been defined and developed by Kasparov on
the category of C*-algebras (possibly with the action of a locally compact
group) thereby unifying and decisively extending previous work by Atiyah-
Hirzebruch, Brown-Douglas-Fillmore and others. Kasparov also applied his
bivariant theory to obtain striking positive results on the Novikov conjec-
ture. Very recently [13], it was discovered that in fact, bivariant topological
K-theories can be defined on a wide variety of topological algebras rang-
ing from rather general locally convex algebras to e.g. Banach algebras or
C*-algebras (in fact, even algebras without a specified topology can be cov-
ered to some extent). If E is the covariant functor from such a category C of
algebras given by topological K-theory or also by periodic cyclic homology,
then it possesses the following three fundamental properties:
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1 Introduction

Many geometric objects associated to a manifold M can be expressed in
terms of an appropriate algebra A of functions on M (measurable, contin-
uous, smooth, holomorphic, algebraic, ...). Very often those objects can be
defined in a way that is applicable to any algebra A, commutative or not.
Study of associative algebras by means of such objects of geometric origin is
the subject of noncommutative geometry [12,48]. The Hochschild and cyclic
(co)homology theory is the part of noncommutative geometry which gener-
alizes the classical differential and integral calculus. The geometric objects
being generalized to the noncommutative setting are differential forms, den-
sities, multivector fields, etc.

In our exposition, the primary object is the negative cyclic complex
CC; (A). Other complexes, namely the Hochschild chain complex Cq(A), the
periodic cyclic complex CCY?(A), and the cyclic complex CC4(A), are de-
fined as results of some natural procedure applied to CC, (A). The cyclic
homology is the homology of the cyclic complex CC,(A). It was originally de-
fined using another standard complex which we denote by CJ'(A). The study
of this latter complex has a distinctly different flavor, mainly coming from the
fact that it is related to the Lie algebra homology.

The above complexes are noncommutative versions of the space of differ-
ential forms (the Hochschild chain complex) and of the De Rham complex.
One also defines the Hochschild cochain complex C*(A, A) which is a non-
commutative analogue of the space of multivector fields.
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