1. Introduction

1.1 Real-Time Systems

A real-time system is a computing system with real-time requirements. Let
us consider the following two examples of real-time systems.

1.1.1 Two Examples
Deadline-Driven Scheduler

Consider a finite number of processes, say p1, pz2, - - . , Pm, Which share a single
processor. Each process p; has a periodic behavior. In a period of length T7,
process p; requests a constant amount of processor time C;, where C; < T;.

We assume that the request periods for process p; start at times k - T,
for k=0,1,2,3,....

The purpose of the scheduler is to grant processor time to the processes,
i.e. to schedule the processes, so that process p; runs on the processor for C;
time units in every period, for i = 0,1,...,m.

Figure 1.1 shows a schedule for first two periods of process p;. In the first
period, from time 0 to time T3, three pieces of processor time, with durations
Ci,, C;, and C;, are scheduled for p;. The requirement of p; is fulfilled in the
first period, since C; = C;, + Ci, + Ci,. In the second period, from time 7;
to time 2 - T}, two pieces of processor time are scheduled for p;. However, the
requirement of p; is not satisfied in the second period, as C; > C;, + C},.

Ciy Ci, Cis Cl{ 1 Cl{2

Ci=0Ci, +Ci, + Ciy
C; > C{l + C{2

Fig. 1.1. Schedules for p; in the first two periods

2 1. Introduction

The requirement for the scheduler is to fulfill all requests of the processes.
This is a real-time requirement, as any request of a process must be fulfilled
before its expiration.

The deadline-driven scheduling algorithm was proposed in [85]. It satis-
fies this requirement, under the assumptions that the scheduler overhead is
negligible and

m
Ci
;ESI.

In this algorithm, the expiration time of a request is called the deadline
of the request. The algorithm dynamically assigns priority to each process
according to the urgency, i.e. the deadline, of its current request. A process
will be assigned the highest priority if it is the most urgent, i.e. the deadline
of its current request is the nearest, and will be assigned the lowest priority
if it is the least urgent, i.e. its deadline is the furthest. At any instant, only
one of the processes, with the highest priority and an unfulfilled request, can
be selected to occupy or even preempt the processor.

The correctness of the algorithm is not obvious. Reference [85] has pro-
vided an informal proof of it. a

Gas Burner

This example was first investigated in [145]. A gas burner is either heating
when the flame is burning or idling when the flame is not burning, and it
alternates indefinitely between heating and idling. Usually, no gas is flowing
while it is idling. However, when it changes from idling to heating, gas must
be flowing for a little time before it can be ignited, and when a flame failure
occurs, gas will be flowing before the failure is detected and the gas valve is
closed. Hence, there may be a time interval in which gas is flowing and the
flame is not burning, i.e. where gas is leaking. A design of a safe gas burner
must ensure that the time intervals where gas is leaking do not become too
long.

Let us assume that the ventilation required for normal combustion would
prevent a dangerous accumulation of gas provided that the proportion of leak
time is not more than one-twentieth of the elapsed time for any time inter-
val at least one minute long — otherwise the requirement would be violated
immediately on the start of a leak. This is also a real-time requirement.

Turning next to the task of design, certain decisions must be taken about
how the real-time requirement is to be met. For example, it could be decided
that for any period where the requirement is guaranteed, any leak in this
period should be detectable and stoppable within one second; and to prevent
frequent leaks, it is acceptable that after any leak in this period, the gas
burner rejects the switching on of gas for thirty seconds. The conjunction of

1.1 Real-Time Systems 3

these two decisions implies the original requirement, a fact which must be
proved before implementation proceeds.

After justification of the design decisions, a computer program can be de-
signed accordingly, and hosted in the gas burner. This program interacts with
a flame sensor to detect flame failures, and controls the opening and closing
of the gas valve, so that the design decisions, and hence the requirement, can
be satisfied. |

Both the deadline-driven scheduler and the gas burner are real-time sys-
tems, although the first one is a software system, and the second is a software-
embedded system, also called a hybrid system.

Duration calculus (abbreviated to DC) is a logical approach to designing
real-time systems. Real numbers are used to model time, and functions from
time to Boolean values are used to model the behavior of real-time systems.
On the basis of interval logic, DC provides a formal notation to specify prop-
erties of real-time systems and a calculus to formally prove those properties,
such as the satisfaction of the requirements for the deadline-driven scheduling
algorithm and for the design decisions of the gas burner.

1.1.2 Real Time

At the level of requirements, real time is often understood popularly as con-
tinuous time. However, at the level of implementation, a piece of software is
implemented in a computer where time progresses discretely according to the
machine cycle of the computer.

For example, the gas burner, a software-embedded system, is used in
an environment where time progresses continuously. However, the embedded
software of the gas burner may run in a computer with a certain machine
cycle, and interacts with other physical components via sensors and actuators
which operate discretely.

Although the deadline-driven scheduler, a software system, is hosted in a
computer where time progresses discretely, the correctness of the deadline-
driven scheduling algorithm is expected to be independent of the specific host
computer, i.e. the algorithm can be better understood in terms of continuous
time.

Therefore, the interface between continuous time and discrete time has
become an important research topic in designing real-time systems.

For DC, we have adopted continuous time and chosen real numbers to
model this continuous time. Discrete time, as a countable subset of the real
numbers, can be defined in DC. It is definitely true that not every requirement
satisfiable in continuous time can be implemented by a computer. For exam-
ple, no computer can send out two signals separated by a distance less than
its machine cycle, although, because of the density of continuous time, one
can always find two time instants with an arbitrarily small distance between
them.

4 1. Introduction

In [32], a subset of DC formulas is identified, from which discrete im-
plementations called digital controllers can be synthesized. References [19,
20, 25, 137, 138, 156] introduce discrete states to approximate continuous
states, and provide rules to refine continuous specifications expressed as DC
formulas into discrete implementations.

1.1.3 State Models

In DC, states and events are used to model the behavior of real-time systems.
However, the book concentrates on state models until Chap. 9, where state
models are extended with the addition of events. A Boolean state model of
a real-time system is a set Py, Ps,..., F;,... of Boolean-valued (i.e. {0,1}-
valued) functions over time, i.e.

P; : Time — {0,1},

where Time is the set of the real numbers.

Each Boolean-valued function, also called a Boolean state (or simply a
state) of the system, is a characteristic function of a specific aspect of the
system behavior, and the whole set of Boolean-valued functions characterizes
all of the relevant aspects of the behavior.

Deadline-Driven Scheduler

In order to prove the correctness of the deadline-driven scheduler, we intro-
duce the following states to model the behavior of the scheduler:

Run; : Time — {0,1}
Std; :Time — {0,1}
Urg;; : Time — {0,1},

fori,j=1,2,...,m.

The states Run; (i = 1,2,...,m) are used to characterize the processor
occupation. Run;(t) = 1 means that p; is running in the processor at time ¢,
while Run;(¢) = 0 means that p; is not running at ¢.

The states Std; (i = 1,2,...,m) characterize the standing of the request.
Std;(t) = 1 means that at time ¢ the current request of p; is still standing.
Namely, the current request of p; is yet to be fulfilled at time ¢. Std;(t) = 0
means that at ¢ the current request of p; is not standing anymore. In other
words, the current request of p; has been fulfilled by time .

For a pair of processes p; and p; (i # j), the state Urg;; describes which
of the processes is more urgent, where urgency is defined in terms of the
distance to the start of the next request period. Thus, Urg;; (t) = 1, for
i,7 =1,2,...,m and @ # j, means that p; is more urgent than p; at time ¢,
and Urg,;(¢) = 0 means that p; is less urgent than or as urgent as p; at time
t.

1.1 Real-Time Systems 5

It is obvious that any set of the above functions which characterizes a
possible behavior of the deadline-driven scheduler must satisfy certain prop-
erties. For example, at any time ¢, if Run;(¢) = 1, then Run;(¢) = 0 for j # i,
as the processes share a single processor. The properties which capture the
scheduling algorithm are more complicated.

DC provides a formal notation to specify the real-time properties of the
scheduling algorithm in terms of states Run;, Std; and Urg;;. Furthermore,
the real-time requirement of the scheduler can also be expressed in DC
through these states, and the correctness of the scheduling algorithm can
then be verified using DC. a

A Boolean state model of a system represents an abstraction of the be-
havior of the system, and may be refined to more primitive states during the
design and the implementation of the system. In particular, for designing a
software-embedded system, a Boolean-valued state may be finally refined to
real-valued functions which model the behavior of physical components of
the system, as in control theory. We call the real-valued functions a real state
model of the system. Consider the example of the gas burner.

Gas Burner

The gas burner is a software-embedded system. To verify the design decisions
against the requirement, one may start with a single Boolean state to model
the critical aspect of the system

Leak : Time — {0,1},

where Leak(t) = 1 means that gas is leaking at time ¢, and Leak(t) = 0 means
that gas is not leaking at t.

However, at a later stage of the design one may have to specify the phases
of burning and idling of the gas burner, and introduce more primitive Boolean
states of the system such as Gas and Flame to characterize the flowing and
burning of gas. Then Leak can be pointwise defined as a Boolean expression
containing Gas and Flame:

Leak(t) = Gas(t) A —Flame(t),

for any ¢ € Time.

Boolean operators (e.g. = and A) for states are therefore included in DC,
so that a composite state of a real-time system can be refined to primitive
states of the system.

However, the flow of gas is actually a real-valued function of time, and
can be determined by the degree of opening of a gas valve. To describe the
valve, a function

Valve: Time — [0,0]

6 1. Introduction

is introduced, where Valve(t) = 6 means that the valve is opened to a degree
6 (0 <0< O) at time t.

The Boolean state Gas can be regarded as an abstraction of the real-
valued function Valve. For example, one may define this state such that gas
is present at ¢ when Valve(t) is above some threshold 6y (0 < 6y < O):

1, if Valve(t) > 6,
0, otherwise '

Gas(t) = {

In other words, Gas becomes the characteristic function of a property of the
real-valued function Valve.

Furthermore, the opening and the closing of the valve are controlled by a
piece of software embedded in the gas burner, which governs the application
of a force to open or close the valve. This applied force can be expressed as
another real-valued function:

Force : Time — [-12,(7],

where (2 stands for the greatest strength of the applied force. The real-valued
functions Force and Valve are called real states of the gas burner, and join
with other functions to form a real state model of the system. The relation
between Force and Valve may be defined by a differential equation obtained
from mechanics. |

As a design calculus for software-embedded systems, research on DC has
explored possibilities to capture parts of real analysis (see [165, 170]), and
hence to specify real state models of software-embedded systems. However,
this book will not present a real state model.

1.1.4 State Durations

The notion of state duration is used to specify the behavior of real-time sys-
tems. The duration of a Boolean state over a time interval is the accumulated
presence time of the state in the interval.

Let P be a Boolean state (i.e. P : Time — {0,1}), and [b, €] an interval
(i.e. b,e € Time and e > b). The duration of state P over [b,e] equals the
integral

[P(t)dt.
Let us use the two examples described above to illustrate the importance of

state durations in specifying real-time behavior.

Deadline-Driven Scheduler

The real-time requirement of the scheduler is to fulfill all the process re-
quests before their expiration. This requirement can be expressed in terms of
durations of the states Run;, for ¢ =1,2,...,m.

1.1 Real-Time Systems 7

Let us assume that all the processes raise their first request at time 0.
Thus, every nth request of p; is raised at time (n — 1)7; and expires at time
nT;, where n = 1,2,... . Therefore, the scheduler fulfills the nth request of
p; iff the accumulated run time of p; in the interval [(n — 1)T;,nT;] equals
the requested time C;. Namely, the duration of state Run; over the interval
[(n — 1)T;,nT;] is equal to C;:

f?:il)Ti Runi (t) dt = Cl .

Hence, the requirement is satisfied by the scheduler iff the duration of Run;
over the interval [(n — 1)T;,nT;] is equal to C;, for all i« = 1,2,...,m and
n=12.... O

Gas Burner

The real-time requirement of the gas burner is that the proportion of leak
time in an interval is not more than one-twentieth of the interval, if the
interval is at least one minute long. This requirement can be expressed in
terms of the durations of Leak as follows:

(e—b) >60s = 20, Leak(t)dt < (e —b),
for any interval [b, e]. O

A mathematical formulation of these two requirements can hardly leave
out state durations. Since the processor may be preempted dynamically, the
duration of Run; extracts the accumulated running time of p; from the dy-
namic occupation of the processor. Also, since gas leaks occur owing to ran-
dom flame failures, the duration of Leak extracts the accumulated leak time
of gas from the random flame failures. Therefore, state durations are adopted
in DC to specify the behavior of real-time systems.

The distance between states (or events) is another important measure-
ment of real-time systems. This was studied extensively before the develop-
ment of DC, for example, by the use of timed automata [5], real-time logic
[69], metric temporal logic [72] and explicit clock temporal logic [54].

However, state durations are more expressive than distances between
states in the sense that the latter can be expressed in terms of the former, but
not vice versa. With state durations, one can first express the lasting period
of a state. That a presence of state P lasts for a period [c,d] (for d > ¢),
written Plc,d], can be expressed as follows:

JIP(t)ydt = (d—¢) >0,

if we do not care about instantaneous absences of P. This expression is read
in real analysis as

“P appears almost everywhere in [¢,d]” .

Thus, real-time constraints on the lasting periods of states can be expressed
in terms of state durations.

8 1. Introduction

Gas Burner

Consider the first design decision in the case of the gas burner. Let [b, e] be
an interval where we want to guarantee the requirement of the gas burner.
The first design decision is that any leak in [b, €] should not last for a period
longer than one second. This can be expressed as

Ve,d:b<c<d<e.(Leakle,d] = (d—¢c) <1s).

Real-time constraints on distances between states can be expressed in
terms of state durations similarly. Consider the second design decision in
the case of the gas burner. The second design decision is that the distance
between any two consecutive leaks in the guarantee period [b, €] must be at
least thirty seconds long:

Ve,d,r,s :b<c<r<s<d<e.
(Leak[e, 7] A NonLeak[r, s] A Leak[s,d]) = (s—r) > 30s,

where NonLeak is a state defined from Leak using the negation (—):
NonLeak(t) = —Leak(¢),

for any ¢ € Time.
The above formulation of the second design decision for the gas burner
can be changed to a syntactically weaker but semantically equivalent one:

Ve,d,rys:b<c<r<s<d<e.
(Leak[e,] A NonLeak[r, s] A Leak[s,d]) = (d—¢) > 30s.

The equivalence of these two formulas can be proved as follows. It is
obvious that the first formula implies the second one. In order to prove the
other implication, we assume that there are

d<r<s<dinlb,e]
such that

Leak[c', r], NonLeak]r, s], Leak[s,d'] and (s —r) < 30.
Under this assumption, we let

n=0B0—-(s—r))>0

¢ = max{d,(r—(n/3))}
d = min{d’, (s + (n/3))} .

1.2 Interval Logic 9

Then, it is easy to prove that
c<r<s<din [be]
and
Leak[c, r], NonLeak[r, s], Leak[s,d] and (d — ¢) < 30.

So, by the contraposition law of propositional logic, we complete the proof of
the equivalence of the two formulations of the second design decision. a

However, the equivalence of these two formulas holds only for continuous
time. In the rest of this book, when we are concerned with a continuous time
domain, we shall adopt the second formulation, since it corresponds to a
simpler formalization of the second design decision for the gas burner in DC.
In Chap. 12 we shall deal with a discrete time domain and shall formalize
the second design decision differently.

By axiomatizing integrals of Boolean-valued functions, DC provides a
possible way to introduce notions of real analysis into formal techniques for
designing software-embedded real-time systems. Notions of integral and/or
differential have also been adopted in studies of automata [4, 99], statecharts
[92], temporal logic of actions (TLA) [76] and communicating sequential pro-
cesses (CSP) [55], when considering software-embedded systems.

State durations, as integrals of Boolean-valued functions, are functions
from time intervals to real numbers. The state durations of DC have been
axiomatized on the basis of the interval logics proposed in [1, 27, 43], which
can be regarded as logics for functions of time intervals.

1.2 Interval Logic

By interval logic we mean logics in the sense of [1, 27, 43], for example. We
view these logics as logics for time intervals. Let Intv be the set of time
intervals, i.e.

Intv = {[b,e] | b,e € TimeAb<e}.

1.2.1 Interval Variables

In these logics, we can express properties of functions of time intervals, called
interval variables.
Let v; (for i = 1,2,3,4) be interval variables, i.e.

v; : Intv - R,

where R denotes the set of real numbers.

10 1. Introduction

A formula such as v; < (vs + v3 - v4) is interpreted in interval logic as a
function from Intv to the truth values {tt,ff}:

v; < (v2 +v3-vq) ¢ Intv — {tt,}.

An interval [b,] satisfies the formula iff the value of v; of [b, €] is less than
or equal to the sum of the value vy of [b,e] and the product of the values of
vs and vg of [b,e].

Therefore, interval logic provides a functional calculus for specifying and
reasoning about properties of functions of intervals in a succinct way, such
that the arguments of the functions (i.e. the intervals) are not referred to
explicitly.

The interval length is a specific interval variable denoted ¢, i.e.

¢ : Intv —» R.

For an arbitrarily given interval [b,e], ¢ delivers the value (e — b), i.e. the
length of [b, €].
The duration of the state P (written [P) is another interval variable,

fP : Intv — R.

For an arbitrarily given interval [b, e], the value of the interval variable [P is
the duration of P in [b, €], i.e. the value

[P(t)dt.

Gas Burner

The requirement of the gas burner can be expressed in terms of the state
duration [Leak as

GbReq = (>60 = 20[Leak </,

where 60 stands for 60 seconds. (Henceforth we choose the second as the time
unit in the example of the gas burner.) a

1.2.2 Interval Modalities

The set of intervals Intv is the semantic domain of interval logic. In interval
logic, modalities are used to define structures among intervals, such as one
interval is a subinterval of another interval, or an interval is made of two
adjacent subintervals. Those structures are present in the descriptions of the
two design decisions for the gas burner. For example, the first design decision
expresses a real-time property of a subinterval in which leaking occurs. The
second design decision expresses a real-time requirement for three adjacent
subintervals.

1.2 Interval Logic 11

In the literature of mathematical logic, logics of modalities are called
modal logics [15, 66]. The semantics domain of a modal logic is usually called
a frame and it consists of a set of worlds and a reachability relation of the
worlds. Thus, an interval logic is a modal logic which takes intervals as worlds.

In [1, 43, 147], twelve unary modalities and three binary modalities are
suggested for defining various interval reachabilities. We list here four of the
modalities, which are used later in this chapter.

The Subinterval Modality <

The subinterval modality ¢ (Fig. 1.2) is a unary modality. For any formula
¢, ©¢ is a new formula which holds for an interval iff ¢ holds for some
subinterval.

Mathematically, an arbitrary interval [b,] satisfies ¢¢ iff there exist ¢, d
such that b < ¢ < d < e and the interval [c, d] satisfies ¢. Thus, from the
interval [b,] one can reach its subintervals with <.

O

A

/=
\ =

¢
Fig. 1.2. The modality ¢

The dual of < is O, which is defined as
Op = —0—p.

Hence, [b, €] satisfies O¢ iff any subinterval of [b, €] satisfies ¢.

With O, one can formulate the first design decision for the gas burner,
that any leak in the guarantee period of the gas burner must be stoppable
within one second.

First, the mathematical definition of P[e, d] (i.e. P takes the value 1 almost
everywhere in a nonpoint interval [c, d]) can be expressed as a formula without
mentioning the interval explicitly:

T[P1=[P=¢ A £>0.
Then, the following formula is a formalization of the first design decision:

Des; = O([Leak] = ¢<1).

12 1. Introduction

The Chop Modality —

The chop modality ~ (Fig. 1.3) is a binary modality introduced into interval
logic by [43]. For formulas ¢ and ¢, the new formula ¢ T is satisfied by an
interval iff the interval can be chopped into two adjacent subintervals such
that the first subinterval satisfies ¢ and the second one satisfies).

In other words, the interval [b, €] satisfies the formula ¢ ~ iff there exists
m (b < m < e) such that [b, m] satisfies ¢ and [m, €] satisfies .

SN
E
@ /

T
\
(
\ =

<-4
<

Fig. 1.3. The modality —

The reachability relation defined by 7 is a ternary one. It provides access
to adjacent subintervals of an interval, and hence defines a temporal order
among subintervals of an interval.

With 7~ and O, one can formalize the second formulation of the second
design decision for the gas burner given in Sect. 1.1.4:

Desy = O(([[Leak] ~ [-Leak] ~[Leak]) = ¢ > 30).

To prove the correctness of the two design decisions is therefore to prove
the validity of the formula

(Desy A Desy) = GbReq.

In fact, the subinterval modality < can be derived from the chop modality,
since

O¢p & (true " (¢ "true)),

where “true” stands for a formula which is satisfied by any interval. Therefore,
the second design decision (as well as the first one) for the gas burner can be
expressed in an interval logic of state durations with ~ as the only modality.

O

A modality is called contracting if the modality provides access only to
inside parts of a given interval, i.e. subintervals of the interval. & and ™
are two examples of contracting modalities. With the contracting modality
~, we have expressed the two design decisions for the gas burner which can
guarantee the safety-critical requirement of the gas burner.

1.2 Interval Logic 13

However, contracting modalities cannot express unbounded liveness and
fairness properties of computing systems, since these properties are about
properties outside any given time interval. Modalities which provide access
to the region outside a given interval are called expanding modalities. In the
following we give two examples of expanding modalities.

The Right Neighborhood Modality <,

The modality <, (Fig. 1.4) is a unary modality. An interval satisfies <.¢ iff
a right neighborhood of the ending point of the interval satisfies ¢.

Mathematically, [b, e] satisfies <.¢ iff there exists d > e such that interval
[e, d] satisfies ¢.

o
ASH
r S

Fig. 1.4. The modality <,

Thus, <, provides access to right neighborhoods of e from [b,e]. Since
right neighborhoods of e are outside [b,], <, is an expanding modality.
The modality O, is the dual of <, and is defined as

Dr¢ = _'<>r_‘¢-

That is, an interval satisfies O,¢ iff any right neighborhood of the ending
point of the interval satisfies ¢.

With <, one can specify properties related to future time, such as liveness
and fairness properties of computing systems. Consider the example of the
gas burner. Let HeatReq be a state to characterize a request for heat from
the gas burner. The formula

[HeatReq] = <.(/Flame > 0)

expresses the condition that if one raises a heat request, then there will exist
a presence of Flame in the future. This formula can represent an additional
requirement for the gas burner, to reject a safe but dead gas burner.

The Left Neighborhood Modality <

The modality <¢; (Fig. 1.5) is a unary modality. An interval satisfies <;¢ iff a
left neighborhood of the beginning point of the interval satisfies ¢.

14 1. Introduction

RSN

<>i¢

Fig. 1.5. The modality <

Mathematically, [b, e] satisfies <;¢ iff there exists ¢ < b such that interval
[c, b] satisfies ¢.

Thus, the modality <; provides access to the past time of a given interval.
It is also an expanding modality.

The dual of < is designated by O, An interval [b, e] satisfies O0;¢ iff any
left neighborhood of b satisfies ¢:

O = O
O

In Chap. 11 of this book, it is proved that all twelve unary modalities and
three binary modalities of interval logic can be derived from <, and <; in a
first-order logic with interval length . However, this book will use ™ as the
only modality, except in Chap. 11, where the liveness and fairness properties
of computing systems are discussed.

1.3 Duration Calculus

Research on DC was initiated by the case study [145] in connection with the
ProCoS project (ESPRIT BRA 3104 and 7071). Several real-time formalisms
were investigated in order to specify requirements and design decisions for a
gas burner system; but they all failed in this case study. Two main obser-
vations of this case study were that the notion of a time interval was useful
and that the notion of a state duration was convenient. This led to the first
publication on DC [168] in 1991. Since then, research on DC has considered
different models of real-time systems, applications of DC and mechanical
support tools for DC.

In [161], there is a brief overview of early research on DC, and in [51],
there is a detailed account of the logical foundations of DC.

1.3.1 Models

Different models are used by designers of real-time systems at different design
stages. In order to accommodate all necessary models, sets of functions over
time, called states, are used to model real-time systems in DC. In the state

1.3 Duration Calculus 15

models, real-valued functions are called real states of systems, and character-
istic functions of properties of underlying real states are called Boolean states.
Boolean states are assumed stable, i.e. any presence (or absence) of a Boolean
state must last for some period, and are represented by Boolean-valued step
functions. Events are taken to be transitions of Boolean states.

First, a basic calculus — the calculus for durations of Boolean states — was
developed, and then other models were introduced by adding to the basic
calculus extra axioms, which formalize the models and also their interrelations
with the Boolean state model.

Boolean State Model

The basic calculus of DC [168] axiomatizes state durations for the Boolean
state model, i.e. integrals of Boolean-valued functions, under an assumption
of finite variability (also called the non-Zeno phenomenon) of states. The
assumption of finite variability stipulates that any state can only change its
presence and absence finitely many times in any bounded time period. That
is, only finitely many state transitions can take place in any bounded time
period. The interval modality used in the basic calculus is the chop modality
~. This calculus can be used to specify and verify state-based safety prop-
erties of real-time systems. Formalizations of other models are conservative
extensions of this calculus.

Boolean State and Event Model

The Boolean state and event model was studied in [164, 169].

In [169], an event is a Boolean-valued d-function, i.e. a Boolean-valued
function with a value of 1 at discrete points. This means that an event is
an instant action, and an event takes place at a given time point iff the
Boolean-valued d-function of the event takes the value 1 at that point. By
linking events to state transitions, this model can be used to refine from state-
based requirements, via mixed state and event specifications, to event-based
specifications of programs.

However, with integrals of functions, one cannot capture the value of a
function at a point, since the integral of a function at a point is always equal
to zero, no matter what the value of the function at that point is. In [169],
integrals of Boolean-valued functions are replaced by their mean values. The
mean value of a Boolean-valued function P, designated P, is a function from
intervals to [0, 1], i.e.

P : Intv — [0,1],

16 1. Introduction

and is defined in real analysis as follows:

P.c) = {JLOM D=

for any interval [b, e].

Therefore, one can describe point properties of Boolean-valued functions
by using their mean values in point intervals, and at the same time one can
also define the integral of a Boolean-valued function P:

[P =Pt

Additional axioms and rules for reasoning about §-functions and state tran-
sitions were developed in [169].

The approach in [164] is to continue using the basic calculus for the in-
tegral of a Boolean-valued function, but atomic formulas to stand for events
are added to the basic calculus. This book will follow the approach of [164]
to introduce state transitions and events into the Boolean state model.

Real State Model

A real state model consists of a set of real-valued functions which describe the
behavior of physical components of a software-embedded system. By using a
real state model, we introduce structures into Boolean states, and a Boolean
state becomes a characteristic function of a property of real states of the
model. Therefore, specifications and reasoning at the level of the state may
have to employ real analysis.

In [170], it was investigated how DC can be combined with real analysis,
so that real state models can be specified within the framework of DC. In
[165], this research was further developed by the formalization of some parts
of real analysis using the left and right neighborhood modalities.

Dependability

The dependability of an implementation with regard to a given requirement
can be quantitatively measured by a satisfaction probability of the require-
ment for this implementation.

In the context of the Boolean state model and a discrete time domain,
the work presented in [86, 87, 89, 90] provides designers with a set of rules to
reason about and calculate the satisfaction probability of a given requirement,
formalized using DC, with respect to an implementation represented as a
finite automaton with history-independent transition probabilities.

In [22], this work was generalized to a continuous time domain.

1.3 Duration Calculus 17

Finite-Divergence Model

The assumption of finite variability of states and events stipulates that within
a finite time period, state transitions and events can happen only finitely
many times. The finite-variability assumption is always adopted in the case
of software systems where time progresses discretely.

The notion opposite to finite variability is called finite divergence (also
called the Zeno phenomenon). Continuous mathematics does not reject finite
divergence, and introduces the notion of a limit in order to study finite di-
vergence. In [48], the finite-divergence model was formalized by introducing
into DC some rules to calculate a state duration in a finite-divergence model
as a limit of its approximations in a finite-variability model.

Superdense Computation

A superdense computation is a sequence of operations which is assumed to be
timeless. This is an abstraction of a real-time computation within a context
with a grand time granularity. This assumption is known as the synchrony
hypothesis and has been adopted in the case of digital control systems, where
the cycle time of an embedded computer may be nanoseconds, while the
sampling period of a controller may be seconds. Therefore, the computation
time of the embedded software of the digital control system is negligible, and
computational operations can be abstracted as timeless actions.

To accommodate timeless operations, [164] adapts the chop modality and
renames it the superdense chop. This can chop a time point in a grand time
space into multiple points in a finer space, and hence the superdense chop
introduces structure into a time point.

By generalizing the projection operator [97] of interval temporal logic,
[42] introduced into DC the wvisible and invisible states, and computed non-
negligible time through projection onto the visible state.

Thus, the properties of superdense computation can also be specified and
verified in DC. In [107, 114], other approaches are considered for treating the
synchrony hypothesis within the framework of DC.

Expanding Modalities

With contracting modalities such as = and <, one can specify only safety
properties of real-time systems.

In order to specify unbounded liveness and fairness properties of real-time
systems within the framework of DC, [31, 103, 139, 165] introduced expand-
ing modalities. In [165], it was proved that the left and right neighborhood
modalities ¢; and <, are adequate, in the sense that the other contracting
and expanding modalities suggested in [1, 43, 147] can be derived from them
in a first-order logic with an interval length /. The completeness of the first-
order calculus for ¢; and <, given in [165] was proved in [9], and, in [8], the

18 1. Introduction

completeness was proved for a combination of a first-order temporal logic and
an interval logic with neighborhood modalities.

In [31], an interval logic where intervals have a direction was suggested.
This logic is based on the chop modality, but the “chop point” is allowed to be
outside the interval under consideration, and in this way the chop modality
becomes expanding. This logic, called signed interval logic (SIL), was further
developed in [120, 123].

Infinite Intervals

The behavior of a real-time system, such as the deadline-driven scheduler
or the gas burner considered here, is often assumed to be infinite. However,
DC is a logic of finite intervals. An infinite behavior is therefore specified in
DC as the set of all finite prefixes of the behavior. To specify liveness and
fairness properties of the behavior of a system in terms of its finite prefixes,
expanding modalities have been introduced.

An alternative to expanding modalities is to introduce infinite intervals
into DC. Extensions of DC which allow infinite intervals were established
in [117, 162]. These extensions include both finite and infinite intervals, and
can straightforwardly express and reason about both terminating and infinite
behaviors of real-time systems. References [117, 118, 119] also compare the
expressive power of these extensions with the expressive power of monadic
logic of order.

Higher-Order and Iteration Operators

When DC is applied to real-time programming, it becomes inevitable that one
introduces advanced operators into DC corresponding to the programming
notions of local variables and channels, and of the loop.

In [39, 41, 60, 108, 110, 163], the semantics and proof rules of the (higher-
order) quantifiers over states and the p operator were investigated. It is
interesting to discover that, because of the finite variability of states, the
quantifiers over states can be reduced to first-order quantifiers over global
variables, and also that the superdense chop can be derived from the higher-
order quantifiers.

1.3.2 Applications

The applications of DC focus on the formal design of real-time systems.

Case Studies of Software-Embedded Systems

DC has been applied to case studies of many software-embedded systems,
such as an autopilot [126], a railway crossing [141] and interlock [127], a water

1.3 Duration Calculus 19

level monitor [30, 64], a gas burner [127], a steam boiler [31, 83, 135], an air
traffic controller [68], a production cell [113], a motor-load control system
[157], an inverted pendulum [151], a chemical concentration control system
[153], a heating control system [155], a redundant control system [36] and a
hydraulic actuator system [125]. A case study for formalizing and synthesizing
an optimal design of a double-tank control system was conducted in [62].

On the basis of these case studies, a methodology and notation for de-
signing software-embedded systems were studied and developed in [16, 21,
149, 171].

Real-Time Semantics, Specification and Verification

In order to apply DC to the specification and verification of real-time systems,
techniques for integrating DC with other formalisms such as CSP, phase
transition systems, Verilog and RAISE have been developed in [37, 57, 59,
61, 78, 152], where DC has been used to define the underlying semantics.
In [88], a uniform framework for DC and timed linear temporal logic was
presented.

In [63], CSP, Object-Z and DC were combined into a uniform framework
for the specification of processes, data and time, based on a smooth integra-
tion of the underlying semantic models.

In [58, 133, 134, 164, 166], DC was used to define the real-time semantics
for OCCAM-like languages. In [164], it was assumed, in the semantics of an
OCCAM-like language, that assignments and message passings take no time,
and can form a superdense computation. In [171], a semantics was given to a
CSP language with continuous variables which was proposed in [55] and can
be used to describe software-embedded systems.

In [98], DC was used to define a real-time semantics for SDL, while [95]
embedded a subset of DC into a first-order logic of timed frames and hence
into SDL. Reference [109] defined a DC semantics for Esterel. Reference [71]
proposed a DC semantics for a graphical language called Constraint Dia-
grams. Reference [46] gives, in terms of DC, a formal meaning of fault trees.
References [37, 78] define a DC semantics for a timed RAISE Specification
Language and [136, 173] define a DC semantics for Verilog. In [24, 146], a
DC semantics was given to programmable logic controller (PLC) automata
and, furthermore, a tool was developed for designing PLC automata from
DC specifications.

In [52], DC was used to specify and reason about real-time properties
of circuits. Reference [128] applied DC to prove the correctness of Fischer’s
mutual-exclusion protocol. References [17, 20, 25] specified and verified the
correctness of the biphase mark protocol through DC. Reference [160] ap-
plied DC to specify and verify the deadline-driven scheduler, and [14, 26]
presented formal specifications of several well-known real-time schedulers for
processes with shared resources. In [112], DC was used to specify and verify

20 1. Introduction

properties of real-time database systems, and, in [49], DC was used to specify
and analyze availability properties of security protocols.

Refinement of DC Specifications

In [94], there was a first attempt to define refinement laws for a restricted set
of formulas of DC toward formulas called DC implementables, which describe
properties such as timed progress and stability. A full exposition of these
ideas is given in the monograph [124]. In this monograph, there is also a
study of how to ensure that a set of implementables is feasible, i.e. that it is
consistent and extendable in time. Techniques to refine a feasible set of DC
implementables via a mixed specification and programming language into an
executable program were developed in [100, 133, 134].

References [21, 74, 75, 132] represent work on refining DC formulas into
automata. References [153, 154]proposed approaches to refining DC speci-
fications into programs following the paradigms of the Hoare logic and the
assumption-commitment logic.

1.3.3 Tools

Interesting results about the completeness of the calculi for interval modal-
ities and state durations and about decision procedures and model-checking
algorithms for DC subsets have been published.

In [27], the completeness of the interval logic described in Chap. 2 was
proved for an abstract domain. A similar result was proved in [9] for the
neighborhood logic described in Chap. 11. The duration calculus described
in Chap. 3 has been proved to be relatively complete [50]. It can also be
complete for an abstract domain if we use w-rules as in [38].

Decidable subsets of DC and the complexity of decision algorithms were
discovered and analyzed in [2, 18, 32, 35, 47, 79, 102, 115, 116, 131, 167].
In order to check whether state transition sequences of a subset of timed
(even hybrid) automata satisfy a linear inequality of the state durations,
[12, 70, 80, 81, 82, 84, 158, 159, 172] developed algorithms which employ
techniques from linear and integer programming.

On the basis of the above results, a proof assistant for DC was developed
in [93, 140, 144] as an extension of PVS [101], and a decision procedure [167]
for DC was incorporated into this proof assistant. For example, the soundness
proof in [50] of the induction rules for DC was checked by this proof assistant.
Furthermore, several proofs used in case studies were checked in [140] using
the DC extension of PVS, e.g. the studies of the simple gas burner system
proposed in [168] and of the railway crossing proposed in [141]. In these
applications of the proof assistant, errors in the original proofs were spotted.
In [23], there is an analysis and comparison of the use of model-checking and
logical-reasoning techniques.

1.4 Book Structure 21

In [142], a tool to check the validity of a subclass of DC was presented.
Furthermore, [105] developed a tool (DCVALID) to check the validity of a
subclass of discrete-time higher-order DC. In [150], DCVALID was used to
verify the correctness of a multimedia communication protocol. In [34], a
bounded model construction for discrete-time DC was presented, which was
shown to be NP-complete.

The proof theory for signed interval logic was developed and investigated
in [121, 122, 123], and SIL is encoded in the generic theorem prover Isabelle
[111].

1.4 Book Structure

Chapter 2 (Interval Logic) develops the syntax, semantics, axioms and rules of
a first-order interval logic. It is the logical foundation of the axiomatizations
of DC models presented in this book. This first-order interval logic includes
chop as its only modality, and it is complete for an abstract time domain.
An abstract time domain is not necessarily the set of real numbers, but an
arbitrary set which satisfies certain axioms.

Chapter 3 (Duration Calculus) presents the calculus for durations for the
Boolean states. It is based on the interval logic described in Chap. 2, and the
assumption of finite variability of states. The gas burner example is used in
this chapter to explain the syntax, semantics, axioms and rules of DC.

Chapter 4 (Deadline-Driven Scheduler) specifies and verifies the deadline-
driven scheduling algorithm in DC. This demonstrates an application of DC
to a rather complicated software system.

Chapter 5 (Relative Completeness) proves the relative completeness of
DC with respect to a continuous time domain represented by the set of real
numbers. By relative completeness, we mean that, in the context of this
continuous time domain, any valid formula of DC is provable in DC, provided
any valid formula of interval logic can be taken as a theorem of DC.

Chapter 6 and 7 (Decidability and Undecidability) describe decidable and
undecidable subsets of DC formulas in discrete and continuous time domains.
The decidability of a subset of DC is proved by reducing the validity of a
formula in the subset to the decidable emptiness problem of regular languages.
The undecidability of a subset of DC is obtained by reducing the undecidable
halting problem for two-counter machines to satisfiability of formulas in the
subset.

Chapter 8 (Model Checking: Linear Duration Invariants) presents an al-
gorithm to decide whether an implementation of a real-time system satisfies
a requirement written in DC as a finite number of linear inequalities of state
durations, where the implementation is taken to be a real-time automaton
having an upper time bound and a lower time bound for each transition.
The satisfaction problem is reduced by the algorithm to finitely many simple
linear programming problems.

22 1. Introduction

Chapter 9 (State Transitions and Events) introduces extra atomic formu-
las and axioms to express and to reason about state transitions and events.
With this extension, one can refine state-based requirements into state and
event mixed (or event-based) implementations. In this chapter, an implemen-
tation as a real-time automaton is verified for the gas burner example against
the two design decisions.

Chapter 10 (Superdense State Transitions) treats the synchrony hypothe-
sis, and introduces the superdense chop modality. With the superdense chop,
this chapter presents a real-time semantics for an OCCAM-like language. In
the semantics, it is assumed that assignments and message passings take no
time.

Chapter 11 (Neighborhood Logic) introduces the left and right neighbor-
hood modalities. It proves the adequacy of these two modalities, and applies
them to specify unbounded liveness and fairness.

Chapter 12 (Probabilistic Duration Calculus) assumes that an implemen-
tation of a real-time system is represented by a probabilistic automaton having
a probability distribution over discrete time for each transition. Axioms and
rules are developed to calculate and reason about the satisfaction probability
of a requirement, formalized using DC, for a probabilistic automaton over a
specified time interval. The gas burner is used as an example to explain the
notions and techniques involved.

