
2. Properties of Liquids and Gases

2.1 Properties of Liquids

Liquids are distinguished from solids by the fact that their particles are read-
ily displaced. Whereas forces of finite magnitude are required to deform a
solid, no force at all is required to alter the shape of a liquid, provided only
that sufficient time is allowed for the change of shape to take place. When
the shape is altered quickly, liquids do display a resistance, but this vanishes
very quickly after the motion is finished. This ability of liquids to oppose
a change in shape is called viscosity. We will discuss viscosity in depth in
Chapter 4. As well as the usual liquids that are easy to move, there are also
very viscous liquids whose resistance to change of shape is considerable, but
which vanishes again at rest. Starting out from the viscous state, all phase
transitions to (amorphous) solid bodies are possible. Heated glass, for exam-
ple, passes through all possible transitions; in asphalt and similar substances
these transitions occur at normal temperatures. For example, depending on
the temperature, if a barrel of asphalt is tipped over, the asphalt will flow
out within a few days or weeks. The mass that flows out forms a flat cake.
Although it continually flows, one can walk on it without making footprints.
Footprints will be left, however, if one stands still for a longer time on the
asphalt. Hammering on the asphalt causes the mass to shatter like glass.

In the study of the equilibrium of liquids, we consider states of rest or
sufficiently slow motion. The resistance to change of shape may then be set to
zero, and we obtain a definition of the liquid state: In a liquid in equilibrium,
all resistance to change of shape is equal to zero.

According to the kinetic theory of material, atoms or molecules are in
constant motion. The kinetic energy of this motion is observed as heat. From
this point of view, liquids differ from solids in that the particles do not os-
cillate about fixed positions, but rather more or less frequently swap places
with neighboring particles. If the liquid is in a state of stress, such exchanges
of place are favored. They cause the material to yield in the direction of the
stress difference. In the state of rest this yielding causes the stress differences
to vanish. During the change of shape, stresses arise that are larger the faster
the change of shape takes place.

The gradual softening of amorphous bodies with increasing temperature
may be explained as follows: If the body is heated, i.e., the energy of the
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molecular motion is increased, initially some particles situated where the
oscillation amplitudes just happen to be particularly large change place. On
further heating, the exchange of place becomes more and more frequent, until
eventually it occurs everywhere. For crystalline solid bodies the transition
from a solid to a liquid state takes place discontinuously by melting, i.e., by
the disintegration of the regular crystal structure.

A further property of liquids is their great resistance to change in volume.
It is not possible to force 1 liter of water into a container half liter in size. If
the same amount of water is placed in a container 2 liters in size, only half
of the container is filled. However, water is not fully incompressible. At high
pressures it can be pressed together by noticeable amounts (4% reduction in
volume at a pressure of about 100 bar). Other liquids behave in a similar
way.

2.2 State of Stress

We now consider more closely the state of stress of a liquid in equilibrium.
We note that we can apply the general laws about the equilibrium of forces
on a body to bodies of liquid too. In order to justify this, we define a partic-
ular principle of solidification based on the following idea: The equilibrium
of an arbitrary movable system cannot be destroyed by subsequently fixing
any moving parts. Therefore, we can imagine a certain part of a liquid in
equilibrium to be solidified without destroying the equilibrium. The laws of
equilibrium can be applied to the rigid part. Here we do not mean physical
solidification, associated with change in volume and crystallization, etc., but
rather ideal solidification without displacement or change of volume.

However, the detour via the rigid body is not really necessary. The laws of
equilibrium in general mechanics are frequently derived by exploiting the idea
of a rigid body. Yet these laws can still be applied to a mass system at rest with
internal degrees of freedom of motion, which, however, are not used because
of the equilibrium. As long as the system really is at rest, both approaches
are equally valid. In the case of motion, the principle of solidification leads
to difficulties, since nothing is solid. Because of the subsequent application in
the dynamics of fluids, the essential ideas of this approach, used also in the
science of the strength of materials, are briefly explained here.

We first note that forces are always interactions between masses. For
example, if one mass m1 attracts another mass m2 with a force F , this force
F also acts on m1 as the effect of m2, as an attraction in the direction of m2.
The two forces act in opposite directions (Newton’s principle of action and
reaction). For a system of masses separated from other masses, we distinguish
between two types of force. The internal forces, which act between two masses
belonging to the system, and which therefore always act opposite in pairs, and
the external forces, which act between each system mass and a mass situated
outside the system, and which therefore occur only once in the system. If we
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sum over all the forces acting on the masses in the system, the internal forces
always cancel each other out in twos, so that only the external forces remain.

For the equilibrium of the system it is necessary that the sum of all the
forces acting on each individual mass vanish (vector sum). If we sum this
over all masses of the system, only the sum of all the external forces remains.
Because each individual sum vanishes because of the equilibrium, the sum of
the external forces on the system also vanishes. This law, which assumes no
more about the mass system than that it is in equilibrium, is highly useful
in many different applications. We obtain three statements:∑

Fx = 0,
∑

Fy = 0,
∑

Fz = 0,

with the components Fx, Fy, Fz of the external forces in the x, y, and z
directions.

As well as the above law, there is an analogous law for the torques of the
external forces. Their sum also must vanish in equilibrium.

For both elastic solid bodies and liquid bodies we are interested in the
state of stress inside the body. This arises via the internal forces that act
between the smallest particles of the body. In general, we are content with
knowing the average state in a region that already contains a large number of
particles. Yet how should the internal forces be described if our laws give us
statements only about external forces. We must change them into external
forces. Imagine the body cut and one of the two pieces (labeled I in Figure
2.1) to be part of a mass system. Then all forces that came from a particle
in region II and acted on a particle in region I, and which were previously
internal forces, have now become external forces. If the whole body was in
an external state of stress (indicated in Figure 2.1 by two arrows), internal
stresses also occur. Imagining the cut carried out, forces act through the
interface from the particles on the right of the cut on particles to the left
of the cut. We add all these forces together to a resultant force, which then
exactly maintains the equilibrium of the forces acting on part I. This gives us
a clear statement on the resultant of the forces in the section. This approach
could equally well have been applied to part II. We would have obtained an
equally large resultant force pointing in the opposite direction (precisely the
force acting from part I on part II).

By stresses we mean forces per unit area in a section. In the above exam-
ple, we obtain the mean stress in the section when we divide the resultant
force in the section due to equilibrium by the surface area of the section. We
see that the stress in a surface is a vector, just as the force is.

Fig. 2.1. Forces on a mass system
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The cut principle, i.e., the manner of transforming internal forces to ex-
ternal forces by imagining a cut, has further applications. With a number of
planes of section through a body whose state of stress is to be investigated,
we can select a small body (parallelepiped, prism, tetrahedron, etc.) and in-
vestigate its equilibrium. In the simplest case, all forces that hold a body in
equilibrium are stress forces. From the equilibrium of such a body, we can
derive several important laws; one is proved here as an example.

If we know the stress vectors for three planes of section that together form
a corner of a body, then the stress vectors for all other planes of section are
also known.

As proof, we cut the corner with a fourth plane, whose stress is to be
determined. This gives rise to the tetrahedron shown in Figure 2.2. The forces
1, 2, and 3 are then obtained by multiplication of the given stress vectors with
by surface areas of the associated triangles. There is only one direction and
magnitude of the force 4, which maintains equilibrium with the sum of forces
1, 2, and 3. This force divided by the associated triangular surface area is the
desired stress. For the calculation it is useful to select the surfaces 1, 2, and
3 as the coordinate planes (cf. Figure 2.2).

We point out that the state of stress, which represents the whole of the
stress vectors in all possible cut directions through a point, can be related
to an ellipsoid, and is therefore a tensor. According to the derived law, the
state of stress in a point (and also its ellipsoid) is given if the stress vectors in
three planes of section are known. Corresponding to the three principal axes
of every ellipsoid, three orthogonal planes of section can be given for every
state of stress to which the associated stress vectors are normal. The three
stresses distinguished in this manner are called principal stresses.

Fig. 2.2. Stress forces on a tetrahedron
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2.3 Liquid Pressure

The state of stress of a liquid in equilibrium is particularly simple. A resis-
tance to change of shape, thus against displacement of the particles against
each other, can be compared to the friction of solid bodies. If there is no
friction between two bodies that are in contact, the force must always be
perpendicular to the contact surface between both bodies, so that no work
is done by a sliding motion along this surface. Similarly, the absence of a
resistance to change of shape is distinguished by the fact that the stress,
here called the pressure, is always perpendicular to a plane of section. This
property, that the pressure is perpendicular to the associated surface, can
be taken as a definition of the liquid state. It is completely equivalent to the
definition given in Section 2.1.

By a simple equilibrium approach, a further property of the liquid pressure
may immediately be derived. We cut a small three-sided prism out of the
liquid. The faces of the prism are perpendicular to the edges of the prism.
Again we can imagine that the prism has solidified inside the liquid. We
consider the equilibrium of the forces that act on the prism from the rest of the
liquid. The pressure forces on the faces are equally large and directed opposite
to each other. They therefore maintain the equilibrium and do not have to
be considered further. The forces on the side surfaces are perpendicular to
the surfaces, and are therefore in a plane perpendicular to the prism’s edges.
Figure 2.3 shows a front view of the prism with the forces, as well as the
triangle that the forces must form so that they are in equilibrium. Since the
sides of the force triangle are perpendicular to the sides of the prism, both
triangles have the same angles and are therefore similar. This means that
the three pressure forces behave like the associated prism sides. In order to
determine the pressures per unit surface area, the pressure forces have to be
divided by the respective prism surfaces. The prism surfaces all have the same
height and are therefore in the same ratio to each other as their base lines
and as the associated forces. Therefore, the pressure per unit area is equally
large on all three prism surfaces. Since the prism was arbitrarily chosen, we
can conclude that the pressure at one point in the liquid is equally large in all
directions. The stress ellipsoid is a sphere in this case. In order to describe a

Fig. 2.3. Forces on the front side of a prism and force equilibrium
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state of stress of this kind, also called the hydrostatic state of stress, we need
only the numerical value of the pressure p. The pressure p means the force
acting on a unit surface area.

Pressure Distribution in a Liquid Without Gravitational Effects

Every liquid is heavy. In many cases, in particular at high pressures, the
effect of gravity can be neglected, thereby simplifying matters greatly. Again
we set up the force equilibrium on a prism, this time with a longitudinal
shape. We consider the equilibrium change on displacement along the prism
axis. The pressure varies with position. The cross-section of the prism is its
front surface, here again assumed perpendicular to the axis of the prism, and
is denoted by A (see Figure 2.4). This cross-section is assumed to be so small
that the change in pressure within A can be neglected. If the pressure at one
end of the prism is p1 and at the other p2, the forces A · p1 and A · p2 act in
opposite directions parallel to the axis of the prism. All pressure forces on the
side faces of the prism are assumed to be perpendicular to these faces and are
therefore also perpendicular to the prism axis. They do not contribute to the
force component parallel to the prism axis, irrespective of how the pressure
is distributed along it. Equilibrium demands that the forces A · p1 and A · p2
in the direction under consideration must balance each other. We must have

A · p1 = A · p2 or p1 = p2.

Since the position of the prism was chosen arbitrarily, in the absence of gravity
(and other external forces) the pressure at all positions in the liquid is equally
large.

If the liquid fills narrow, curved spaces, so that it is not possible to place
a prism between two arbitrary points in the liquid, the above procedure can
be repeated as often as necessary. We start out from point 1 to point 2, from
this point in another direction to point 3, etc., until the required endpoint n
is reached. From p1 = p2, p2 = p3, etc., we then obtain p1 = pn.

Another, more elegant, approach is as follows: We imagine a large vessel
into which the vessel under consideration fits and that is filled with liquid.
After equilibrium has been reached, as much of the liquid as is necessary
solidifies so that only the actual space of liquid remains. According to the
principle of solidification in Section 2.2, there is no change in the state of
forces. Therefore, everywhere in any narrow spaces in equilibrium, the same
pressure is at hand.

In extremely narrow spaces, after a change in the liquid pressure, e.g.,
following an external stress, considerable time may pass until equilibrium is

Fig. 2.4. Pressure forces on a longitudi-
nal prism
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reached. For plastic potter’s clay (consisting of very fine solid particles, with
the spaces between filled with water), this time may be days, or, in the case
of layers of clay in the earth, even years. During this time the water flows
from positions of higher to those of lower pressure (see Section 4.2.8), while
the solid frame yields elastically.

We summarize as follows: The pressure in a liquid in equilibrium is ev-
erywhere perpendicular to the surface on which it acts and in the absence
of gravity and other mass forces is everywhere and in all directions equally
large.

Whatever holds for the pressure inside the liquid is also true for the pres-
sure on the walls of the vessel containing the liquid. To clarify this, we imagine
a cut through the liquid very close to the wall and at some distance from it,
and connect these two faces with a cylindrical surface perpendicular to the
cuts (see Figure 2.5). The equilibrium of the body of water enclosed in this
manner yields the force component F that the section of wall perpendicular
to the plane of section experiences, that is, the force A · p. This approach has
the advantage that we immediately see that uneven parts of the wall do not
change the result. Figure 2.5 shows the force F acting from the wall onto the
body of liquid under consideration. The pressure force of the liquid on the
wall has the opposite direction.

Equilibrium of a Liquid

The effect of gravity on a given mass m is caused by a force of attraction
to the center of the Earth of magnitude m · g, where g, the acceleration of
gravity, is equal to 9.81 m/s2 at our latitude. This value is not exact as the
rotation of the Earth has been neglected. In fact, the force of gravity is due to
the force of attraction and the centrifugal force. In the northern hemisphere,
the direction of a plumb line intersects the axis of the Earth somewhat south
of the center of the Earth.

Fig. 2.5. Pressure force on the wall of a
vessel
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The force m · g is called the weight of the mass m. Because the amount
of a liquid is frequently measured according to its volume, the density ρ is
introduced for the mass of a unit volume. An amount of a liquid of volume
V and density ρ therefore has a mass of ρ · V and a weight of g · ρ · V . The
product g ·ρ is therefore the weight of a volume unit and is called the specific
weight γ. Because the strength of the gravitational acceleration g is not the
same at all positions, the magnitude of the specific weight also varies from
place to place. On the other hand, the density is independent of the strength
of the gravitational force.

The basic task of hydrostatics, i.e., the study of the equilibrium of liquids,
is to determine the pressure distribution of a homogeneous liquid.

We again consider the equilibrium of a bounded prism in a liquid to
displacement in the axial direction and initially use the prism of Figure 2.4.
Its axis is horizontal and is therefore at right angles to gravity. Therefore, the
weight of the prism has no component in the axial direction, and so all the
arguments from Section 2.3 may be repeated. Here again we obtain p1 = p2.
By repeating this procedure for many prisms lined up with horizontal axes,
we find that in all points in a horizontal plane the pressure must have the
same value.

A relation between different horizontal planes is obtained by considering
the equilibrium of a prism or cylinder with vertical axis to displacement in
the vertical direction. In this case the weight of the prism has to be taken
into account in the equilibrium of the forces. Corresponding to Figure 2.6, the
pressure force p1 ·A on the upper end face and the weight G = γ ·V = γ ·A ·h
are directed downward. The pressure force p2 · A acts upward on the lower
end face. Equilibrium requires that

γ · A · h + p1 · A = p2 · A.

Therefore,

p2 − p1 = γ · h. (2.1)

The pressure difference between the positions 1 and 2 is equal to the weight
of the vertical column of liquid of cross-section 1 between them. Repeated

Fig. 2.6. Balance of forces on a vertical cylinder element
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application of this procedure leads to the following result: The pressure in-
creases in the direction of the force of gravity by the amount γ for each unit
of length. It is constant in every horizontal plane.

If we introduce an x, y, z coordinate system whose z axis points vertically
upward in the opposite direction to gravity, and if p0 is the pressure in the
horizontal plane z = 0, the pressure p at an arbitrary position is given by

p = p0 − γ · z. (2.2)

By applying the principle of solidification repeatedly, we see that this relation
holds in large spaces filled with the liquid, in communicating vessels, in arbi-
trary pipe systems, in the gaps in gravel or sand, etc. The only assumption
is a homogeneous connected liquid at rest.

The principle of solidification can also be used to determine the force that
a body submerged in a liquid experiences due to liquid pressures. We first
imagine the body replaced by liquid. The new section of liquid has the same
shape as the body and has the same specific weight as the remaining liquid.
It is kept in equilibrium by the pressure forces on its surface. The resultant
of the pressure forces must point vertically upward, through the center of
gravity of the new part of liquid. The size of this resultant force, called the
lift, is equal to the product of the displaced volume V and the specific weight
γ of the liquid. If we then imagine that the new part of the liquid solidifies,
there is no change in the relations. Neither does anything change if another
body of the same shape but a different weight is brought to the same position.
This law was discovered by Archimedes and reads thus: The loss of weight of
a body submerged in a liquid is equal to the weight of the fluid it displaces. If
a body is weighed in a submerged state and in air, where it also experiences
a small lift, there is a reduction in weight of Gliq−Gair = V ·(γliq−γair). This
can be determined for a known specific weight γliq or a known volume V . The
quantity γair can be computed using the concepts introduced in Section 2.5.

If the liquid is inhomogeneous (e.g., at different positions in a liquid with a
nonuniform temperature distribution, salt solution with different salt content
at different positions), the procedure with the prism with the horizontal axis
can be applied without any change. Here, too, the pressure is the same in
all horizontal planes. Two such horizontal planes a (not too large) distance h
apart are selected (see Figure 2.7), with the upper plane at pressure p1 and
the lower at pressure p2. We consider two vertical prisms with height h and
mean specific weights of γ1 and γ2 for the left and right prisms, respectively.

The balance of forces requires that on the left p2 − p1 = γ1 · h and on
the right p2 − p1 = γ2 · h. This is possible only if γ1 = γ2. Otherwise, there

Fig. 2.7. Balance of forces on two hori-
zontally displaced cylinder elements
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would be no equilibrium, and the liquid would be set in motion. We can re-
fine this approach by assuming the height h to be very small and carrying
out the procedure for arbitrarily many pairs of neighboring horizontal planes.
We obtain the result that in an inhomogeneous liquid, equilibrium is possible
only if the density is constant in every horizontal layer. This result already
contains the answer to the question of the equilibrium of two liquids of dif-
ferent densities that are layered above one another and do not mix. Their
equilibrium requires that the interface must be a horizontal surface. We can
directly apply the approach of Figure 2.7 to two homogeneous liquids layered
above one another, whose interface is between the two horizontal planes and
is initially unknown, and again we arrive at the same result.

Considering the stability of such a layering of liquids, we note that the
liquid with the lower density always must be situated above the denser liquid.
The reverse stratification is unstable. The smallest disturbance will put it into
motion.

The proof of this can again be drawn from Figure 2.7. We assume a
disturbed, slightly inclined interface between the two horizontal planes and
determine the pressure differences in the interface. In the stable case, this
inclination of the interface tends to decrease, whereas in the unstable case it
tends to increase.

Similar statements hold for densities that vary continuously. The system
is stable if the density everywhere decreases as we move upward. In contrast
to the stable layered inhomogeneous liquid, the homogeneous liquid is a case
of neutral equilibrium. Any parts of the liquid may be arbitrarily displaced
without generating any forces that would disturb the equilibrium.

For the pressure distribution in the inhomogeneous liquid, for every layer
in which the density is sufficiently inhomogeneous, equation (2.1) in differen-
tial form holds:

dp = −γ · dz. (2.3)

If γ is given as a function of the height z, integration leads to the relation

p = p0 −
z∫

0

γ · dz. (2.4)

2.4 Properties of Gases

Gases differ from liquids in that at large pressures they can be pressed to-
gether into a very small space. If more space become available than in the
initial state, they always fill it uniformly, with a corresponding drop in pres-
sure. Apart from this, their behavior is very similar to that of liquids. For
gases at rest, all resistance to change of shape also vanishes, and they also
have a certain viscosity to internal displacement. As long as there is no change
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in volume, the behavior of a gas is qualitatively no different from that of a
liquid that fills the same space without having a free surface.

The most important gas is the air in our atmosphere. Other gases have
essentially the same behavior. As we will discuss in more detail in what
follows, the air on the surface of the Earth is under approximately constant
pressure of around 1 bar or 105 N/m2. At higher altitudes the air pressure is
lower (cf. Section 2.5).

There are several devices available to measure the air pressure (gas pres-
sure). Devices that show pressure differences are called manometers. If they
show absolute pressures of the surrounding gas, they are called barometers.
Liquid columns can be used for both sorts of measurement (see Section 2.6).
Devices for which the pressure to be measured acts on a spring are also fre-
quently used. In order to measure the absolute pressure of the air, one can,
for example, connect a metal can that has been pumped empty of air to a
flexible lid with a strong spring, so that the tension of the spring just pre-
vents the lid from being pushed in by the external air pressure. If this device
is brought to a position with a different air pressure, the pressure change can
be read from the deflection of the pointer (aneroid barometer, nowadays with
digital display).

The law according to which the pressure of the gas changes for a given
change in volume was first discovered by R. Boyle in 1662 and then in-
dependently by Mariotte in 1679. It is therefore called the Boyle–Mariotte
law. According to this law, at constant temperature the pressure is inversely
proportional to the volume. Therefore, if a fixed amount of gas is pressed
together to half of its volume, its pressure doubles. If the volume is doubled,
the pressure sinks by half. This law is expressed by the equation

p · V = p1 · V1, (2.5)

where p1 is the initial pressure, V1 the initial volume, and p and V the values
of these quantities for the gas in some given state.

The volume of a gas also changes greatly with the temperature. Gay-
Lussac found in 1816 that the expansion of a gas for a change in temperature
of 1 ◦C at constant pressure is always 1/273.2 of its volume at 0 ◦C. This is
valid to good approximation for all gases and temperatures. This behavior is
described by the equation

V = V0 · (1 + α · ϑ) , (2.6)

where V0 is the volume at 0 ◦C, ϑ the temperature in ◦C and α = 1/273.2 ◦C
the coefficient of expansion. At moderate pressures, this value of α is valid
not only for air, but also to good approximation for other gases, like steam
and helium.

Since equation (2.6) is independent of the pressure, it may be combined
with equation (2.5). We therefore obtain an equation applicable at all pres-
sures and temperatures:

p · V = p0 · V0 · (1 + α · ϑ) . (2.7)
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Here p0 is an arbitrary but fixed initial pressure and V0 the volume at the ini-
tial pressure p0 and at 0 ◦C. Equation (2.7) is frequently called the Mariotte–
Gay-Lussac law. It is also called the equation of state, since it connects the
three state variables pressure, volume, and temperature. It is called the equa-
tion of state of the ideal gas, since the behavior of real gases deviates some-
what from this equation. For gases at normal densities these deviations may
be neglected, but they are very important if the gas is greatly compressed,
and particularly if the temperature is reduced so far that the gas begins to
condense.

These deviations are treated in detail in thermodynamics. Here we men-
tion only one of the deviations. According to equation (2.5), at very high
pressures the gas volume is very small. Equation (2.7) can be used to cal-
culate at which pressure the density of water, or that of gold, is reached.
However, in reality this is impossible. There is a limiting volume below which
the gas cannot be compressed, however large the pressure, i.e., a volume at
which the molecules have attained their densest possible structuring. This
fact can be included in equation (2.7), by writing

p · (V − V ′) = p0 · (V0 − V ′) · (1 + α · ϑ) ,

with the small limiting volume V ′. For every finite p, V is somewhat larger
than V ′. For volumes V that are large compared to V ′, the results of this
equation are essentially no different from those of equation (2.5) or (2.7).

As a gas is compressed, heat is generated. The Boyle–Mariotte law, which
is valid only for constant temperatures, can be observed only if the gas has
enough time during the compression to release the heat generated and to
assume the surrounding temperature. The same is true for the cooling as-
sociated with expansion. If the gas is not given enough time to equalize
its temperature differences, the ratio of the pressure to the initial pressure
increases more strongly than the ratio of the volumes decreases. Thermo-
dynamics states that in the case in which there is no exchange of the heat
generated, i.e., when the compression or expansion takes place quickly, in-
stead of equation (2.5) we have the equation

p · V κ = p1 · V κ
1 , (2.8)

where κ = cp/cv is the ratio of the specific heat at constant pressure to the
specific heat at constant volume. For dry air, κ = 1.4. Whereas a compres-
sion or expansion that obeys equation (2.5) is an isothermal change of state,
a change according to equation (2.8) is called adiabatic compression or ex-
pansion. There is heating associated with adiabatic compression, and this
can be calculated from equations (2.7) and (2.8), while cooling is associated
with adiabatic expansion.

The behavior of gases discussed in this section can be explained by the as-
sumption of gas kinetics that the molecules of the gas move at large velocities,
colliding with each other and with the wall. The pressure is the summation
of these collisions, and the temperature is the same as the kinetic energy of
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the particles. The temperature increases on compression, as the velocity of
the particles is increased due to elastic reflection as the walls move together.

2.5 Gas Pressure

The condition for the equilibrium of a gas is the same as that for the equilib-
rium of a liquid. The relations of the above section can therefore be carried
over. In many cases, e.g., for moderate vertical extensions of a gas, the specific
weight of the gas can be assumed to be spatially constant. Equations (2.1)
and (2.2) of the previous section can be applied; i.e., the gas may be consid-
ered to be a homogeneous liquid. For greater vertical extensions (to the order
of kilometers) this is no longer permissible. The pressure differences are so
great here that because of the compressibility of the gas, the densities above
and below are different. Temperature differences are also frequently impor-
tant. Here the equation for inhomogeneous liquids must be used. Equation
(2.3) is divided by γ and integrated. We obtain

p0∫
p

dp
γ

= z. (2.9)

Depending on how the temperature depends on the height, this integral yields
different results. The most important case is that of constant temperature.
According to the Boyle–Mariotte law (p · V = const), the specific weight γ is
directly proportional to the pressure:

γ = γ0 · p

p0
. (2.10)

Therefore,
p0∫

p

dp
γ

=
p0

γ0
·

p0∫
p

dp
p

=
p0

γ0
· ln
(
p0

p

)
, (2.11)

As can be seen from equation (2.1), p0/γ0 is the height of a column of liquid
with the constant specific weight γ0, with pressure p0 at the lower end and
a pressure of zero at the upper end. This height is called the height of the
uniform atmosphere. With regard to the real atmosphere, it is nothing more
than a computational quantity.

As an example we determine its numerical value. We therefore require
the value of γ0. In order to determine γ0 we proceed as follows: We weigh
a container with a faucet out of which the air has been pumped. We then
open the faucet and wait for the temperature to equalize, as the air in the
container is initially heated by the work done by the external atmosphere
as it flows into the container. We then weigh the container a second time.
Since it was empty before and is now filled with air, its weight has increased
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by the weight G of the air inside it. We then determine the volume V of
the container, by, for example, pumping the air out of the container again,
opening the faucet under water and again weighing the container filled with
water. The measured quantities give us the value γ0 = G/V associated with
the pressure p0 on the ground. For every other ground pressure p0, γ0 can be
calculated proportionally. Assuming that p0 is equal to 1 bar, for moderately
damp air of temperature ϑ, the Gay-Lussac law yields

γ =
12.45

1 + α · ϑ N/m3. (2.12)

In dynamics, the density ρ = γ/g is used as a measure of the mass inertia.
At room temperature, we can choose a mean value of 11.8 N/m3 for γ. With
g = 9.81 m/s2 we then obtain a mean value for ρ of 1.20 Ns2/m4.

In order to compute p0/γ0 in equation (2.11), p0 has to be expressed in
the same mass system as γ0. With 1 bar = 105 N/m2, we obtain

p0

γ0
=

100000
12.45

· (1 + α · ϑ) = 8030 · (1 + α · ϑ) .

The unit of p0/γ0 is m. The height of the uniform atmosphere for moderately
damp air is (independent of the pressure but dependent on the temperature)
8030 · (1 + α · ϑ) m. We set this equal to H0. Equation (2.9) applied to two
different heights yields

z1 = H0 · ln
(
p0

p1

)
, z2 = H0 · ln

(
p0

p2

)
.

Therefore,

z1 − z2 = H0 · ln
(
p2

p1

)
. (2.13)

This is the so-called barometric height formula. By inverting equation (2.13),
we obtain the dependence of the pressure on the height:

p = p1 · e− z−z1
H0 . (2.14)

Considering the balance of the forces, in analogy to Figure 2.6, we see that
the weight of a column of air with base area A that extends from position
z upward to the edge of the atmosphere is equal to A · p. Therefore, p is
directly equal to the weight of the column of air with cross-section 1 situated
above position z. Figure 2.8 shows equation (2.14) graphically. The pressure
decreases continuously but ever more weakly with increasing height. For large
heights it is equal to zero. The pressure decrease with height can be measured
in the free atmosphere with a pressure-measuring device (barometer) on a
tower or mountain. It can even be measured in a multistoried house. If the
air temperatures are also measured, the observed pressure differences can be
used to determine the difference in height. This method is used in aircraft
to determine the altitude. If this height difference is known, this method can
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also be used to determine the mean specific weight of the air layer situated
between the two positions.

If the temperature of the mass of air is not constant, the height equation
can still be applied to height sections in which the temperature differences
are not very large. The height H0 associated with each height section is then
determined for the mean value of the temperature in this section.

Finally, we turn to the question of when the equilibrium of a layered
mass of gas is stable and when it is unstable. The condition that the specific
weight of the upper layers must be smaller than that of the lower layers is not
sufficient, because as a mass of gas moves upward or downward the pressure
and thus the density of the mass of gas changes. The correct answer to the
question is the following: The system is stable if a part of the gas at a greater
height and at the new pressure is denser than its new surroundings, or if a part
of the gas at a lower height and at the new pressure has a lower density than
its new surroundings. In these cases the part of the gas will tend to return
to its original position. There is a stratification (temperature distribution)
in a mass of gas that corresponds to a homogeneous liquid, which therefore
implies neutral equilibrium for the mass of gas. In order for this to hold, each
part of the gas taken from an arbitrary position must have the same density
as its surroundings after displacement, as if it had always belonged there. A
part of a gas behaves adiabatically under a change of pressure as long as it has
no possibility to exchange heat. If the stratification is such that pressure and
density satisfy the equation of state (2.8) at all heights (i.e., p is proportional
to γκ), every raised or lowered gas part always reaches a neighborhood with
the temperature that it has itself due to its own adiabatic change of state.
Therefore, it has no possibility to exchange heat with its surroundings. It can
be shown that this adiabatic stratification has the following in common with
a homogeneous liquid: It can be made homogeneous by strong mixing of an
originally different type of stratification, such as an inhomogeneously layered
salt solution.

Fig. 2.8. Pressure distribution in an atmosphere of
constant temperature
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In the air of the atmosphere, adiabatic stratification is characterized by
the fact that the temperature decreases by 1 ◦C with an increase of height
of 100 m. A lesser temperature decrease already indicates stability, while a
temperature increase with height indicates even stronger stability. A larger
temperature decrease than 1 ◦C per 100 m generally does not occur in the
free atmosphere, since it would correspond to an unstable state. However,
it is found close to the surface of the earth if the ground is hotter than the
air. The air is then not in equilibrium, but rather is in motion with vertical
upward and downward streams.

The pressure distribution in the adiabatically layered atmosphere can also
be computed with equation (2.9), by setting γ = γ0 · (p/p0)1/κ. Integration
yields

z =
κ · H0

κ − 1
·
1 −

(
p

p0

)κ−1
κ

 or p = p0 ·
(

1 − κ − 1
κ

· z

H0

) κ
κ−1

.

The equation of state p/ρ = R · T , with the density ρ = γ/g, the absolute
temperature T = (273.2 + ϑ/1 ◦C) K and the gas constant R, with p0/γ0 =
H0, yields

R · T
g

=
p

γ
= H0 − κ − 1

κ
· z, and so

dz
dT

= −H0 · κ

κ − 1
· R
g
.

For moderately damp air, R/g = 29.4 m/K and dz/dT = 102 m/K.
If we replace κ in the above equations by a different number n, we obtain

an interpolation formula that describes states of layering that actually occur
in the atmosphere. These states of layering are called polytropic. For stable
stratification, n < κ.

2.6 Interaction Between Gas Pressure and Liquid
Pressure

As long as the pressure difference between the air in a container and the
external air in the atmosphere is not too large, it can be measured with a U-
tube manometer (cf. Figure 2.9). Neglecting the weight of the air, we obtain
the following relations. At position A, the liquid pressure is equal to the air
pressure p1 in the container. In the other limb of the U-tube, the pressure
at the same height B is the same (communicating containers). Say the free
liquid surface in this limb is at C. There the liquid pressure is equal to the
pressure p0 of the atmosphere. According to the relations in Section 2.3,

p1 = p0 + γ · h
if the height BC is set equal to h. A U-tube filled with liquid is therefore
suitable for measuring such pressure differences. It is used in various different
forms. In order not to have to read the liquid heights at two positions (A and
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C in Figure 2.9), one of the limbs is frequently reshaped as a large pot in
which the movement of the surface becomes very small (see Figure 2.10). To
zero the device, both openings have to be connected to the atmosphere. For
very small pressure differences the reading of the heights is refined, using for
example a moveable microscope, or with a magnifying projection of a scale
swimming on the surface of the liquid, according to A. Betz.

The use of the liquid manometer has led to a particular type of pres-
sure units, where the pressure is expressed by the height of a liquid column.
For example, 1 mm WC (water column, or WG water gauge) is equal to
1 kp/m2 = 9.81 Pa.

Water is not very suitable as a measurement liquid, since it wets the walls
of the glass pipe very irregularly. All fat-soluble liquids (alcohol, toluol, xylol,
etc.) are much more suitable. For larger pressure differences mercury is rec-
ommended, as in its pure state it permits very precise adjustment in a glass
tube that is not too narrow. Because of the specific weight of 133.370 N/m3

at 0 ◦C, 1 mm Hg (mercury) is equal to 13.6 kp/m2 = 133.4 Pa. The pres-
sure unit 1 mm Hg is also called 1 torr, in honor of Torricelli. In recent
times, membrane pressure gauges with digital data memory and piezopres-
sure gauges that exploit the piezoelectric effect have been used.

If we pump some air out of the container in Figure 2.9, so that the pressure
there becomes lower than the atmospheric pressure, the liquid in limb A of
the U-tube will be higher than the liquid in limb B. Figure 2.11 shows a
somewhat altered arrangement for the same experiment. The setup in Figure
2.9 is called an overpressure manometer, while that in Figure 2.11 is called a
vacuum manometer. The pressure is measured from the height h.

Here we mention something about the history of pressure measurement:
The question arose of how high a liquid can be sucked. In the middle ages,
the rising of a column of liquid due to suction was explained by the idea of
horror vacui, that “nature abhors a vacuum.” No investigations had been
carried out into whether the horror vacui was arbitrarily strong, or whether
it had a limit. It was the misfortune of Florentine pump makers, who built a
water pump with the suction valve more than 10 m above the water surface
and were unable to pump water as high as they wanted, that encouraged

Fig. 2.9 Hydrostatic pressure mea-
surement (U-tube manometer)

Fig. 2.10 Liquid manometer
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Galileo to look into the problem. Meanwhile, it was his pupil Torricelli who
first recognized the facts, and this because of an experiment with mercury
that he prompted his friend Viviani to perform in 1643. From our point of
view, the answer to the question above is not difficult. Suction is merely
compressing more weakly than the atmosphere compresses. The pressure in
the container in Figure 2.11 is at its lowest when all the air has been pumped
out of the container. Then it is equal to zero. The column of liquid can rise
only so high that its height h corresponds to the air pressure p0 (h = p0/γ).
Viviani’s experiment was as follows: He took a glass tube two ells (120 cm)
in length with a glass bubble blown on one end, and filled it completely with
mercury from the other open end, closing this end with his finger. He then
turned the tube upside down and placed the closed end in a flat container
filled with mercury, and removed his finger. The column of mercury sank
to a height of 1 1/4 ell (75 cm) above the surface of the mercury in the
container and left an empty space behind. Torricelli correctly recognized that
the mercury column retained the equilibrium with the outer air pressure. He
observed that the mercury column did not always have the same height and
concluded that the air pressure undergoes certain fluctuations. This fact is
today of great importance for meteorology. Torricelli already concluded that
the air pressure on a mountain must be higher than that in the valley, and
that therefore the height of the mercury column is lower on the summit than
down below. This was demonstrated several years later by Perrier, on the
encouragement of Pascal, whereby he measured the height of the mercury
column on the Puy de Dome and at the foot of this 975 m high mountain
and noted a difference of 3 inches. The name barometer for this pressure
gauge comes from Pascal. The word (derived from the Greek barys, meaning
heavy) indicates that the weight of the air column above the liquid is what
is measured.

At this point we mention another unit of pressure based on the barometer,
the physical atmosphere. The mean level of a barometer at sea level is about

Fig. 2.11. Barometer
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760 mm Hg. It has been agreed to define this barometer level at 0 ◦C mercury
temperature as the normal state of the atmosphere and to call the associated
air pressure one “physical atmosphere.” The qualifier “physical” is used be-
cause the technical atmosphere used by engineers is equal to 1 kp/cm2. Since
the specific weight of mercury at 0 ◦C is equal to 13.595 p/cm3 and 1 cm3

therefore weighs 13.595 p, a mercury column of 76 cm therefore corresponds
to a pressure of

76 cm · 13.595 p/cm3 = 1033.2 p/cm2 = 1.0132 · 105 Pa.

This pressure also corresponds to a water column of height 10.332 m (water
barometer). The suction height of pumps must therefore be lower than this
value.

Since the force of gravity plays a role in the definition of the physical
atmosphere, and this does not have the same value at all positions on Earth,
for greater precision in the definition of pressure units a particular value of the
acceleration due to gravity g has been chosen. The value 980.665 cm/s2 has
been determined as the normal value of gravitational acceleration at the 45th
degree of latitude at sea level. For a different acceleration due to gravity g,
the pressure of the normal atmosphere is (1.0332 · 980.665)/g local kiloponds
per square centimeter. To get away from this somewhat arbitrary setting,
a pressure unit was introduced to the CGS system: one million times the
pressure unit 1 dyn/cm2 is called the bar. At the normal value of gravitational
acceleration, one bar corresponds to a mercury column of height 750.06 mm.

2.7 Equilibrium in Other Force Fields

In Sections 2.3 to 2.6, a homogeneous gravitational field was used; i.e., the
acceleration due to gravity was assumed to be everywhere equally strong and
orientated in the same direction. This assumption suffices for most appli-
cations. However, if we consider regions of Earth that are no longer small
compared to Earth’s radius, the variations of the acceleration due to gravity
in its magnitude and direction have to be taken into account. For a liquid
at rest relative to a uniformly rotating container, in addition to the acceler-
ation due to gravity, the centrifugal acceleration also has to be considered.
In what follows we consider the quite general question of the equilibrium of
a homogeneous or inhomogeneous liquid in a general force field, whose force
per unit mass (i.e., acceleration) varies in strength and direction from place
to place.

The considerations for a general force field lead directly from the ideas
in Section 2.3. It follows from this section that the pressure cannot change
in every direction perpendicular to the force field at hand (equilibrium of
a small prism according to Figure 2.4 with the axis perpendicular to the
direction of the force). Condensing all directions perpendicular to the force
direction to one point, the pressure on the surface element perpendicular to
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the force direction must be constant. For the case in which the adjoining
surface elements can be integrated into one finite surface, i.e., when the force
field has normal surfaces, the pressure is constant along all such normal
surfaces. If a force field has no normal surface, then equilibrium is not possible
in a liquid in this force field.

In contrast to the previous sections, where g denoted the strength of the
gravitational field of the Earth, g will now denote the strength of a general
force field. From the equilibrium at a small prism as in Figure 2.6 with height
dh parallel to the force direction and pressure increase dp, we find that the
pressure in the direction of the force increases according to the equation

dp = g · ρ · dh. (2.15)

In the discussion below, we assume that the force field has normal surfaces.
We consider two such normal surfaces with pressures p and p + dp. At two
positions 1 and 2 in Figure 2.12, according to equation (2.15) we have on the
one hand dp = g1 · ρ1 · dh1, and on the other hand dp = g2 · ρ2 · dh2. If ρ is
either constant or a function of p (homogeneous liquid or homogeneous gas, cf.
Sections 2.3 and 2.5), then p1 = p2 and ρ1 = ρ2. This yields g1 ·dh1 = g2 ·dh2,
where g · dh is the work done by the force in the transition from one normal
surface to the other. This work has the same value at all positions between
the normal surfaces. The force field has a potential. The normal surfaces
are therefore surfaces of constant potential. Introducing the potential U at a
point with the equation

dU = −g · dh (2.16)

(the minus sign because in equation (2.15) dh in the direction of g is assumed
positive), we obtain

dp = −ρ · dU, or dU = −dp
ρ
. (2.17)

This yields the potential difference between two points A and B:

UA − UB =

B∫
A

dp
ρ
. (2.18)

Fig. 2.12. Normal surfaces of a force
field
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In the case of a homogeneous liquid or a homogeneous gas assumed here, the
right-hand side can be computed, and we obtain the pressure directly as a
function of the potential. These results may be summarized as follows:

In the case of a homogeneous liquid or a homogeneous gas, equilibrium is
possible only if the force field has a potential. The surfaces of constant po-
tential that lie perpendicular to the force are simultaneously surfaces of con-
stant pressure. The pressure increases in the direction of the force. We have
dp = −ρ · dU .

For an inhomogeneous liquid, it may happen that although g1 ·dh1 is not
equal g2 · dh2, by suitable distribution of the density, we still have

ρ1 · g1 · dh1 = ρ2 · g2 · dh2.

It is seen that the equilibrium is unstable; as if the liquid were displaced
along the normal surface, an action requiring no work, the distribution of the
density is changed and the equilibrium disturbed. Therefore, if we want to
restrict ourselves to stable states, we may consider only force fields that have
a potential. However if g1 · dh1 is equal to g2 · dh2, for equilibrium to exist
we must have ρ1 = ρ2. Therefore, we can make the following assertion:

A stable state of an inhomogeneous liquid is possible only if the force field has
a potential. The surfaces of constant potential are simultaneously surfaces of
constant pressure and constant density.

Equations (2.17) and (2.18) may therefore be applied here too. The con-
ditions for stability of the stratification are the same as those discussed for
the homogeneous gravitational field in Sections 2.3 and 2.5.

Apart from magnetic force fields, the force fields that occur in physics
almost always have a potential. However, the demand that the density ρ be
constant on all surfaces of constant potential is of importance. This condition
can be violated if the liquid or gas is locally heated, with a reduction in density
at that region. In this case equilibrium is no longer possible, and the heated
fluid and its surroundings are set into motion. This process comes to rest
only if the warmer parts lie above the colder layers, and so the condition of
constant density on surfaces of constant potential is again satisfied.

The free surface of a liquid or the interface between two immiscible liquids
of different densities always follows a surface of constant potential. For this
reason, surfaces of constant potential (equipotential surfaces) are also called
level surfaces (free surface or level of an imaginary liquid). In surveying, the
surface of the sea forms the level surface to which all heights are referred.

The discussions above will now be clarified in a simple example. Inside
a container rotating uniformly about a vertical axis is a homogeneous liquid
that is at rest relative to the rotating motion. We consider the equilibrium
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of this liquid. We first determine an expression for the potential, which is
additively made up of parts due to gravity and due to the centrifugal force.

Using cylindrical coordinates r and z (see Figure 2.13), we see that the
contribution to the potential from gravity is U1 = U0 + g · z, where g is the
acceleration due to gravity and U0 an arbitrarily chosen starting potential.
In order to determine the contribution to the potential from the centrifugal
force, we note that the strength of the centrifugal force field is ω2 ·r, where ω
is the angular velocity with which the container and the liquid both rotate.
Integrating in the direction of the centrifugal acceleration, i.e., in the direction
of r, we obtain the second contribution to the potential:

U2 = −ω2 · r2

2
.

This yields the potential in a point of the liquid:

U = U1 + U2 = U0 + g · z − ω2 · r2

2
.

The equipotential surfaces are found with the condition U = const:

z = const +
ω2 · r2

2 · g .

The free surfaces and all surfaces of equal pressure are paraboloids with the
same parameter g/ω2. Integration of equation (2.17) leads to the relation
p = p0 − ρ · U for the pressure. With ρ · g = γ we obtain

p = const + γ ·
(

−z +
ω2 · r2

2 · g
)
.

Fig. 2.13. Liquid in a rotating container
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2.8 Surface Stress (Capillarity)

Free surfaces of liquids tend to shrink and form minimal surfaces. This behav-
ior can be explained with a stress state in the surface taken on by a uniformly
stretched thin skin. The origin of this tendency to shrink is as follows: Each
liquid molecule close to the surface is pulled into the interior of the liquid
by the attraction of the neighboring molecules (intermolecular forces). Be-
cause of this, only as many molecules as are absolutely necessary to form the
surface remain on the surface. The same behavior is also found on interfaces
between two liquids that do not mix. The stress that keeps the surface in
equilibrium is called surface stress.

On flat interfaces the surface stress causes no pressure differences, since
the resulting surface stress force is equal to zero. At curved surfaces pres-
sure differences are necessary to establish equilibrium. We consider a small
rectangle of a curved surface with sides of length ds1 and ds2 (see Figure
2.14). The pressure difference p1 − p2 on the surface ds1 · ds2 leads to a force
(p1 − p2) · ds1 · ds2. The surface stress is the force per unit length that keeps
the surface in equilibrium. It has the magnitude C (C = capillary constant).
Therefore, on the four edges of the rectangle we obtain two forces C · ds1 on
the sides ds1 and two forces C · ds2 on the sides ds2. The two forces on the
sides ds2 are at an angle dα = ds1/R1 to each other. This leads to a resultant
C · ds2 · dα = C · ds2 · ds1/R1. The two other forces, which form the angle
dβ = ds2/R2, yield a resultant C · ds1 · ds2/R2. From the equilibrium of the
three forces we obtain

p1 − p2 = C ·
(

1
R1

+
1
R2

)
. (2.19)

Fig. 2.14. Surface stress and pressure on
a curved liquid surface
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As seen in Figure 2.14, R1 and R2 are the radii of curvature of the curves
of section of the surface with two orthogonal planes perpendicular to the
tangential plane. Equation (2.19) leads to the geometric relation that the
sum 1/R1+1/R2 is independent of the direction, since the pressure difference
p1 − p2 does not depend on the direction.

In liquids that are in equilibrium, the pressure dependent on the specific
weight varies with height, according to the law p = p0 − γ · z. Therefore, at
the interface of two liquids with specific weights γ1 and γ2, we find that the
associated pressures are p1 = p0 − γ1 · z and p2 = p0 − γ2 · z. With equation
(2.19) we then obtain the relation between the curvature and the height at
the interface:

1
R1

+
1
R2

=
γ2 − γ1

C
· z. (2.20)

Figure 2.15 shows two examples of such surfaces. The capillary constant C
can be determined by measurement of the geometries occurring.

It can be seen from equation (2.20) that for very small differences in
the specific weights, we find an n-fold geometrically similar increase in the
different surface forms (R1, R2 and z are n times as large) if the term
(γ2 − γ1)/C is reduced by the factor 1/n2. For γ2 = γ1 the effect of gravity
vanishes. These surfaces are the so-called minimal surfaces. If for γ2 −γ1 → 0
we simultaneously set the plane z = 0 at infinity, we find from equation
(2.20) that 1/R1 +1/R2 is constant. This result yields minimal surfaces with
a given volume content, the simplest example of which is the sphere. These
minimal surfaces may be obtained experimentally using soap films. In the
interior of spherically shaped soap bubbles is an overpressure of magnitude
p1 − p2 = 4 · C/R (There are two surfaces of the soap solution in air to be
taken into account, which is why the factor 2 · C instead of C is used in
equation (2.19).)

Fig. 2.15 Capillary surfaces of a liquid Fig. 2.16 Equilibrium of three surface
stresses
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If three liquids meet along an edge, the balance of forces of the three
surface stresses C12, C13, and C23 yields certain angles at which the three
interfaces join (see Figure 2.16). It may happen that C13 is larger than the
sum of C12 and C23. In this case no equilibrium is possible. For example, this
happens when air, mineral oil, and water meet. The mineral oil then coats
the entire surface, possibly with a very thin layer. This behavior is observed
in the spreading of drops of motor oil on wet roads. If the oil is replaced by
melted fat, this assumes the shape of flat lenses between the water and the
air (globules of fat in soup). Figure 2.16 shows this case. If one of the three
materials is solid, the balance of forces of the three surface stresses can be
set up only with the components in the possible direction of displacement,
parallel to the solid surface. Using the wetting angle α (see Figure 2.17), we
obtain C12 · cos(α) + C23 = C13, i.e.,

cos (α) =
C13 − C23

C12
. (2.21)

If C12 (surface stress at the interface of the two liquids 1 and 2) is already
known and α is measured, we can obtain the difference C13 − C23. However,
C13 and C23 cannot be individually determined. If the difference is negative,
the angle α is greater than π/2 as with, for example, air, mercury, and glass.
The lower picture in Figure 2.15 shows such a drop of mercury. The case
C13 − C23 > C12 may also occur. Then the entire solid body is coated by
liquid 2. This occurs in the case of petroleum.

Liquids are observed to rise considerably in narrow tubes. If r is the inner
radius of the tube, then, simplifying the liquid surface as a spherical shell (r
small compared to h), we see from Figure 2.18 that the spherical radius is
R = r/ cos(α), with the wetting angle α. Therefore, according to equation
(2.20), we obtain

h =
2 · C12

γ2 − γ1
· cos (α)

r
. (2.22)

Fig. 2.17 Wetting angle on a solid sur-
face

Fig. 2.18 Capillary rise in a tube
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The height h can become very large if r is very small (suction effect of blotting
paper, fine clay, etc.).

In equation (2.22) we can eliminate cos(α) using equation (2.21) and
multiply both sides by π · r2 · (γ2 − γ1). This yields the equation

(γ2 − γ1) · π · r2 · h = (C13 − C23) · 2 · π · r.
The weight of the column of liquid, reduced by its lift, is equal to the resulting
tensile force on the tube wall. If the tensile force is negative, i.e., α > π/2
as in the case of mercury, h becomes negative (Figure 2.18 reflected in the
horizontal plane). For wetted surfaces C13−C23 may be replaced by C12. Then
cos(α) = 1; i.e., α = 0. This yields the maximum value of h. On measurement
of h and r we obtain

C12 =
1
2

· (γ2 − γ1) · h · r.
Another method of determining C12 is the measurement of capillary waves,
to be discussed in Section 4.1.8.

Values of C12 at 20 ◦C: water to air 0.073 N/m,
oil to air 0.025 to 0.030 N/m,
mercury to air 0.472 N/m.

2.9 Problems

2.1

Three identical U-tubes are connected
in a row. In each U-tube is a liquid
with density ρ. The levels of the liq-
uids show the height differences h1,
h2, and h3. The effect of gravity on
the air may be neglected. How great
is the pressure difference ∆p = p3−p1
between the free ends of the first and
third tubes?

∆p = p3 − p1 = ρ·g ·(h1 + h2 + h3) .
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2.2

An open water container and a con-
tainer that is closed to the atmo-
sphere by a manometer are con-
nected by a U-tube, whose lower
part is filled with carbon tetrachlo-
ride (tet) (CCl4). The height of the
water column (density of water ρw =
1000 km/m3) is h1 = 0.4 m, the
column of oil (density of oil ρoil =
950 kg/m3) has the height h3 =
0.13 m, and the height h2 of the CCl4
column is h2 = 0.1 m.

What is the density ρtet of the CCl4 filling if an excess pressure compared to
the atmospheric pressure of 1200 N/m2 is read from the manometer?

ρtet = 1541.76 kg/m3.

2.3

The pressure p0 and the temperature T0 are known for the atmosphere at
sea level z = 0 (specific gas constant of air R = 287 m2/(s2 · K), p0 =
101300 N/m2, T0 = 283 K).
(a) Assuming that the state of the gas in the atmosphere changes isother-
mically, determine the dependence of the pressure and the density of the
atmosphere on the height z.

p = p0 · e− z
H0 , ρ = ρ0 · e− z

H0 , H0 =
R · T0

g
.

(b) Assuming that the state of the gas in the atmosphere changes poly-
tropically, determine the dependence of the pressure and the density of the
atmosphere on the height z:

p

p0
=
(

ρ

ρ0

)n

,
p

p0
=
(

1 − n − 1
n

· z

H0

) n
n−1

,
ρ

ρ0
=
(

1 − n − 1
n

· z

H0

) 1
n−1

.

2.4

A balloon is suspended in an isothermal atmosphere (air pressure on the
ground p0 = 1.013 bar, air density on the ground ρ0 = 1.225 kg/m3) at a
height z0 = 500 m. How far will the balloon sink if a change in the weather
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causes the air density on the ground to change to ρ′
0 = 1.0 kg/m3 while the

air pressure remains the same? The volume V of the balloon is not to change
as the height varies.

zx = H ′
0 ·
[
ln
(
ρ′
0

ρ0

)
+

z0

H0

]
, ∆z = 272.41 m.

2.5

A stratospheric balloon is partially
filled with the buoyant gas hydrogen
H2 on the ground. As the balloon
rises, it inflates with an increase in
volume of the filling. This leads to
an additional lift. On the ground, the
balloon has volume V0 = 450 m3,
while its maximum volume is V1 =
1400 m3.

(a) What is the greatest possible weight of the load Gmax to be lifted (the
balloon itself is part of the weight, but the buoyant gas is not) if the strato-
spheric balloon is to reach a maximum height of zmax = 1.2 km in a poly-
tropic atmosphere? On the ground, the air pressure is p0 = 1.013 bar and
the air density is ρ0 = 1.234 kg/m3. The density of hydrogen ρH2,0 in the
balloon has the value ρH2,0 = 0.087 kg/m3 on the ground. The temperature
T1km = 280 K at an altitude of 1 km, and the specific gas constant of the air
R = 287 m2/(s2 · K) are also known.

Gmax = 3955.8 N.

(b) At what height z1 does the balloon reach its largest volume V1 = 1400 m3?
Until the maximum volume is reached, the hydrogen in the balloon is to have
the same temperature and pressure as the atmosphere at all heights.

z1 = H0 · n

n − 1
·
[
1 −
(
V0

V1

)n−1
]
, z1 = 10224.1 m.

2.6

A number of small solids are moving on the surface of a liquid. Show that
the surface stress causes the solids to move toward each other, whether they
are wetted by the liquid or not. They move away from each other if one solid
is wetted and the other is not wetted by the liquid.



2.9 Problems 45

2.7

How much work W must be done to atomize a volume V of liquid into
spherically shaped droplets of radius R? The surface energy of the volume V
before the atomization is assumed to be negligible.

W =
3C
R

· V.




