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Fundamental Concepts

2.1 Introduction

There are three basic concepts that are essential for understanding the
dynamical behavior of nonlinear conservative systems. The first is the con-
cept of global symmetries, which serve to constrain the dynamical flow of
the system to lower-dimensional surfaces in the phase space. Some of these
global symmetries are obvious and are related to the space-time symmetries
of the system. Others are not obvious and have been called hidden symme-
tries by Moser [Moser 1979]. When there are as many global symmetries
as degrees of freedom, the dynamical system is said to be integrable. The
second important concept is that of nonlinear resonance. As Kolmogorov
[Kolmogorov 1954], Arnol’d [Arnol’d 1963], and Moser [Moser 1962] have
shown, when a small symmetry-breaking term is added to the Hamilto-
nian, most of the phase space continues to behave as if the symmetries
still exist. However, in regions where the symmetry-breaking term allows
resonance to occur between otherwise uncoupled degrees of freedom, the
dynamics begins to change its character. When resonances do occur, they
generally occur on all scales in the phase space and give rise to an incred-
ibly complex structure, as we shall see. The third important concept is
that of chaos or sensitive dependence on initial conditions. For the class
of systems in which symmetries can be broken by adding small symmetry-
breaking terms, chaos first appears in the neighborhood of the nonlinear
resonances. As the strength of the symmetry-breaking term increases and
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the size of the resonance regions increases, ever larger regions of the phase
space become chaotic.

As we shall show in Sect. 2.2, the dynamical evolution of systems
with broken symmetry cannot be determined using conventional perturba-
tion theory, because of the existence of nonlinear resonances. This occurs
because nonlinear resonances cause a topological change locally in the
structure of the phase space, and conventional perturbation theory is not
adequate to deal with such topological changes.

In Sect. 2.3, we introduce the concept of integrability. A system is inte-
grable if it has as many global constants of the motion as degrees of freedom.
The connection between global symmetries and global constants of motion
was first proven for dynamical systems by Noether [Noether 1918]. We will
give a simple derivation of Noether’s theorem in Sect. 2.3. In Sect. 2.3, we
illustrate these methods for the simple three-body Toda lattice. It is usu-
ally impossible to tell if a system is integrable or not just by looking at the
equations of motion. The Poincaré surface of section provides a very useful
numerical tool for testing for integrability and will be used throughout the
remainder of this book. We will illustrate the use of the Poincaré surface of
section for the classic model of Henon and Heiles [Henon and Heiles 1964].

In Sect. 2.4, we introduce the concept of nonlinear resonances and il-
lustrate their behavior for some simple models originally introduced by
Walker and Ford [Walker and Ford 1969]. These models are interesting be-
cause they show that resonances may appear or disappear as parameters
of the system are varied and the overlap of nonlinear resonances leads to
the onset of chaos. Conventional perturbation theory does not work when
nonlinear resonances are present. But Kolmogorov, Arnol’d, and Moser
(collectively called KAM) have developed a rapidly converging perturba-
tion theory that can be used to describe nonresonant regions of the phase
space, precisely because it is constructed to avoid the resonance regions.
KAM perturbation theory will be described in Sect. 2.5.

In practice, chaos is defined in terms of the dynamical behavior of pairs of
orbits that initially are close together in the phase space. If the orbits move
apart exponentially in any direction in the phase space, the flow is said to
be chaotic. The rate of exponential divergence of pairs of orbits is measured
by the so-called Lyapounov exponents. There will be one such exponent for
each dimension in the phase space. If all the Lyapounov exponents are zero,
the dynamical flow is regular. If even one exponent is positive, the flow will
be chaotic. A detailed discussion of the behavior of Lyapounov exponents
for conservative systems is given in Sect. 2.6 and is illustrated in terms
of the Henon-Heiles system. Systems with positive Lyapounov exponents
also have positive KS metric entropy. The KS metric entropy is defined in
Sect. 2.6 and computed for the baker’s transformation, one of the simplest
known chaotic dynamical systems.

Much of the work done on the transition to chaos in conservative sys-
tems has been done on one degree of freedom conservative systems driven
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by a time-periodic external field. Such systems are conservative in a higher-
dimensional phase space and are volume-preserving. They are particularly
easy to study both analytically and numerically because the location of
resonances is largely determined by the structure of the unperturbed sys-
tem, and Poincaré surfaces of section are strobe plots. In Sect. 2.7, we
describe the mechanism by which chaos occurs in the conservative Duff-
ing system, which consists of a particle in a double well potential driven
by a monochromatic external time-periodic field. We will see clearly why a
chaotic region (stochastic layer) always forms at the separatrix of nonlinear
resonance zones in nonintegrable systems.

2.2 Conventional Perturbation Theory

Historically, the difficulties in obtaining long-time predictions for the evo-
lution of mechanical systems was brought into focus with Poincare’s proof
that conventional perturbation expansions generally diverge and cannot be
used as a tool to provide long-time prediction. In order to build some in-
tuition concerning the origin of these divergences, let us consider a system
with two degrees of freedom having a Hamiltonian H0(p1, p2, q1, q2), which
after a canonical transformation can be written in terms of action-angle
variables (J1, J2, θ1, θ2) in the form H0(J1, J2). For example, the Hamilto-
nian for the relative motion of a moon of mass m1, orbiting a planet of
mass m2 (the Kepler system), can be written

H0 =
pr

2

2µ
+

pφ
2

2µr2
− k

r
= E, (2.2.1)

where (pr, pφ) and (r, φ) are the relative momentum and positions, respec-
tively, of the two bodies in polar coordinates, E is the total energy of the
system, µ = m1m2

m1+m2
is the reduced mass, and k = Gm1m2 (G is the grav-

itational constant). The total angular momentum, L, is conserved for this
problem so the plane of motion, (r, φ), is taken to lie in the plane perpendic-
ular to L. After a canonical transformation from coordinates (pr, pφ, r, φ)
to action-angle coordinates (J1, J2, θ1, θ2), the Hamiltonian takes the form
[Goldstein 1980]

H0 =
−µk2

2(J1 + J2)2
= E. (2.2.2)

The motion is fairly complicated (elliptic or hyperbolic orbits) in terms
of coordinates (pr, pφ, r, φ), but in terms of action-angle coordinates it is
simple. Hamilton’s equations of motion yield

dJi
dt

= −∂H0

∂θi
= 0 (2.2.3)
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Figure 2.2.1. For integrable systems with two degrees of freedom, each trajectory
lies on a torus constructed from the action-angle variables (J1, J2, θ1, θ2). The
radii of the torus are ρi =

√
2Ji for i = (1, 2). If the frequencies ωi = dθi

dt

(i = 1, 2) are commensurate, the trajectory will be periodic. If the frequencies
are incommensurate, the trajectory will never repeat.

and
dθi
dt

=
∂H0

∂Ji
= ωi(J1, J2), (2.2.4)

where i = (1, 2) and t is the time. Thus, we find that

Ji = ci (2.2.5)

and

θi = ωit+ di, (2.2.6)

where ci and di are constants determined by the initial conditions. We
see immediately that the energy of this system is constant. It is useful to
picture the motion of this system as lying on a torus as shown in Fig. 2.2.1.
The torus will have two constant radii, which we define as ρi =

√
2Ji for

i = (1, 2), and two angular variables (θ1, θ2). A single orbit of the Kepler
system will evolve on this torus according to Eqs. (2.2.5) and (2.2.6). Notice
that there are two frequencies associated with this system, ω1 and ω2. If
these two frequencies are commensurate (that is, if mω1 = nω2, where
m and n are integers), then the trajectory will be periodic and the orbit
will repeat itself. If the two frequencies are incommensurate (irrational
multiples of one another), then the trajectory will never repeat itself as
it moves around the torus and eventually will cover the entire surface of
the torus. Note also that the frequencies themselves depend on the action
variables and therefore on the energy of the system. This is a characteristic
feature of a nonlinear system.

Let us now assume that a perturbation acts in the plane of motion due
to the presence of another planet. We shall treat this perturbation as an



2.2. Conventional Perturbation Theory 17

external field. In the presence of this perturbation, the Hamiltonian will
take the form

H = H0(J1, J2) + εV (J1, J2, θ1, θ2), (2.2.7)

where ε is a small parameter, ε � 1. We wish to find corrections to the
unperturbed trajectories, Ji = ci, due to the perturbation. Since we cannot
solve the new equations of motion exactly, we can hope to obtain approx-
imate solutions using perturbation expansions in the small parameter ε.
Let’s try it. First we note that since we are dealing with periodic bound
state motion, we can expand the perturbation in a Fourier series. We then
write the Hamiltonian in Eq. (2.2.7) in the form

H = H0(J1, J2) + ε
∞∑

n1=−∞

∞∑
n2=−∞

Vn1,n2(J1, J2) cos(n1θ1 + n2θ2). (2.2.8)

Next, we introduce a generating function, G(J1,J2, θ1, θ2), which we define
as

G(J1,J2, θ1, θ2) = J1θ1 + J2θ2

+ ε
∞∑

n1=−∞

∞∑
n2=−∞

gn1,n2(J1,J2) sin(n1θ1 + n2θ2),(2.2.9)

where gn1,n2 will be determined below. The generating function in
Eq. (2.2.9) generates a canonical transformation from the set of action-angle
variables, (J1, J2, θ1, θ2), to a new set of canonical action-angle variables,
(J1,J2,Θ1,Θ2), via the following equations [Goldstein 1980]:

Ji =
∂G

∂θi
= Ji + ε

∞∑
n1=−∞

∞∑
n2=−∞

nign1,n2 cos(n1θ1 + n2θ2) (2.2.10)

and

Θi =
∂G

∂Ji
= θi + ε

∞∑
n1=−∞

∞∑
n2=−∞

∂gn1,n2

∂Ji
sin(n1θ1 + n2θ2). (2.2.11)

The new Hamiltonian, H ′(J1,J2,Θ1,Θ2), is obtained from Eq. (2.2.8) by
solving Eqs. (2.2.10) and (2.2.11) for (Ji, θi) as a function of (Ji,Θi) and
plugging into Eq. (2.2.8). If we do that and then expand H ′(J1,J2,Θ1,Θ2)
in a Taylor series in the small parameter ε, we find

H ′(J1,J2,Θ1,Θ2)

= H ′0(J1,J2) + ε
∞∑

n1=−∞

∞∑
n2=−∞

(n1ω1 + n2ω2)gn1,n2 cos(n1Θ1 + n2Θ2)

+ ε
∞∑

n1=−∞

∞∑
n2=−∞

Vn1,n2(J1,J2) cos(n1Θ1 + n2Θ2) +O(ε2), (2.2.12)
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where

ωi =
∂H ′o
∂Ji

. (2.2.13)

Now remove terms of order ε by choosing

gn1,n2 = −Vn1,n2(J1,J2)
(n1ω1 + n2ω2)

. (2.2.14)

Then

H ′(J1,J2,Θ1,Θ2) = H ′o(J1,J2) +O(ε2) (2.2.15)

and

Ji = Ji − ε
∞∑

n1=−∞

∞∑
n2=−∞

niVn1,n2 cos(n1Θ1 + n2Θ2)
(n1ω1 + n2ω2)

+O(ε2). (2.2.16)

To lowest order in ε, this is the solution to the problem. New actions, Ji,
have been obtained that contain corrections due to the perturbation. If, for
example, ε = 0.01, then by retaining only first-order corrections we neglect
terms of order ε2 = 0.0001. To first order in ε, Ji is a constant and Θi

varies linearly in time. This is the hope. However, there is a catch. For any
of this to have meaning, we must have

|n1ω1 + n2ω2| 	 εVn1,n2 . (2.2.17)

But the condition in Eq. (2.2.17) breaks down when internal nonlinear res-
onances occur and cause the perturbation expansion to diverge. Poincaré
showed that it is a general property of perturbation expansions of this type
that they can be expected to diverge.

2.3 Integrability

A concept that is essential to the remainder of this book is that of integra-
bility. Let us consider a system with N degrees of freedom. Its phase space
has 2N dimensions. Such a system is integrable if there exist N independent
isolating integrals of motion, Ii, such that

Ii(p1, . . . , pN , q1, . . . , qN ) = Ci, (2.3.1)

for i = 1, . . . , N , where Ci is a constant and pi and qi are the canonical
momentum and position associated with the ith degree of freedom. The
functions Ii are independent if their differentials, dIi, are linearly inde-
pendent. It is important to distinguish between isolating and nonisolating
integrals [Wintner 1947]. Nonisolating integrals (an example is the initial
coordinates of a trajectory) generally vary from trajectory to trajectory
and usually do not provide useful information about a system. On the
other hand, isolating integrals of motion, by Noether’s theorem, are due to
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symmetries (some “hidden”) of the dynamical system and define surfaces
in phase space.

The condition for integrability may be put in another form. A classical
system with N degrees of freedom is integrable if there exist N indepen-
dent globally defined functions, Ii(p1, . . . , pN , qi, . . . , qN ), for i = 1, . . . , N ,
whose mutual Poisson brackets (see Appendix A.4) vanish,

{Ii, Ij}Poisson = 0, (2.3.2)

for i = 1, . . . , N and j = 1, . . . , N . Then the quantities Ii form a
set of N phase space coordinates. In conservative systems, the Hamil-
tonian, H(p1, . . . , pN , q1, . . . , qN ), will be one of the constants of the
motion. In general, the equation of motion of a phase function, f =
f(p1, . . . , pN , q1, . . . , qN , t), is given by

df

dt
=
∂f

∂t
+ {H, f}Poisson. (2.3.3)

Thus Eqs. (2.3.2) and (2.3.3) imply that dIi
dt = 0. If a system is integrable,

there are no internal nonlinear resonances leading to chaos. All orbits lie
on N -dimensional surfaces in the 2N -dimensional phase space.

2.3.1 Noether’s Theorem
As was shown by Noether [Noether 1918], isolating integrals result from
symmetries. For example, the total energy is an isolating integral (is a
constant of the motion) for systems that are homogeneous in time (invari-
ant under a translation in time). Total angular momentum is an isolating
integral for systems that are isotropic in space.

Noether’s theorem is generally formulated in terms of the Lagrangian (see
[Goldstein 1980] and Appendix A). Let us consider a dynamical system
with N degrees of freedom whose state is given by the set of generalized
velocities and positions ({q̇i}, {qi}). Let us consider a system whose La-
grangian, L = L({q̇i}, {qi}), is known. For simplicity, we consider a system
with a time-independent Lagrangian. The equations of motion are given by
the Lagrange equations

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0, (i = 1, . . . , N). (2.3.4)

For such systems, Noether’s theorem may be stated as follows.

•Noether’s theorem

If a transformation

t→ t′ = t+ δt, qi(t)→ q′i(t
′) = qi(t) + δqi(t), and

q̇i → q̇′i(t
′) = q̇i(t) + δq̇i(t)
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(for i = 1, . . . , N) leaves the Lagrangian form invariant,

L({q̇i(t)}, {qi(t)})→ L′({q̇′i(t′)}, {q′i(t′)}) = L({q̇′i(t′)}, {q′i(t′)}), (2.3.5)

and leaves the action integral invariant∫ t′2

t′1

dt′L({q̇′i(t′)}, {q′i(t′)})−
∫ t2

t1

dtL({q̇i(t)}, {qi(t)}) = 0, (2.3.6)

then there exists an isolating integral of motion associated with this
symmetry transformation. •

Before we proceed to show this, we must distinguish between variations of
the coordinates at a fixed time, qi(t)→ q′i(t) = qi(t)+δQi(t) and variations
at a later time (as we indicated above) qi(t)→ q′i(t

′) = qi(t)+ δqi(t). δqi(t)
is a convective variation and differs from δQi(t) by a convective term,
δqi(t) = δQi(t) + q̇iδt [Reichl 1998].

•Proof of Noether’s theorem

Let us write Eq. (2.3.6) in the form∫ t2+δt2

t1+δt1

dt L({q̇′i(t)}, {q′i(t)})−
∫ t2

t1

dt L({q̇i(t)}, {qi(t)}) = 0, (2.3.7)

where on the leftmost integral we have let the dummy variable t′ → t. Next
let {q̇′i(t)} = {q̇i(t) + δQ̇i(t)} and {q′i(t)} = {qi(t) + δQi(t)}, and expand
the integral to first order in the variations. We then find∫ t2+δt2

t1+δt1

dt

{
L({q̇i(t)}, {qi(t)}) +

N∑
i=1

[(
∂L

∂q̇i

)
δQ̇i +

(
∂L

∂qi

)
δQi

]}

−
∫ t2

t1

dtL({q̇i(t)}, {qi(t)}) = 0. (2.3.8)

If we next keep only first-order contributions in the variations in the limits
of integration, we find∫ t2

t1

dt

{
N∑
i=1

[(
∂L

∂q̇i

)
δQ̇i +

(
∂L

∂qi

)
δQi

]}
+ δt2L(t2)− δt1L(t1) = 0, (2.3.9)

where L(tk) = L({q̇i(tk)}, {qi(tk)}). Equation (2.3.9) can now be rewritten
in the form∫ t2

t1

dt

{
d

dt
(δtL) +

N∑
i=1

[(
∂L

∂q̇i

)
δQ̇i +

(
∂L

∂qi

)
δQi

]}
. (2.3.10)
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Let us now make use of Lagrange’s Eqs. (2.3.4) and note that δQ̇i = d
dtδQi.

Then, after some rearrangement of terms, we find∫ t2

t1

dt
d

dt

{
Lδt+

N∑
i=1

(
∂L

∂q̇i

)
δQi

}
= 0. (2.3.11)

Let us now rewrite Eq. (2.3.11) in terms of our convective variations. We
then find∫ t2

t1

dt
d

dt

{[
L−

N∑
i=1

q̇i

(
∂L

∂q̇i

)]
δt+

N∑
i=1

(
∂L

∂q̇i

)
δqi

}
= 0. (2.3.12)

Thus

d

dt

{[
L−

N∑
i=1

q̇i

(
∂L

∂q̇i

)]
δt+

N∑
i=1

(
∂L

∂q̇i

)
δqi

}
= 0, (2.3.13)

and we have obtained an isolating integral as a result of our symmetry
transformation. •

To illustrate the use of Eq. (2.3.13), let us consider some examples. As-
sume that we translate the system in time by a constant amount, δt = ε,
but let δqi = 0. Then we have

d

dt

{
L−

N∑
i=1

q̇i

(
∂L

∂q̇i

)}
=
dH

dt
= 0 (2.3.14)

since the quantity in curly brackets is the Hamiltonian (see Appendix A).
Thus homogeneity in time gives rise to the Hamiltonian as an isolating
integral and to energy conservation. Suppose that we let δt = 0 but trans-
late one coordinate, qj , by a constant amount, δqi = εδi,j , where δi,j is the
Kronecker delta. Then we find

d

dt

(
∂L

∂q̇j

)
=
dpj
dt

= 0. (2.3.15)

Thus the generalized momentum associated with the degree of freedom,
qj , is an isolating integral, and the component of the momentum, pj , is
conserved. The variations could, in general, be functions of space or time.
Then the isolating integrals resulting from the symmetry transformation
would be much more complicated. However, few such isolating integrals are
known aside from the ones due to the space-time symmetries.

2.3.2 Hidden Symmetries
In order for a system to be integrable, it must have as many conserved
quantities as there are degrees of freedom. In general, not all of these can
come from the space-time symmetries but may come from what Moser
has called hidden symmetries [Moser 1979]. One notable example of such
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a hidden symmetry occurs for the two-body Kepler problem. Because of
the homogeneity of this system in time and space, the total energy and
the center-of-mass momentum are conserved. In addition, the gravitational
force is a central force and therefore this system exhibits isotropy in space,
which means that the total angular momentum is also conserved. These
space-time symmetries are sufficient to make this system integrable since
they provide six conservation laws for the six degrees of freedom. However,
there is still another conserved quantity, the Laplace-Runge-Lenz vector

A = p× L− µk r
|r| (2.3.16)

[Moser 1970], [Abarbanel 1976], [Goldstein 1980], where p is the relative
momentum, L is the total angular momentum, µ and k are as defined
in Sect. 2.2, and r is the relative displacement of the two bodies. This
additional symmetry is responsible for the fact that there is no precession
of the perihelion (the point of closest approach of the two bodies) for the
two-body Kepler system. This conservation law does not hold for any other
central force problem.

Hidden symmetries underlie the relatively new field of soliton physics.
One type of soliton, the nontopological soliton, occurs in integrable dy-
namical systems and is most commonly found in continuous media and
on length scales where the underlying discreteness of matter plays no role.
There is one mechanical system with a finite number of degrees of freedom,
however, that is now known to support solitons. That is the N -body Toda
lattice [Toda 1967], [Toda 1981]. The Toda lattice is a collection of equal-
mass particles coupled in one dimension by exponentially varying forces.
It is integrable and therefore has N isolating integrals of the motion. The
Toda lattice is one of the few discrete lattices for which soliton solutions
are exact. The continuum limit of the Toda lattice yields the Korteweg-de
Vries equation, which is the classic equation describing nontopological soli-
tons in continuum mechanics. The first real indication that the Toda lattice
was integrable came from numerical experiments by Ford et al. [Ford et al.
1973]. This prompted theoretical work by Henon [Henon 1974] and Flaschka
[Flaschka 1974], who found expressions for the N isolating integrals of the
motion. The actual solution of the equations of motion was due to Date
and Tanaka [Date and Tanaka 1976], although significant contributions
were made by Kac and van Moerbeke [Kac and van Moerbeke 1975].

If we use techniques from soliton physics, it is fairly easy to show that
the Toda lattice is integrable. Let us demonstrate this for the three-body
Toda lattice. For a periodic one-dimensional lattice, the Hamiltonian can
be written

H =
p21
2

+
p22
2

+
p23
2

+ (e−(q1−q2) + e−(q2−q3) + e−(q3−q1) − 3). (2.3.17)
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This system has three degrees of freedom since the three masses move in
one spatial dimension. The equations of motion are

ṗi = −∂H
∂qi

= (e−(qi−qi+1) − e−(qi−1−qi)) (2.3.18)

and

q̇i =
∂H

∂pi
= pi, (2.3.19)

where i = 1, 2, 3, and qi+3 = qi, pi+3 = pi due to the periodicity of
the lattice. Following Flaschka [Flaschka 1974], let us make a noncanonical
transformation to new variables ({ai}, {bi}) for (i = 1, 2, 3), where

ai =
1
2
e−

1
2 (qi−qi+1) and bi =

pi
2
. (2.3.20)

Let us now introduce the symmetric matrix

Ā(t) =

 b1 a1 a3
a1 b2 a2
a3 a2 b3

 (2.3.21)

and the antisymmetric matrix

B̄(t) =

 0 a1 −a3
−a1 0 a2
a3 −a2 0

 . (2.3.22)

The equations of motion can then be written in the form

dĀ(t)
dt

= B̄(t)Ā(t)− Ā(t)B̄(t). (2.3.23)

The matrices Ā(t) and B̄(t) are called Lax pairs [Lax 1968]. They are
functions of the canonical coordinates, ({pi, qi}), and, therefore, will vary
in time. The Hamiltonian, H, is related to the trace of Ā2(t),

Tr Ā2(t) = b21 + b22 + b23 + 2(a21 + a22 + a23) =
1
2

(H + 3). (2.3.24)

Since this is a conservative system, Tr Ā2(t) is independent of time.
Toda type lattices are the only known three-body mechanical systems

for which Lax pairs can be constructed. The fact that Eq. (2.3.23) holds
automatically means that the three-body Toda lattice is integrable. We can
see this as follows. Let us introduce yet another matrix, Ō(t), which is a
solution of the equation

dŌ(t)
dt

= B̄(t)Ō(t). (2.3.25)

Since B̄(t) is antisymmetric, Ō(t) is orthogonal. That is, ŌT (t) = Ō−1(t),
where ŌT (t) is the transpose and Ō−1(t) is the inverse of Ō(t). We also
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can write
dŌ−1(t)

dt
= −Ō−1(t)B̄(t). (2.3.26)

Using Eqs. (2.3.25) and (2.3.26), we can write Eq. (2.3.23) as

dĀ(t)
dt

=
dŌ(t)
dt
L̄Ō−1(t) + Ō(t)L̄dŌ

−1(t)
dt

, (2.3.27)

where the matrix L̄ is defined as

L̄ = Ō−1(t)Ā(t)Ō(t). (2.3.28)

Note that Eqs. (2.3.27) and (2.3.28) indicate that L̄ is independent of time.
Ō(t) may be thought of as an evolution operator that propagates Ā(t) in
time so that L̄ = Ā(0). Let us now write

Ā(t)φ̄(t) = λ(t)φ̄(t), (2.3.29)

where λ(t) and φ̄(t) are the eigenvalues and eigenvectors, respectively, of
Ā(t). Then, from Eq. (2.3.28) we can write

L̄Ō−1(t)φ̄(t) = λ(t)Ō−1(t)φ̄(t). (2.3.30)

Thus λ(t) is an eigenvalue of L̄ and Ā(t) and therefore must be independent
of time (i.e., λ(t) = λ, where λ is a constant). If we let λi (i = 1, 2, 3) denote
the three time-independent eigenvalues of the time-dependent matrix Ā(t),
then from Eq. (2.3.24) we can write the Hamiltonian in the form

H = 2
3∑

i=1

λ2i − 3. (2.3.31)

The eigenvalues of Ā(t) constitute the three independent integrals of the
motion for the Toda lattice.

2.3.3 Poincaré Surface of Section
How can we tell if a system is integrable or not? There is no simple way in
general. For systems with two degrees of freedom, we can check numerically
by constructing a Poincaré surface of section. To see how this works, let us
consider a conservative system (a system with a Hamiltonian independent
of time). For such systems, the energy is conserved. The Hamiltonian is
then an isolating integral of the motion and can be written

H(p1, p2, q1, q2) = E, (2.3.32)

where the energy, E, is constant and restricts trajectories to lie on a three-
dimensional surface in the four-dimensional phase space.

¿From Eq. (2.3.32) we can write p2 = p2(p1, q1, q2, E). If the system has
a second isolating integral,

I2(p1, p2, q1, q2) = C2, (2.3.33)
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Figure 2.3.1. A Poincaré surface of section for a two degree of freedom system
provides a two-dimensional map. (a) A surface of section may be obtained, for
example, by plotting a point each time the trajectory passes through the plane
q1 = 0 with p1 ≥ 0. (b) If two isolating integrals exist, the trajectory will lie along
one-dimensional curves in the two-dimensional surface. (c) If only one isolating
integral exists (the energy), the trajectory will spread over a two-dimensional
region whose extent is limited by energy conservation.

where C2 is a constant, then it too defines a three-dimensional surface in
the four-dimensional phase space. Once the initial conditions are given, E
and C2 are fixed and the trajectory is constrained to the intersection of the
surfaces defined by Eqs. (2.3.32) and (2.3.33); that is, to a two-dimensional
surface in the four-dimensional phase space. If we combine Eqs. (2.3.32)
and (2.3.33), we can write p1 = p1(q1, q2, E,C2). If we now consider the
surface q2 = 0, the trajectory lies on a one-dimensional curve.

In general, if we are given the Hamiltonian, H, we do not know if an
additional isolating integral, I2, exists. We can check this numerically by
solving Hamilton’s equations, dpi

dt = −∂H
∂qi

and dqi
dt = ∂H

∂pi
, for (i = 1, 2),

numerically and then plotting p2 and q2 each time q1 = 0 and p1 ≥ 0.
(see Fig. 2.3.1.a). If the system is integrable, the trajectory will appear
as a series of points (a mapping) that lie on a one-dimensional curve (see
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Fig. 2.3.1.b). If the system is nonintegrable, the trajectory will appear as
a scatter of points limited to a finite area due to energy conservation (see
Fig. 2.3.1.c).

This method was used by Henon and Heiles [Henon and Heiles 1964] to
determine if a third integral existed that constrained the motion of a star
in a galaxy that had an axis of symmetry. Such a system has three degrees
of freedom and two known isolating integrals of the motion, the energy and
one component of the angular momentum. It was long thought that such
systems do not have a third isolating integral because none had been found
analytically. However, the nonexistence of a third integral implies that the
dispersion of velocities of stellar objects in the direction of the galactic
center is the same as that perpendicular to the galactic plane. What was
observed, however, was a 2:1 ratio in these dispersions. Henon and Heiles
constructed the Hamiltonian (with no known symmetries that can give rise
to a third integral)

H =
1
2

(p21 + p22) +
1
2

(q21 + q22 + 2q21q2 −
2
3
q32) = E (2.3.34)

to model the essential features of the problem and studied its behavior
numerically. Hamilton’s equations for this system are

dp1
dt

= −q1 − 2q1q2, (2.3.35)

dp2
dt

= −q2 − q21 + q22 , (2.3.36)

dqi
dt

= pi (2.3.37)

(for i = 1, 2). Note that the anharmonic terms in the potential energy give
rise to nonlinear terms in the equation of motion.

A sketch of the results of Henon and Heiles is shown in Fig. 2.3.2. At low
energy (see Fig. 2.3.2.a), there appears to be a third integral, at least to the
accuracy of these plots. (Enlargement of the region around the hyperbolic
fixed points would show a scatter of points.) As the energy is increased (this
increases the effect of the nonlinear terms) (see Fig. 2.3.2.b), the third
integral appears to be destroyed in the neighborhood of the hyperbolic
fixed points. At still higher energies (see Fig. 2.3.2.c), the second isolating
integral appears to have been totally destroyed. The scattered points in
the surfaces of section for the Henon-Heiles system correspond to a single
trajectory, which is chaotic. Such trajectories are chaotic in that they have
sensitive dependence on initial conditions.
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Figure 2.3.2. Poincaré surfaces of section for the Henon-Heiles system. (a) At
energy E = 0.08333, the system appears to have two isolating integrals of the
motion, at least to the scale of these plots. (b) At energy E = 0.12500, a chaotic
trajectory appears in the neighborhood of the hyperbolic fixed points. (c) At
energy E = 0.16667, the energy surface has become almost entirely chaotic.
[Henon and Heiles 1964]
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2.4 Nonlinear Resonance and Chaos

Chaotic regions occur when isolating integrals of motion are destroyed lo-
cally by nonlinear resonances. Walker and Ford [Walker and Ford 1969]
show this explicitly for a simple model Hamiltonian. Let us first consider
the case of a nonlinear system with two degrees of freedom and with a
single resonance between these two degrees of freedom.

2.4.1 Single-Resonance Hamiltonians
In terms of action-angle variables, a general single-resonance Hamiltonian
can be written

H = H0(J1, J2) + εVn1,n2(J1, J2) cos(n1θ1 − n2θ2) = E, (2.4.1)

where (J1, J2, θ1, θ2) are action-angle variables. This system has a second
isolating integral

I = n2J1 + n1J2 = C2, (2.4.2)

where C2 is a constant. It is easy to see that Eq. (2.4.2) is an isolating
integral. Write Hamilton’s equations of motion for J1 and J2,

dJ1
dt

= −∂H
∂θ1

= n1εVn1,n2 sin(n1θ1 − n2θ2) (2.4.3)

and
dJ2
dt

= −∂H
∂θ2

= −n2εVn1,n2 sin(n1θ1 − n2θ2). (2.4.4)

Using Eqs. (2.4.3) and (2.4.4), we find that

dI

dt
= 0. (2.4.5)

The system described by the Hamiltonian in Eq. (2.4.1) contains a single
(n1, n2) resonance. The presence of this resonance means that for certain
values of J1 and J2 there can be a large transfer of energy between the two
degrees of freedom of this system.

(2,2) Resonance

To see more clearly how a resonance works, let us consider the specific case
of a (2,2) resonance. Following Walker and Ford, we write the Hamiltonian

H = H0(J1, J2) + αJ1J2 cos(2θ1 − 2θ2) = E, (2.4.6)

where

H0(J1, J2) = J1 + J2 − J21 − 3J1J2 + J22 . (2.4.7)
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Equations (2.4.6) and (2.4.7) describe a nonlinear system because of the
nonlinear dependence of H0 on the action variables J1 and J2. The isolating
integrals of motion are the Hamiltonian, H, and I = 2J1 + 2J2.

It is useful to make a transformation from action-angle variables
(J1, J2, θ1, θ2) to a new set of variables (J1,J2,Θ1,Θ2) via the canonical
transformation J1 = J1 + J2 = I ′ = I

2 , J2 = J2, Θ1 = θ2, and Θ2 = θ2−θ1.
The Hamiltonian then takes the form

H = J1 −J 2
1 −J1J2 + 3J 2

2 + αJ2(J1 −J2) cos(2Θ2) = E. (2.4.8)

Since H is independent of Θ1, in this new coordinate system J1 is constant.
Hamilton’s equations in this coordinate system become

dJ1
dt

= 0, (2.4.9.a)

dΘ1

dt
= 1− 2J1 − J2 + αJ2 cos(2Θ2), (2.4.9.b)

and
dJ2
dt

= 2αJ2 sin(2Θ2)(I ′ − J2), (2.4.10.a)

dΘ2

dt
= −I ′ + 6J2 + α cos(2Θ2)(I ′ − 2J2). (2.4.10.b)

Since J1 is constant, Eqs. (2.4.10) can be solved first for J2(t) and Θ2(t)
and then substituted into Eq. (2.4.9.b) to obtain Θ1(t).

Let us now find the fixed points of these equations. The fixed points are
points for which dJ2

dt = 0 and dΘ2
dt = 0. Fixed points occur when Θ2 = nπ

2
and J2 = Jo, where Jo is a solution of the equation

−I ′ + 6Jo + α cos(nπ)(I ′ − 2Jo) = 0. (2.4.11)

Note that for α� 1, Jo ≈ I′

6 .
The nature of the fixed points can be determined by linearizing the

equations of motion about points (J2 = Jo,Θ2 = nπ
2 ). We let J2(t) =

Jo + ∆J (t) and Θ2(t) = nπ
2 + ∆Θ(t) and linearize in ∆J (t) and ∆Θ(t).

We find
d

dt

(
∆J (t)
∆Θ(t)

)
=
(

0 4α cos(nπ)Jo(I ′ −Jo)
(6− 2α cos(nπ)) 0

)
×
(

∆J (t)
∆Θ(t)

)
. (2.4.12)

The solution
(∆J (t)
∆Θ(t)

)
to Eq. (2.4.12) determines the manner in which trajec-

tories flow in the neighborhood of the fixed points. For α� 1 (and therefore
Jo ≈ I′

6 ), these equations reduce to

d

dt

(
∆J (t)
∆Θ(t)

)
≈
(

0 20αI′2

36 cos(nπ)
6 0

)(
∆J (t)
∆Θ(t)

)
. (2.4.13)
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Let us assume that Eq. (2.4.13) has a solution of the form(
∆J (t)
∆Θ(t)

)
= eλt
(
AJ
AΘ

)
, (2.4.14)

where AJ and AΘ are independent of time. Then we can solve the resulting
eigenvalue equation

λ

(
AJ
AΘ

)
=
(

0 20αI′2

36 cos(nπ)
6 0

)(
AJ
AΘ

)

for both λ and
(
AJ
AΘ

)
. The eigenvalues are given by

λ± = ±
(

20αI ′2 cos(nπ)
6

) 1
2

,

and the solution to Eq. (2.4.13) can be written(
∆J (t)
∆Θ(t)

)
= eλ+t A+

( b
λ+

1

)
+ eλ−t A−

( b
λ−

1

)
, (2.4.15)

where b = 20αI′2

36 , and A+ and A− are determined by the initial condi-
tions. For n even, λ is real and the solutions contain exponentially growing
and decreasing components, while for n odd, λ is pure imaginary and the
solutions are oscillatory. For n even, the fixed points are hyperbolic (tra-
jectories approach or recede from the fixed point exponentially), while for
n odd, the fixed points are elliptic (trajectories oscillate about the fixed
point).

For very small α, the fixed points occur for J2 = Jo ≈ I′

6 and therefore
for J1 ≈ 5I′

6 and J2 ≈ I′

6 . We can also find the range of energies for
which these fixed points exist. Plugging J1 = 5J2 into Eq. (2.4.6), we find
J21 − 10J1

13 + 25E
39 = 0 or J1 = 5

13 (1 ± (1 − 13E
3 )

1
2 ) = 5J2. Thus, the fixed

points only exist for E < 3
13 for very small α. For E > 3

13 , J1 is no longer
real.

A plot of some of the trajectories on the energy surface, E = 0.18, for
coupling constant α = 0.1, is given in Fig. 2.4.1. In this plot, we have trans-
formed from polar coordinates (J2,Θ2) to Cartesian coordinates (p, q) via
the canonical transformation p = −(2J2)

1
2 sin(Θ2) and q = (2J2)

1
2 cos(Θ2).

The elliptic and hyperbolic fixed points and the separatrix associated with
them can be seen clearly. The region inside and in the immediate neighbor-
hood outside the separatrix is called the (2,2) nonlinear resonance zone. We
see that large changes in the action, J2, occur in this region of the phase
space, indicating that a strong exchange of energy is occurring between the
modes of the system.

Let us now attempt to compute these level curves using perturbation
theory as discussed earlier. We go from action-angle variables (J1, J2, θ1, θ2)
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Figure 2.4.1. Phase space trajectories for the (2,2) resonance Hamiltonian in
Eq. (2.4.8) (p = −(2J2)

1
2 sin(Θ2) and q = (2J2)

1
2 cos(Θ2)). For all curves,

E = 0.18 and α = 0.1. The curves consist of discrete points because we have
plotted points along the trajectories at discrete times.

to new variables (I1, I2, φ1, φ2) via a canonical transformation given by the
generating function

G(I1, I2, φ1, φ2) = I1θ1 + I2θ2 + αg2,2(I1, I2) sin(2θ1 − 2θ2). (2.4.16)

Following the procedure outlined in Sect. 2.2, we find that g2,2 = −I1I2
(2ω1−2ω2)

,
where ω1 = 1 − 2I1 − 3I2 and ω2 = 1 − 3I1 + 2I2. The Hamiltonian to
order α2 is H = Ho(I1, I2) + O(α2) and the action variables (neglecting
terms of order α2) are

J1(t) = I1 −
2αI1I2 cos(2ω1t− 2ω2t)

(2ω1 − 2ω2)
(2.4.17)

and

J2(t) = I2 +
2αI1I2 cos(2ω1t− 2ω2t)

(2ω1 − 2ω2)
. (2.4.18)

In order for these equations to have meaning, the following condition must
hold:

|2ω1 − 2ω2| = |2I1 − 10I2| 	 2αI1I2.

However, near a resonance, I1 ≈ 5I2. Therefore this condition breaks down
in the neighborhood of a resonance zone. Actually this is to be expected
since the resonance introduces a topological change in the flow pattern in
the phase space.
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(2,3) Resonance

Walker and Ford also studied a (2,3) resonance with Hamiltonian

H = Ho(J1, J2) + βJ1J
3
2
2 cos(2θ1 − 3θ2) = E. (2.4.19)

This again is integrable and has two isolating integrals of the motion, the
Hamiltonian, H, and

I = 3J1 + 2J2 = C3. (2.4.20)

We can again make a canonical transformation, J1 = J1 − 2
3J2, J2 =

J2, θ1 = Θ1, θ2 = Θ2 + 2
3Θ1 (note that I = 3J1). The Hamiltonian then

takes the form

H = J1 − J 2
1 +
J2
3
− 5J1J2

3
+

23
9
J 2
2 +

β

3
J

3
2
2 (3J1 − 2J2) cos(3Θ2) = E

(2.4.21)

and the coordinate J1 is a constant of the motion since H is independent
of Θ1. The equations of motion for J2 and Θ2 are

dJ2
dt

= βJ
3
2
2 (3J1 − 2J2) sin(3Θ2) (2.4.22)

and
dΘ2

dt
=

1
3
− 5J1

3
+

46J2
9

+ βJ
1
2
2

(
3
2
J1 −

5
3
J2
)

cos(3Θ2). (2.4.23)

It is easy to see that the fixed points occur for Θ2 = nπ
3 and J2 = Jo

where Jo satisfies the equation

1
3
− 5I

9
+

46Jo
9

+ βJ
1
2
o

(
I

2
− 5

3
Jo
)

cos(nπ) = 0. (2.4.24)

If we again linearize the equations of motion about these fixed points
and determine the form of the flow in their neighborhood as we did below
Eq. (2.4.11), we find that for even n (n = 0, 2, 4) the fixed points are
hyperbolic while for odd n (n = 1, 3, 5) the fixed points are elliptic. These
fixed points are clearly seen in the plot of the phase space trajectories for
the (2,3) resonance system given in Fig. 2.4.2. In Fig. 2.4.2 all curves have
energy E = 0.18 and coupling constant β = 0.1. The separatrix of the (2,3)
resonance zone is clearly seen, as are the three hyperbolic and elliptic fixed
points.

2.4.2 Two-Resonance Hamiltonian
The two single-resonance systems described above are integrable. Any sys-
tems containing two or more resonances are nonintegrable because a second
isolating integral of the motion cannot be found. Therefore systems with
two or more resonances can undergo a transition to chaos as parameters
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Figure 2.4.2. A plot of some phase space trajectories obtained for the (2,3) reso-
nance Hamiltonian in Eq. (2.4.19). All curves have energy E = 0.18 and coupling
constant β = 0.1 but have different values of the constant of motion, I. The three
hyperbolic and three elliptic fixed points as well as the separatrix of the (2,3)
resonance are clearly seen. The curves consist of discrete points because we plot
points along the trajectories at discrete times. We have set p = −(2J2)

1
2 sin(Θ2)

and q = (2J2)
1
2 cos(Θ2).

of the system are varied. Walker and Ford show this for the Hamiltonian
with two primary resonances,

H = Ho(J1, J2) + αJ1J2 cos(2θ1 − 2θ2)

+ βJ1J
3
2
2 cos(2θ1 − 3θ2) = E. (2.4.25)

The surface of section for this Hamiltonian is shown in Fig. 2.4.3.
Hamilton’s equations for the two-resonance system can be written

dJ1
dt

= −∂H
∂θ1

= 2αJ1J2 sin(2θ1 − 2θ2)

+ 2βJ1J
3
2
2 sin(2θ1 − 3θ2), (2.4.26)

dJ2
dt

= −∂H
∂θ2

= −2αJ1J2 sin(2θ1 − 2θ2)

− 3βJ1J
3
2
2 sin(2θ1 − 3θ2), (2.4.27)

dθ1
dt

=
∂H

∂J1
= 1− 2J1 − 3J2 + αJ2 cos(2θ1 − 2θ2)

+ βJ
3
2
2 cos(2θ1 − 3θ2), (2.4.28)

dθ2
dt

=
∂H

∂J2
= 1− 3J1 + 2J2 + αJ1 cos(2θ1 − 2θ2)

+
3
2
βJ1J

1
2
2 cos(2θ1 − 3θ2). (2.4.29)
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Figure 2.4.3. Poincaré surfaces of section for the double-resonance Hamiltonian
in Eq. (2.4.25) with p2 = −(2J2)

1
2 sin(θ2) and q2 = (2J2)

1
2 cos(θ2) and coupling

constants α = β = 0.02. (a) At energy E = 0.056, only the (2,2) resonance exists.
(b) At energy E = 0.180, the (2,3) resonance has emerged from the origin but
is well-separated from the (2,2) resonance. (c) At energy E = 0.2000, the two
primary resonances have grown in size but remain separated. The chain of five
islands is a higher-order resonance. (d) At energy E = 0.2095, resonance overlap
has occurred and chaos can be seen in the overlap region. [Walker and Ford 1969]
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Walker and Ford construct a Poincaré surface of section by solving the
equations of motion (2.4.26)−(2.4.29) numerically and plotting (J2, θ2)
each time θ1 = 3π

2 . (If pi = −(2Ji)
1
2 sin(θi) and qi = (2Ji)

1
2 cos(θi), the

surface of section is similar to that of Henon and Heiles, who plot a point
(p2, q2) each time q1 = 0 and p1 > 0.) A sketch of the Poincaré surface
of section for several energies is shown in Fig. 2.4.3. In all cases shown in
this figure, the coupling constants are α = β = 0.02, a value much smaller
than those used in Figs. 2.4.1 and 2.4.2. The (2,2) resonance is present for
all energies E ≤ 3

13 . However, the (2,3) resonance first emerges from the
origin for energy E ≈ 0.16. For energies E = 0.056 (Fig. 2.4.3.a), only the
(2,2) resonance exists. For E = 0.180 (Fig. 2.4.3.b), both resonances are
present but well-separated in the phase space. As the energy is raised, the
resonances occupy larger regions of the phase space. Finally, for E = 0.2095
(Fig. 2.4.3.d), the resonances have overlapped and a chaotic trajectory is
found.

2.5 KAM Theory

As we have seen in Sect. 2.2, conventional perturbation theory diverges in
regions containing resonance zones because of small denominators arising
from the resonances. However, Kolmogorov [Kolmogorov 1954] found a way
to construct a perturbation theory that was rapidly convergent and applica-
ble to nonresonant tori. Kolmogorov’s ideas were made rigorous by Arnol’d
[Arnol’d 1963] and by Moser [Moser 1962]. The nonresonant tori that have
not been destroyed by resonances are called KAM tori or KAM surfaces
(after Kolmogorov, Arnol’d, and Moser). Examples of KAM tori can be
found in Figs. 2.3.2 and 2.4.3, and many more will be seen throughout this
book.

The KAM theory applies to systems with N degrees of freedom whose
motion is governed by a Hamiltonian of the form

H(J1, . . . , JN , θ1, . . . , θN ) = H0(J1, . . . , JN ) + εV (J1, . . . , JN , θ1, . . . , θN ),

(2.5.1)

where H0 is integrable, ε is a small parameter, and the potential energy,
V (J1, . . . , JN , θ1, . . . , θN ), can be written in the form

V =
∑
n1

. . .
∑
nN

Vn1,...nN (J1, . . . , JN ) ei(n1θ1+···+nNθN ), (2.5.2)

where ni (i = 1, . . . , N) ranges over all integers. (Note that if V (J1, . . . , JN ,
θ1, . . . , θN ) is a smooth function of angles, {θi}, the Fourier coefficients,
Vn1,...nN , will decrease fairly rapidly with increasing {ni}.) A further re-
quirement that is necessary for the proof of the KAM theorem is that the
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determinant of the matrix formed by the quantities ∂2H0
∂Ji∂Jj

(the Hessian of
H0) must be nonzero.

The Hamiltonian defined in Eq. (2.5.1) describes a system with a dense
set of resonances in phase space. KAM showed that for such systems, the
volume of phase space occupied by resonances goes to zero as ε → 0. The
idea behind this can be illustrated by a simple example. Consider the unit
line (a continuous line ranging from zero to one). This line contains an
infinite number of rational fractions. However, the rational fractions form
a set of measure zero. Now exclude a region(m

n
− ε

n3

)
≤ m

n
≤
(m
n

+
ε

n3

)
about each rational fraction. This mimics resonances that have finite width,
2ε
n3 for example, and are located in regions of the phase space for which the
ratio of frequencies associated with the various degrees of freedom is a
rational fraction. The total length of the line that is excluded is

∞∑
n=1

n∑
m=1

(
2ε
n3

)
= 2ε

∞∑
n=1

(
1
n2

)
=
επ2

3
→ 0 as ε→ 0.

Thus, for very small ε, only a small fraction of the total volume of phase
space contains resonance zones. But they exist on all scales.

We do not have space here to prove the KAM theorem (for this, one
should go to the references cited above), but we will try to give the flavor
of it. Let us illustrate the approach for the case of a system with two degrees
of freedom. We follow the discussion by Barrar [Barrar 1970], which most
closely follows Kolmogorov’s original approach.

•The KAM theorem (for N = 2)

Consider a system described by the Hamiltonian

H(J1, J2, θ1, θ2) = Ho(J1, J2) + ε
∞∑

n1=−∞

′ ∞∑
n2=−∞

′

Vn1,n2(J1, J2)e
i(n1θ1+n2θ2),

(2.5.3)

where ε is a small parameter and H0 has nonzero Hessian. The prime on
the summations indicates that we exclude the term n1 = n2 = 0 since it
can be included in H0. We shall assume that H is an analytic function
of all variables and is a periodic function of angles θ1 and θ2. On a torus
(J1 = Jo

1 , J2 = Jo
2 ) such that the frequencies ωi = (∂Ho∂Jj

)o = ωi(Jo
1 , J

o
2 )

satisfy the conditions

|n1ω1 + n2ω2| ≥
K

||n||α ,

where ||n|| = |n1| + |n2| > 0, α ≥ 2, and K is a constant, a perturbation
theory will converge. •
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The proof of the KAM theorem proceeds as follows (see [Kolmogorov
1954] and [Barrar 1970] for details). Let us move the origin of coordinates
to (Jo

1 , J
o
2 ) via a canonical transformation, Ji − Jo

i = pi and θi = φi. The
Hamiltonian then can be written in the form

H = C0 +
2∑

i=1

ωipi + εA(0)(φ1, φ2) + ε
2∑

i=1

B
(0)
i (φ1, φ2)pi

+
2∑

i=1

2∑
j=1

C
(0)
i,j (φ1, φ2)pipj +D(0)(p1, p2, φ1, φ2), (2.5.4)

where C(0) is a constant and D(0)(p1, p2, φ1, φ2) is a function whose lowest-
order dependence on pi is p3i . Let us now introduce a generating function
that takes us from coordinates (p1, p2, φ1, φ2) to a new set of canonical
coordinates (P (1)

1 , P
(1)
2 ,Φ(1)

1 ,Φ(1)
2 ). We write the generating function in the

form

S(P (1)
1 , P

(1)
2 , φ1, φ2) =

2∑
i=1

(P (1)
i + εξi)φi + εX(φ1, φ2)

+ ε
2∑

i=1

P
(1)
i Yi(φ1, φ2), (2.5.5)

where ξi are constants and X and Yi are functions to be determined. Then

pi =
∂S

∂φi
= (P (1)

i + εξi) + ε
∂X

∂φi
+ ε

2∑
j=1

P
(1)
j

∂Yj
∂φi

(2.5.6)

and

Φ(1)
i =

∂S

∂P
(1)
i

= φi + εYi(φ1, φ2). (2.5.7)

We can use Eqs. (2.5.6) and (2.5.7) to write the Hamiltonian in terms of
new coordinates, (P (1)

1 , P
(1)
2 ,Φ(1)

1 ,Φ(1)
2 ). The idea of Kolmogorov was to

choose the quantities X,Yi and ξi so that they cancel A(0) and B
(0)
i from

the resulting Hamiltonian. (Most of Barrar’s paper is devoted to showing
that this can be done.) Then, in terms of the new canonical coordinates,
(P (1)

1 , P
(1)
2 ,Φ(1)

1 ,Φ(1)
2 ), the Hamiltonian becomes

H(1) = C(1) +
2∑

i=1

ωiP
(1)
i + ε2A(1)(Φ(1)

1 ,Φ(1)
2 )

+ ε2
2∑

i=1

B
(1)
i (Φ(1)

1 ,Φ(1)
2 )P (1)

i +
2∑

i=1

2∑
j=1

C
(1)
i,j (Φ(1)

1 ,Φ(1)
2 )P (1)

i P
(1)
j

+D(1)(P (1)
1 , P

(1)
2 ,Φ(1)

1 ,Φ(1)
2 ). (2.5.8)
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This process can be repeated. In the next step, the Hamiltonian becomes

H(2) = C(2) +
2∑

i=1

ωiP
(2)
i + ε4A(2)(Φ(2)

1 ,Φ(2)
2 )

+ ε4
2∑

i=1

B
(2)
i (Φ(2)

1 ,Φ(2)
2 )P (2)

i +
2∑

i=1

2∑
j=1

C
(2)
i,j (Φ(2)

1 ,Φ(2)
2 )P (2)

i P
(2)
j

+D(2)(P (2)
1 , P

(2)
2 ,Φ(2)

1 ,Φ(2)
2 ). (2.5.9)

The sequence of Hamiltonians obtained by this procedure converges very
rapidly to the form

H(∞) = C(∞) +
2∑

i=1

ωiP
(∞)
i +

2∑
i=1

2∑
j=1

C∞i,j(Φ
(∞)
1 ,Φ(∞)

2 )P (∞)
i P

(∞)
j

+D∞(P (∞)
1 , P

(∞)
2 ,Φ(∞)

1 ,Φ(∞)
2 ). (2.5.10)

In terms of the coordinates (P (∞)
1 , P

(∞)
2 ,Φ(∞)

1 ,Φ(∞)
2 ), Hamilton’s equations

take the form

dP
(∞)
k

dt
= −∂H

(∞)

∂Φ(∞)
k

=
2∑

i=1

2∑
j=1

P
(∞)
i P

(∞)
j

∂C
(∞)
i,j

∂Φ(∞)
k

+O((P (∞))3) (2.5.11)

and

dΦ(∞)
k

dt
=
∂H(∞)

∂P
(∞)
k

= ωk +O((P (∞))3) (2.5.12)

for (k = 1, 2). These equations have solutions P (∞)
i = 0 and Φ(∞)

i = ωit+Ci

for (i = 1, 2), where Ci is a constant.
Thus, a rapidly convergent procedure has been found to obtain solu-

tions to the equations of motion at least on KAM tori sufficiently far from
resonances.

2.6 The Definition of Chaos

.
The flow of trajectories in a given region of phase space is said to be

chaotic if it has positive KS metric entropy (KS stands for Krylov, Kol-
mogorov, and Sinai) [Kolmogorov 1958, 1959], [Sinai 1963a], [Arnol’d and
Avez 1968], [Ornstein 1974], [Chirikov 1979], [Lichtenberg and Lieberman
1983]. Such flows are called K-flows. The KS entropy is a measure of the
degree of hyperbolic instability in the relative motion of trajectories in
phase space. As we saw in Sect. 2.4, in the neighborhood of fixed points,
we can determine the nature of the flow by linearizing the equations of mo-
tion about the fixed point. In the neighborhood of hyperbolic fixed points,
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Figure 2.6.1. The 2N -dimensional vector, XN
t , evolves according to Hamilton’s

equations and describes the evolution of the state of the system in phase space.

trajectories on the eigenvectors approach (depart) the fixed point in an
exponentially decreasing (increasing) manner. Trajectories in the neigh-
borhood of the fixed point, but not on the eigenvectors, contain both types
of motion. There are as many sets of eigenvectors in the neighborhood
of a hyperbolic fixed point as there are degrees of freedom. Along each
eigenvector, the rate of approach or departure is determined by a single
eigenvalue of the transition matrix (the matrix that governs the evolution
in the neighborhood of the fixed point) for the linearized problem.

2.6.1 Lyapounov Exponent
Oseledec [Oseledec 1968] was the first to show that a procedure analogous
to that used to study exponential divergence of flow in the neighborhood
of hyperbolic fixed points could be used to study the nature of the flow
in the neighborhood of a moving point in phase space. To see how this
works, consider a system with N degrees of freedom (2N -dimensional phase
space). We shall denote the 2N -dimensional vector describing the state of
the system at time t by XN

t = XN (p1(t), . . . , pN (t); q1(t), . . . , qN (t)) (see
Fig. 2.6.1). This vector evolves according to Hamilton’s equations. Let us
now consider two neighboring points in phase space, XN

t and YN
t = XN

t +
∆XN

t . By solving Hamilton’s equations for our system, we can determine
how the displacement, ∆XN

t , evolves in time. We define the magnitude of
the displacement, ∆XN

t , to be

dt(XN
o ,Y

N
o ) = |∆XN

t | = (∆XN
t ·∆XN

t )
1
2 , (2.6.1)

where XN
o and YN

o are the initial values of XN
t and YN

t . The rate of
exponential growth (or decrease) of dt(XN

o ,Y
N
o ) is given by

λ(XN
o ,Y

N
o ) = lim

t→∞

1
t

ln
(
dt(XN

o ,Y
N
o )

do(XN
o ,YN

o )

)
. (2.6.2)

λ(XN
o ,Y

N
o ) is called the Lyapounov exponent.

There are 2N orthogonal directions in a 2N -dimensional phase space
and therefore 2N independent Lyapounov exponents. We let the set {ei}
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denote the 2N unit vectors associated with these 2N orthogonal directions,
where the unit vector, ei, denotes the direction in which the separation
of neighboring trajectories is characterized by λi. Then, in general, we
can write ∆Xt =

∑2N
i=1Ci(t)ei, where the coefficient, Ci(t), denotes the

component of ∆Xt in the direction ei. The Lyapounov exponent associated
with the direction ei is given by

λi = λ(XN
o , ei) = lim

t→∞

1
t

ln
(
dt(XN

o , ei)
do(XN

o , ei)

)
. (2.6.3)

The notation dt(XN
o , ei) indicates that we choose a neighboring point, YN

o ,
so that it deviates from XN

o only in the direction ei in phase space.
In [Benettin and Strelcyn 1978] it is shown that, for Hamiltonian flows,

the exponents satisfy the relation

λi = −λ2N−i+1. (2.6.4)

On the energy surface, there are 2N−1 exponents. One of them is zero (the
one associated with motion along the direction of the flow). We can now
order the exponents in order of increasing value. If we relabel the indices
in Eq. (2.6.4), we can write

−λN−1 ≤ . . . ≤ −λ1 ≤ 0 ≤ λ1 ≤ . . . ≤ λN−1.

If ∆Xt is chosen arbitrarily, it should contain some contribution from all
spatial directions. Then we will find λ(XN

o ,Y
N
o ) = λN−1. A numerical

method for computing all 2N of the Lyapounov exponents in an N degree
of freedom system can be found in [Benettin et al. 1979].

Benettin et al. [Benettin et al. 1976] have computed λN−1 for the Henon-
Heiles system. For bounded systems, the quantity defined in Eq. (2.6.2)
can be expected to saturate after a finite time. Thus a slightly different
procedure is used to obtain the exponents. One essentially computes a
sequence of distances each of which is obtained after a finite length of time,
τ , in the following way. Let Xo,n−1 (Xτ,n−1) denote the position of our
reference trajectory at the beginning (end) of the nth time step, τ .

Let Xo,o and Yo,o denote the positions of neighboring trajectories at the
initial time. Initially, the distance between them is do = |Yo,o −Xo,o|. At
the end of the first time step, their distance is d1 = |Yτ,o−Xτ,o|. Now begin
the second time step. We relabel the position of our reference trajectory,
Xo,1 = Xτ,o, and choose a new neighboring vector, Yo,1, so that the vector
(Yo,1 − Xo,1) is directed along the same direction as (Yτ,o − Xτ,o) but
has length do. We then let the system evolve and obtain a distance, d2, at
the end of the second time step (see Fig. 2.6.2). We continue this process
for n time steps, each of length τ . In so doing, we generate a sequence
of distances, {dj}, where j = 1, . . . , n. The Lyapounov exponent is then
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Figure 2.6.2. The Lyapounov exponent, kn(τ,Xo,o,Yo,o), is obtained by com-
puting a sequence of distances, dn, between our reference trajectory, XN

t , and a
neighboring trajectory. Each distance is obtained after a finite time interval, τ . In
this figure, Xo,n = XN

nτ . The neighboring trajectory is adjusted at the beginning
of each interval to lie a distance do from XN

nτ .

defined as

kn(τ,Xo,o,Yo,o) =
1
nτ

n∑
j=1

ln
(
dj
do

)
. (2.6.5)

If do is not too big the quantity kn(τ,Xo,o,Yo,o) has been found to have
the following properties [Benettin et al. 1976] [Casartelli et al. 1976]:

1. limn→∞ kn(τ,Xo,o,Yo,o) = k(τ,Xo,o,Yo,o) exists;

2. k(τ,Xo,o,Yo,o) is independent of τ ;

3. k(τ,Xo,o,Yo,o) is independent of do;

4. k(τ,Xo,o,Yo,o) = 0 if Xo,o is chosen to lie in a regular region of the
energy surface;

5. k(τ,Xo,o,Yo,o) is independent of Xo,o and is positive if Xo,o is chosen
to lie in a chaotic region of the energy surface.

Therefore, in a chaotic region of the energy surface, we can write k(E) =
k(τ,Xo,o,Yo,o). The quantity k(E) obtained in this manner is the largest
Lyapounov exponent, λN−1.

Benettin, Froeshle, and Scheidecker [Benettin et al. 1979] have shown
that it is possible to compute all of the Lyapounov exponents for a particu-
lar model Hamitonian system with N (N = 4, 5) degrees of freedom. Meyer
[Meyer 1986] has been able to show that for sufficiently smooth Hamilto-
nians there are at least 2N vanishing Lyapounov exponents if there are
N independent isolating integrals of the motion. In Figs. 2.6.3 and 2.6.4,
we show some of the results of Benettin et al., who computed the Lya-
pounov exponent and KS metric entropy for the Henon-Heiles system (see
Fig. 2.3.2). In Fig. 2.6.3, the Lyapounov exponent, kn, is computed for six
different initial conditions, three taken from the chaotic region and three
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Figure 2.6.3. Plot of Lyapounov exponent kn for the Henon-Heiles system for six
different initial conditions, three chosen from the chaotic regime (black circle,
diamond, and square) and three chosen from the regular regime (open circle,
diamond, and square). For all initial conditions, the energy E = 0.125, and
typically do = 3× 10−4 and τ = 0.2 (see Fig. 2.6.2). As n → ∞, the exponent kn
approaches a positive constant value for trajectories in the chaotic regime, and
approaches zero for trajectories in the regular regime. [Benettin et al. 1976]
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Figure 2.6.4. A plot of k(E) = limn→∞ kn as a function of energy for trajectories
in the chaotic regime (black squares) and trajectories in the regular regime (black
circles) of the Henon-Heiles system. The dotted line is an estimate of the KS
metric entropy as a function of energy. [Benettin et al. 1976]

taken from the regular region (it is useful to locate these initial conditions
in the surfaces of section for the Henon-Heiles system in Fig. 2.3.2). For
initial conditions in the chaotic regime, all three exponents approach the
same final value as n → ∞, even though the initial conditions are taken
from quite different regions of the phase space. For initial conditions in
the regular region, the three exponents steadily decrease toward zero. In
Fig. 2.6.4, the exponent k(E) = limn→∞ kn is plotted as a function of en-
ergy in both the chaotic and regular regimes for the Henon-Heiles system.
The rate of divergence of trajectories appears to increase with increasing
energy.

Regions of phase space for which neighboring trajectories have positive
Lyapounov exponents are said to exhibit sensitive dependence on initial
conditions, which is the definition of classical chaos. Any small change in
the initial trajectories can lead to quite different final states.

2.6.2 KS Metric Entropy and K-Flows
There is a relation between the Lyapounov exponents and the KS metric
entropy. In order to build some intuition about the KS metric entropy,
let us consider the baker’s map [Arnol’d and Avez 1968], [Penrose 1970],
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Figure 2.6.5. Behavior of the phase space of the unit square under the baker’s
map. The initial partition shown in (a) gets stretched into finer and finer filaments
by the transformation, T .

[Reichl 1998], which is the simplest case of a Bernoulli shift [Moser 1973].
The baker’s map consists of an alphabet with two “letters,” 0 and 1, and
the set, {S}, of all possible doubly infinite sequences

S = (. . . , s−2, s−1, s0; s1, s2, . . .) (2.6.6)

that can be formed from the alphabet by selecting sk = 0 or 1, where sk
is the kth entry in the sequence and −∞ ≤ k ≤ ∞. The set {S} includes
sequences with random ordering and periodic ordering of elements. Each
sequence, S, can be mapped to a point, (p, q), in the unit square by defining

p =
0∑

k=−∞
sk 2k−1 (2.6.7)

and

q =
∞∑
k=1

sk 2−k. (2.6.8)

We can introduce dynamics into this system by means of the Bernoulli
shift, T , which shifts all entries in a given sequence, S, to the right by one
place. Let the sequence S be defined as in Eq. (2.6.6). Then

TS = (. . . , s−3, s−2, s−1; s0, s1, . . .). (2.6.9)

This shift causes the following mapping of the coordinates (p, q) on the unit
square

T (p, q) =
{

(2p, 12q) for 0 ≤ p < 1
2

(2p− 1, 12q + 1
2 ) for 1

2 ≤ p ≤ 1 (2.6.10)

It is important to note that whenever the element, s0, of a sequence, S,
has the value s0 = 0(1), the point (p, q) will lie to the left (right) of p = 1

2 .
Thus, for random sequences, the point (p, q) will be mapped randomly to
the left or right of p = 1

2 by T .
Let us now introduce the partition of the unit square α = (A(0)

1 , A
(0)
2 ) as

shown in Fig. 2.6.5.a, where A(0)
i , i = 1, 2 is an element of the partition, α.
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Figure 2.6.6. (a) The four elements of the partition resulting from the intersection
of partitions α and Tα. (b) The eight elements of the partition resulting from
the intersection of partitions α, Tα, and T 2α. Each element is represented by a
different pattern.

The effect of successive Bernoulli shifts will be to stretch the elements of
this initial partition into filaments distributed throughout the unit square,
as shown in Fig. 2.6.5. Let us next assign a measure, p(0)i = µ(A(0)

i ), to the
element A(0)

i (i = 1, 2) equal to the fraction of the area of the unit square
that it occupies. Then

∑2
i=1p

(0)
i = 1. Thus, the measure of an element is

the area that it occupies. From Fig. 2.6.5, we see that Tnα will contain
2n elements, Tnα = (A(n)

1 , . . . , A
(n)
2n ). Let us next introduce the partition

α∨Tα, which consists of elements A(0)
i ∩A

(1)
j (i, j = 1, 2), where ∩ denotes

the intersection of the elements A(0)
i and A

(1)
j . The partition α ∨ Tα is

shown in Fig. 2.6.6.a. Similarly. the elements of the partition α∨Tα∨T 2α
are shown in Fig. 2.6.6.b.

The KS metric entropy can now be defined as

hKS(T ) = suph(α, T ) = sup lim
n→∞

h(α ∨ Tα ∨ . . . ∨ Tn−1α)
n

, (2.6.11)

where

h(α) = −
∑
i

pi ln(pi) (2.6.12)

and the sum is taken over all elements of partition α. The maximum value
of the entropy occurs when the elements of a partition all have equal area.
If we assume that our partitions do have equal area, then it is easy to see
that

h(α ∨ Tα ∨ . . . ∨ Tn−1α) = −
2n∑
i=1

(
1
2

)n
ln
[(

1
2

)n]
= n ln(2). (2.6.13)

Thus, for the baker’s map,

hKS(t) = ln(2). (2.6.14)
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This analysis can be extended to Bernoulli shifts with an alphabet with
k “letters.” In that case, the KS metric entropy is ln(k). Therefore, the
baker’s map and Bernoulli shifts in general are K-flows. The dynamics
contains contraction in the q direction and stretching in the p direction,
very much like the flow in the neighborhood of a hyperbolic fixed point.

The connection between the Lyapounov exponents and the KS metric
entropy was established by Piesin [Piesin 1976]. The KS metric entropy
may be related to the Lyapounov exponents in the following way. Let

ρ(XN ) =
N−1∑
i=1

λi(XN ), (2.6.15)

where λi(XN ) denotes the Lyapounov exponent in a region of phase space
in the interval XN → XN + dXN on the energy surface. (Remember that
the Lyapounov exponents are constant and nonzero throughout a stochastic
region and are zero in regular regions.) The KS entropy is then [Benettin
et al. 1979]

h(E) =
∫
ΓE
ρ(XN )dµE , (2.6.16)

where dµE denotes an invariant volume element of the energy surface. Thus
the KS entropy is directly related to the Lyapounov exponents. Benettin et
al. [Benettin et al. 1976] have made an estimate of the KS metric entropy as
a function of energy for the Henon-Heiles system. Their result, the dotted
line, is shown in Fig. 2.6.4. The KS metric entropy has an energy depen-
dence and qualitative behavior similar to that of the largest Lyapounov
exponent for this system.

The Henon-Heiles system is one whose phase space contains a mixture
of regular and chaotic trajectories. The fraction of the phase space occu-
pied by each can be varied by varying parameters of the system. This is
the most common type of behavior found in Hamiltonian systems and is
characteristic of systems with smooth differentiable Hamiltonians.

One of the few systems that is known to be a K-flow for all values of its
parameters is the hard sphere gas. This was proven by Sinai [Sinai 1963b]
for the Sinai billiard, which consists of a particle confined in a box that
has periodic boundary conditions and a hard circular barrier placed inside
the box (see Fig. 2.6.7). The Hamiltonian of this system is not smooth
and differentiable. The convex surface of the barrier causes neighboring
trajectories to exponentially diverge from one another in phase space.

Let us now consider the dynamics of the Sinai billiard [Berry 1978]. Since
the box has periodic boundary conditions, we may also view this system as
that of a particle moving through a lattice of circular barriers. Assume that
the average distance traveled between collisions with the barriers is D and
the radius of the pillars is R. If two neighboring trajectories (we assume
they have the same velocity) strike a barrier at points a distance ∆S0 apart,
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Figure 2.6.7. Sinai [Sinai 1963b] proved that the phase space flow of a moving
particle confined to a box containing a hard circular barrier is a K-flow. The box
is assumed to have periodic boundary conditions.

the angular distance will be ∆θ0 = ∆S0/R (see Fig. 2.6.8). However, when
they strike the next barrier a distance D away, their points of collision
will be separated a distance ∆S1 ≈ ∆θ0D, and the angular separation of
the collision points will be ∆θ1 ≈ D

R∆θ0. If we continue this process for
n collisions, the approximate angular spread of points of collision will be
∆θn ≈

(
D
R

)n
∆θ0. The number of collisions, n, needed for a divergence of

one radian is n = ln(∆θ0)/ ln
(
R
D

)
. It is interesting to consider an example.

Let ∆θ0 = 0.0001 radians and R/D = 0.1. Then n = 4 and it requires only
four collisions to achieve a divergence of one radian.

Another system that has been proven to be a K-flow is that of a billiard
moving in a planar concave region called a stadium. The stadium billiard
consists of two half circles of radius r connected by equal parallel line seg-
ments of length 2a (see Fig. 2.6.9). When a = 0 and the system is circular,
the motion of the billiard is integrable. However, for a > 0, it becomes
a K-flow, as was proved by Bunimovich [Bunimovich 1974]. It should be
noted, however, that Benettin and Strelcyn [Benettin and Strelcyn 1978]
have found a transition region from regular to chaotic flow for a � r. We
will return to the stadium billiard when we discuss quantum systems.

2.7 Time-Dependent Hamiltonians

Systems with time-dependent Hamiltonians of the form H(p1, . . . , pN ; q1,
. . . , qN ; t) that are periodic in time have proven most fruitful in studying
the transition to chaos because with these systems it is often easiest to
control the conditions under which the transition to chaos occurs. Because
the dynamics of such systems is governed by Hamilton’s equations, the
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Figure 2.6.8. The phase space of a hard sphere gas is a K-flow. Neighboring
trajectories diverge rapidly due to collisions with the hard convex surfaces.

Figure 2.6.9. The stadium billiard is a two-dimensional billiard with spherical
ends of radius r separated by parallel sides of length 2a. For a = 0, the motion
of a billiard is integrable, but for a > 0 it is a K-flow [Bunimovich 1974].
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Figure 2.7.1. For a Hamiltonian that is periodic in time, a Poincaré surface of
section can be obtained by plotting p and q at each period, τ , of the external
field. This is sometimes called a strobe plot.

phase space flow is volume-preserving. In a higher-dimensional phase space,
such systems are conservative. An N degree of freedom system with a time-
periodic Hamiltonian, H(p1, . . . , pN ; q1, . . . , qN ; t), is equivalent to an N+1
degree of freedom system with Hamiltonian

H(p1, . . . , pN+1; q1, . . . , qN+1) = H(p1, . . . , pN ; q1, . . . , qN ; qN+1) + pN+1.
(2.7.1)

If the Hamiltonian is a periodic function of the time t, i.e.,

H(p1, . . . , pN ; q1, . . . , qN ; t) = H(p1, . . . , pN ; q1, . . . , qN ; t+ τ),

then the time plays a role analogous to that of an angle variable.
For a time-periodic Hamiltonian system with one degree of freedom,

H(p, q, t) = H(p, q, t+τ), where τ is the period of the system, the Poincaré
surface of section is just a strobe plot. That is, one simply plots (p, q) once
every period τ (see Fig. 2.7.1). Nonlinear systems (not harmonic) with a
Hamiltonian of the form

H(p, q, t) = H0(p, q) + εH1(p, q, t) (2.7.2)

generally (but not always) fit the conditions of the KAM theorem. H0(p, q)
describes an integrable system (all one degree of freedom systems are inte-
grable), and εH1(p, q, t) is a perturbation, which can be made as small as
we like by making ε small. Therefore, such systems are excellent candidates
for studying the transition to chaos. Indeed, much of what we know about
the transition has come from the study of such systems.

One of the simplest systems of this type is the conservative Duffing
oscillator [Duffing 1918], [Davis 1962]. This system was first studied system-
atically by Duffing in 1918 and is one of the simplest model systems used
for studying forced oscillations. The Duffing Hamiltonian may be written
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Figure 2.7.2. The conservative Duffing oscillator may be used to describe (a) the
motion of a particle in a double-well potential, V (q) = −2q2 + q4, driven by a
periodic external force, or (b) a pendulum driven by an external field for which
the angle of deviation from the vertical, φ, is related to q by q = sin(φ2 ).

[Reichl and Zheng 1984a, 1984b]

H =
p2

4
− 2q2 + q4 + εq cos(ωot). (2.7.3)

The equations of motion are

dp

dt
= 4q − 4q3 + ε cos(ωot) (2.7.4)

and
dq

dt
=
p

2
. (2.7.5)

These equations may be thought to describe either the motion of a particle
in a double-well potential driven by a periodic external force or, if we make
the change of variables q = sin(φ2 ), that of a pendulum in the presence of
an external driving force (see Fig. 2.7.2). The driven pendulum was also
studied in [Lin and Reichl 1985].

For ε = 0, this system is integrable, but for ε > 0 it is nonintegrable. The
external field induces nonlinear resonances into the phase space, and in re-
gions where these resonances overlap, the phase space flow contains chaotic
trajectories. The size and distribution of the resonances are determined by
the structure of the unperturbed double well Hamiltonian

H0 =
p2

4
− 2q2 + q4 = Eo. (2.7.6)

A phase space plot of trajectories for the unperturbed system H0 is given in
Fig. 2.7.3. The phase space has two elliptic fixed points at energy Eo = −1
and coordinates p = 0, q = ±1, corresponding to states in which the particle
is at rest in the two valleys, and a hyperbolic fixed point at energy E = 0
and coordinates p = q = 0, corresponding to states in which the particle is
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Figure 2.7.3. Phase space plot of trajectories for a system governed by the Hamil-
tonian Ho = p2

4 − 2q2 + q4 = Eo. A hyperbolic fixed point occurs at p = q = 0,
and two elliptic fixed points occur at p = 0, q = ±1. [Reichl and Zheng 1984a]

at rest at the top of the hill (a point of unstable equilibrium). For energy
−1 < Eo < 0, the particle is trapped in one of the two valleys. For energy
0 < Eo, it is free to cross the barrier and roll back and forth between the
two valleys. These two regions are separated by a separatrix.

We can perform a canonical transformation to action-angle variables
(J, θ). The form of the canonical transformation is different for−1 < Eo < 0
and 0 < Eo because the motion is qualitatively different in those two re-
gions. For −1 < Eo < 0 we find that the action is related to the energy via
the equation (see Appendix B and [Reichl and Zheng 1984b, 1988])

J =
4f
3π

(E(κ)− e2K(κ)), (2.7.7)

where f and e are the outer and inner turning points of the trajectory, K(κ)
and E(κ) are the complete elliptic integrals of the first and second kinds,
respectively, and κ is the modulus. The modulus is defined as κ2 = f2−e2

f2 ,
and the turning points are defined as f2 = 1 +

√
1 +Eo and e2 = 1 −√

1 +Eo. Thus, in principle Eq. (2.7.7) can be reverted to obtain Eo as a
function of J (i.e., Eo = Eo(J)), although in practice this generally is not
possible. The relation between coordinates (p, q) and (J, θ) is given by

q = f dn
(

K(κ)θ
π

, κ

)
(2.7.8)

and

p = 2f2κ2 sn
(

K(κ)θ
π

, κ

)
cn
(

K(κ)θ
π

, κ

)
, (2.7.9)
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Figure 2.7.4. Plot of the natural frequency, ω, and its harmonics, nω (for
n = 1, 2, 3), of the unperturbed system as a function of energy, Eo. Note that the
frequencies all approach zero at the separatrix.

where dn, sn, and cn are Jacobi elliptic functions [Byrd and Friedman
1971]. The canonical transformation between (p, q) and (J, θ) can be found
in Appendix B and [Reichl and Zheng 1984b].

We can obtain the frequency of a given trajectory as a function of its
action from Eq. (2.7.6). After some algebra, we obtain

ω =
∂Eo

∂J
=

fπ

K(κ)
. (2.7.10)

The time series for the position, q, or momentum, p, will contain contri-
butions from all harmonics of this frequency. On a given trajectory, J is
constant and θ = ωt + θo, where θo is the initial angle. If we use these
equations and expand Eq. (2.7.8) in a Fourier series [Byrd and Friedman
1971], we find

q(t) =
fπ

2K(κ)
+

fπ

K(κ)

∞∑
n=1

sech
(
nπK′(κ)

K(κ)

)
cos(nωt), (2.7.11)

where K′(κ) = K(
√

1− κ2). When we turn on the external field, it can
resonate with all the harmonics, nω. Note that ω is a function of the energy,
Eo, so as we vary the energy, the resonance frequency changes. Therefore
these are nonlinear resonances.

It is useful to plot the frequencies nω as a function of the energy Eo.
The results are shown in Fig. 2.7.4. We see that the frequencies tend to
zero in the neighborhood of the separatrix, and they all accumulate there.
Thus, in the neighborhood of the separatrix, there are an infinite number of
resonance zones. These can be seen explicitly if we rewrite the Hamiltonian
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Figure 2.7.5. Strobe plot of the neighborhood of the separatrix shown in Fig. 2.7.3
for ε = 0.10 and frequency ωo = 1.92. The separatrix is an accumulation point
for resonance zones and will always contain chaotic orbits for ε > 0. [Reichl and
Zheng 1984a]

H in terms of action-angle variables. We then find

H = Eo(J) + ε
∞∑

n=−∞
gn(J) cos(nθ − ωot), (2.7.12)

where

gn(J) =
π

2K(κ)

(
2

2− κ2

) 1
2

sech
(
nπK′(κ)

K(κ)

)
. (2.7.13)

Each traveling cosine wave in Eq. (2.7.12) gives rise to a nonlinear pri-
mary resonance zone. Phase space trajectories that have the same speed
as a given cosine wave will be trapped by it and will cause a distortion of
the phase space similar to that caused by the resonances in the Walker-
Ford models in Sect. 2.4. The condition for trapping is that the speed of a
trajectory, θ̇ = ω, be equal to the speed of a cosine wave, θ̇ = ωo

n . Thus, at
values of J that satisfy the resonance condition (f and K are functions of
J)

fπ

K(κ)
=
ωo
n
, (2.7.14)

we will have a primary resonance zone. From Fig. 2.7.4, we see that we will
always have an infinite number of resonances in the neighborhood of the
separatrix regardless of the frequency, ωo.

In Fig. 2.7.5, we show a strobe plot of the neighborhood of the separatrix.
The external field frequency is ωo = 1.92 and the coupling constant ε =
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Figure 2.7.6. Strobe plot of the n = 1 primary resonance zone induced by the
external field. At frequency ωo = 1.8, it lies well away from the unperturbed
separatrix. Note that the separatrix of this primary resonance is also chaotic.
[Reichl and Zheng 1984b]

0.10. The neighborhood of the separatrix will always be chaotic due to
the infinite number of resonances that have accumulated there. Note that
for ε�=0 the unperturbed energy, Eo, for this trajectory is time dependent
and oscillates chaotically. For coupling constant ε = 0.10, there are mostly
KAM tori. From Fig. 2.7.3, we see that if we choose an external frequency
ωo ≤ 2n, we should see a resonance zone lying at low energy. The n = 1
primary resonance zone is shown in Fig. 2.7.6 for ωo = 1.8 and ε = 0.1.
Notice that the separatrix of this primary resonance is chaotic. This is an
indication of the self-similarity that exists in such systems, as we shall show
later.

2.8 Conclusions

In this chapter, we have introduced concepts and model systems that will
recur repeatedly throughout the remainder of the book. For example, the
Toda lattice will reappear in Chapter 6, where we describe techniques used
to construct integrable quantum mechanical systems. The stadium and the
bakers map will also reappear in Chapter 6, where their quantum analogs
will be studied. The Duffing oscillator reappears in Chapter 3, where we
use it to construct the whisker map, and it appears in Chapter 4, where
we use it to test renormalization predictions.
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It is interesting to note that Ramani, Grammaticos, and Bountis [Ra-
mani et al. 1989] have described a method different from that of Sect. 2.3
to determine if a system is integrable. They study the singularities of the
differential equations and categorize them in terms of those singularities.
They conjecture that systems of equations with the Painlevi property (the
only moving singularities are poles) are integrable.

In this book, we will not discuss ergodic theory, which is a theory that
attempts to lay the dynamical foundations of statistical mechanics. Suffice
it to say that systems, such as the Sinai billiard, that are globally K-
flows are also ergodic and mixing. Excellent discussions about the relation
between ergodic theory and dynamics may be found in [Farquhar 1964],
[Arnol’d and Avez 1968], and [Ornstein 1974]. Shorter discussions may be
found in [Farquhar 1972], [Lebowitz and Penrose 1973], and [Reichl 1989].

2.9 Problems

2.1. A particle of mass m = 1 is constrained to move along the x-axis in the
presence of a cubic potential V (x) = −4x+ 3

2x
2 + 1

3x
3. (a) Prove that the

Hamiltonian is a constant of the motion. (b) Sketch the potential V (x) ver-
sus x. (c) Sketch the flow of trajectories in the Hamiltonian (p, x) phase
space. Locate any hyperbolic and elliptic fixed points. Sketch in any sep-
aratrices. (c) Solve the equations of motion in the neighborhood of any
hyperbolic or elliptic fixed points. Find the slopes and rate of exponentia-
tion of the eigenvectors in the neighborhood of the hyperbolic points and
the angular frequency of oscillation in the neighborhood of the elliptic fixed
points.

2.2. Repeat parts (a)−(c) of Problem 2.1 for the Hamiltonian H = 1
2p

2 − x −
1
2x

2 + 1
4x

4.

2.3. Find explicit expressions (in terms of phase space variables) for the three
independent global constants of the motion for the three-body Toda lattice
whose Hamiltonian is given by Eq. (2.3.17).

2.4. Consider the (2,3) resonance of Walker and Ford (in Sect. 2.4), which has
Hamiltonian

H = J1 + J2 − J2
1 − 3J1J2 + J2

2 + βJ1J
3/2
2 cos(2θ1 − 3θ2) = E.

Make the canonical transformation from coordinates (J1, J2, θ1, θ2) to co-
ordinates (I1, I2, φ1, φ2), where J1 = I1 − 2

3I2, J2 = I2, θ1 = φ1, and
θ2 = φ2 + 2

3φ1. (a) Prove that the fixed points for even n (see Sect. 2.4) are
hyperbolic while those for odd n are elliptic. (b) For very small β, find the
energy at which the fixed points first appear. (c) Use perturbation theory to
compute the coordinates (J1(t), J2(t), θ1(t), θ2(t)) to first order in β. Show
that it diverges in the neighborhood of the (2,3) resonance.
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2.5. Repeat parts (a)−(c) in Problem 2.4 for the Hamiltonian H = J1 + J2 −
J2

1 − 3J1J2 + J2
2 + βJ2

1J2 cos(4θ1 − 2θ2).

2.6. Consider a system described by the Hamiltonian

H = J2
1 + 2J1J2 + J2

2 − ε cos(2θ1 − 3θ2) = E.

Find analytic solutions to the equations of motion. Sketch the Poincaré
surfaces of section in the (J1, θ1) plane and in the (J2, θ2) plane.

2.7. Find all period 3 orbits of the baker’s map. Plot them in the (p, q) plane.

2.8. Consider a system described by the Hamiltonian H = 1
4p

2 + V cos(x −
3t). Sketch the phase space trajectories of this system in the (p, x) plane.
Locate the separatrix and the elliptic and hyperbolic fixed points in the
(p, x) plane. Compute the maximum width of the region bounded by the
separatrix. Convert the time-dependent problem into a time-independent
problem, using the method of Sect. 2.7, and compute p(t) to first order in
the coupling constant, V .
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