
Writing Testbenches: Functional Verification of HDL Models 25

CHAPTER 2 VERIFICATION TOOLS

As mentioned in the previous chapter, one of the mechanisms that
can be used to improve the efficiency and reliability of a process is
automation. This chapter covers tools used in a state-of-the-art
functional verification environment. Some of these tools, such as
simulators, are essential for the functional verification activity to
take place. Others, such as linting or code coverage tools, automate
some of the most tedious tasks of verification and help increase the
confidence in the outcome of the functional verification.

Not all tools are
mentioned in
this chapter. It is
not necessary to
use all the tools
mentioned.

It is not necessary to use all of the tools described here. Nor is this
list exhaustive, as new application-specific and general purpose
verification automation tools are regularly brought to market. As a
verification engineer, your job is to use the necessary tools to
ensure that the outcome of the verification process is not a Type II
mistake, which is a false positive. As a project manager responsible
for the delivery of a working product on schedule and within the
allocated budget, your responsibility is to arm your engineers with
the proper tools to do their job efficiently and with the necessary
degree of confidence. Your job is also to decide when the cost of
finding the next functional bug has increased above the value the
additional functional correctness brings. This last responsibility is
the heaviest of them all. Some of these tools provide information to
help you decide when you’ve reached that point.

No endorse-
ments of com-
mercial tools.

I mention some commercial tools by name. They are used for illus-
trative purposes only and this does not constitute a personal

Verification Tools

26 Writing Testbenches: Functional Verification of HDL Models

endorsement. I apologize in advance to suppliers of competitive
products I fail to mention. It is not an indication of inferiority, but
rather an indication of my limited knowledge. All trademarks and
service marks, registered or not, are the property of their respective
owners.

LINTING TOOLS

Linting tools find
common program-
mer mistakes.

The term “lint” comes from the name of a UNIX utility that parses
a C program and reports questionable uses and potential problems.
When the C programming language was created by Dennis Ritchie,
it did not include many of the safeguards that have evolved in later
versions of the language, like ANSI-C or C++, or other strongly-
typed languages such as Pascal or ADA. lint evolved as a tool to
identify common mistakes programmers made, letting them find
the mistakes quickly and efficiently, instead of waiting to find them
through a dreaded segmentation fault during execution of the pro-
gram.

lint identifies real problems, such as mismatched types between
arguments and function calls or mismatched number of arguments,
as shown in Sample 2-1. The source code is syntactically correct
and compiles without a single error or warning using gcc version
2.8.1.

However, Sample 2-1 suffers from several pathologically severe
problems:

1. The my_func function is called with only one argument instead
of two.

Sample 2-1.
Syntactically
correct K&R
C source code

int my_func(addr_ptr, ratio)
 int *addr_ptr;
 float ratio;
{
 return (*addr_ptr)++;
}

main()
{
 int my_addr;
 my_func(my_addr);
}

Linting Tools

Writing Testbenches: Functional Verification of HDL Models 27

2. The my_func function is called with an integer value as a first
argument instead of a pointer to an integer.

Problems are
found faster than
at runtime.

As shown in Sample 2-2, the lint program identifies these prob-
lems, letting the programmer fix them before executing the pro-
gram and observing a catastrophic failure. Diagnosing the problems
at runtime would require a runtime debugger and would take sev-
eral minutes. Compared to the few seconds it took using lint, it is
easy to see that the latter method is more efficient.

Linting tools are
static tools.

Linting tools have a tremendous advantage over other verification
tools: They do not require stimulus, nor do they require a descrip-
tion of the expected output. They perform checks that are entirely
static, with the expectations built into the linting tool itself.

The Limitations of Linting Tools

Linting tools can
only identify a cer-
tain class of prob-
lems.

Other potential problems were also identified by lint. All were fixed
in Sample 2-3, but lint continues to report a problem with the invo-
cation of the my_func function: The return value is always ignored.
Linting tools cannot identify all problems in source code. They can
only find problems that can be statically deduced by looking at the
code structure, not problems in the algorithm or data flow.

For example, in Sample 2-3, lint does not recognize that the unini-
tialized my_addr variable will be incremented in the my_func func-
tion, producing random results. Linting tools are similar to spell
checkers; they identify misspelled words, but do not determine if
the wrong word is used. For example, this book could have several
instances of the word “with” being used instead of “width”. It is a
type of error the spell checker (or a linting tool) could not find.

Sample 2-2.
Lint output for
Sample 2-1

src.c(3): warning: argument ratio unused in
function my_func
src.c(11): warning: addr may be used before set
src.c(12): warning: main() returns random value
to invocation environment
my_func: variable # of args. src.c(4) ::
src.c(11)
my_func, arg. 1 used inconsistently
src.c(4) :: src.c(11)
my_func returns value which is always ignored

Verification Tools

28 Writing Testbenches: Functional Verification of HDL Models

Many false nega-
tives are reported.

Another limitation of linting tools is that they are often too paranoid
in reporting problems they identify. To avoid making a Type II mis-
take—reporting a false positive, they err on the side of caution and
report potential problems where none exist. This results in many
Type I mistakes—or false negatives. Designers can become frus-
trated while looking for non-existent problems and may abandon
using linting tools altogether.

Carefully filter
error messages!

You should filter the output of linting tools to eliminate warnings or
errors known to be false. Filtering error messages helps reduce the
frustration of looking for non-existent problems. More importantly,
it reduces the output clutter, reducing the probability that the report
of a real problem goes unnoticed among dozens of false reports.
Similarly, errors known to be true positive should be highlighted.
Extreme caution must be exercised when writing such a filter: You
must make sure that a true problem is not filtered out and never
reported.

Naming conven-
tions can help out-
put filtering.

A properly defined naming convention is a useful tool to help deter-
mine if a warning is significant. For example, the report in Sample
2-4 about a latch being inferred on a signal whose name ends with
“_lat” would be considered as expected and a false warning. All
other instances would be flagged as true errors.

Sample 2-3.
Functionally
correct K&R
C source code

int my_func(addr_ptr)
 int *addr_ptr;
{
 return (*addr_ptr)++;
}

main()
{
 int my_addr;
 my_func(&my_addr);
 return 0;
}

Sample 2-4.
Output from a
hypothetical
Verilog lint-
ing tool

Warning: file decoder.v, line 23: Latch
inferred on reg "address_lat".
Warning: file decoder.v, line 36: Latch
inferred on reg "next_state".

Linting Tools

Writing Testbenches: Functional Verification of HDL Models 29

Do not turn off
checks.

Filtering the output of a linting tool is preferable to turning off
checks from within the source code itself or via the command line.
A check may remain turned off for an unexpected duration, poten-
tially hiding real problems. Checks that were thought to be irrele-
vant may become critical as new source files are added.

Lint code as it is
being written.

Because it is better to fix problems when they are created, you
should run lint on the source code while it is being written. If you
wait until a large amount of code is written before linting it, the
large number of reports—many of them false—will be daunting
and create the impression of a setback. The best time to identify a
report as true or false is when you are still intimately familiar with
the code.

Enforce coding
guidelines.

The linting process, through the use of user-defined rules, can also

be used to enforce coding guidelines and naming conventions1.
Therefore, it should be an integral part of the authoring process to
make sure your code meets the standards of readability and main-
tainability demanded by your audience.

Linting Verilog Source Code

Linting Verilog
source code
catches common
errors.

Linting Verilog source code ensures that all data is properly han-
dled without accidentally dropping or adding to it. The code in
Sample 2-5 shows a Verilog model that looks perfect, compiles
without errors, but produces unintended results under some circum-
stances in Verilog-95.

Problems may not
be apparent under
most conditions.

The problem is in the width mismatch in the continuous assignment
between the output “out” and the constant “'bz”. The unsized con-
stant is 32-bits wide (or a value of 32'hzzzzzzzz), while the output

1. See Appendix A for a set of coding guidelines.

Sample 2-5.
Potentially
problematic
Verilog code

module tristate_buffer(in, out, enable);
parameter WIDTH = 8;
input [WIDTH-1:0] in;
output [WIDTH-1:0] out;
input enable;

assign out = (enable) ? in : ’bz;

endmodule

Verification Tools

30 Writing Testbenches: Functional Verification of HDL Models

has a user-specified width. As long as the width of the output is less
than or equal to 32, everything is fine: The value of the constant
will be appropriately truncated to fit the width of the output.

However, in Verilog-95, the problem occurs when the width of the
output is greater than 32 bits: Verilog-95 zero-extends the constant
value to match the width of the output, producing the wrong result.
The least significant 32-bits are set to high-impedance, while all the
other more significant bits are set to zero. This “feature” has been
fixed in Verilog-2001.

It is an error that could not be found in simulation, unless a config-
uration greater than 32 bits was used, and it produced wrong results
at a time and place you were looking at. A linting tool finds the
problem every time, in just a few seconds.

Linting VHDL Source Code

Because of its strong typing, VHDL does not need linting as much
as Verilog. Much of the checks performed by a linting tool are
required to be performed by the VHDL compiler. However, poten-
tial problems are still best identified using a linting tool.

Linting can find
unintended multi-
ple drivers.

For example, a common problem in VHDL is created by using the
STD_LOGIC type. Since it is a resolved type, STD_LOGIC signals
can have more than one driver. When modeling hardware, multiple
driver signals are required in a single case: to model buses. In all
other cases (which is over 99% of the time), a signal should have
only one driver. The VHDL source shown in Sample 2-6 demon-
strates how a simple typographical error can go undetected easily
and satisfy the usually paranoid VHDL compiler.

Typographical
errors can cause
serious problems.

In Sample 2-6, both concurrent signal assignments labeled
“statement1” and “statement2” assign to the signal “s1” (ess-one),
while the signal “sl” (ess-ell) remains unassigned. Had I used the
STD_ULOGIC type instead of the STD_LOGIC type, the VHDL
toolset would have reported an error after finding multiple drivers
on an unresolved signal. However, it is not possible to guarantee the
STD_ULOGIC type is used for all signals with a single driver. A

Linting Tools

Writing Testbenches: Functional Verification of HDL Models 31

linting tool is still required to report multiple driver signals regard-
less of the type, as shown in Sample 2-7.

Use naming con-
vention to filter
output.

It would be up to the author to identify the signals that were
intended to model buses and ignore the warnings about them. Using
a naming convention for such signals facilitates recognizing warn-
ings that can be safely ignored, and enhances the reliability of your
code. An example of a naming convention, illustrated in Sample 2-
8, would be to name any signals modeling buses with the “_bus”

suffix2.

Sample 2-6.
Erroneous
multiple
drivers

library ieee;
use ieee.std_logic_1164.all;
entity my_entity is
 port (my_input: in std_logic);
end my_entity;

architecture sample of my_entity is
 signal s1: std_logic;
 signal sl: std_logic;
begin
 statement1: s1 <= my_input;
 statement2: s1 <= not my_input;
end sample;

Sample 2-7.
Output from a
hypothetical
VHDL linting
tool

Warning: file my_entity.vhd: Signal "s1" is
multiply driven.
Warning: file my_entity.vhd: Signal "sl" has no
drivers.

2. See Appendix A for an example of naming guidelines.

Sample 2-8.
Naming con-
vention for
signals with
multiple
drivers

--
-- data_bus, addr_bus and sys_err_bus
-- are intended to be multiply driven
--
signal data_bus : std_logic_vector(15 downto 0);
signal addr_bus : std_logic_vector(7 downto 0);
signal ltch_addr: std_logic_vector(7 downto 0);
signal sys_err_bus: std_logic;
signal bus_grant : std_logic;

Verification Tools

32 Writing Testbenches: Functional Verification of HDL Models

Linting can iden-
tify inferred
latches.

The accidental multiple driver problem is not the only one that can
be caught using a linting tool. Others, such as unintended latch
inference in synthesizeable code, or the enforcement of coding
guidelines, can also be identified.

Linting OpenVera and e Source Code

Because of their strong typing, e and OpenVera do not need linting
as much as Verilog. But like Verilog, potential problems are still
best identified using a linting tool. For example, Sample 2-9 shows
a race condition between two concurrent execution branches that
will yield an unpredictable result (this race condition is explained in
details in the section titled “Write/Write Race Conditions” on
page 212). This type of error would be easily detectable by a linting
tool. Linting tools for OpenVera and e are starting to emerge.

Code Reviews

Reviews are per-
formed by peers.

Although not technically linting tools, the objective of code reviews
is essentially the same: Identify functional and coding style errors
before functional verification and simulation. Linting tools can only
identify questionable language uses. They cannot check if the
intended behavior has been coded. In code reviews, the source code
produced by a designer is reviewed by one or more peers. The goal
is not to publicly ridicule the author, but to identify problems with
the original code that could not be found by an automated tool.
Reviews can identify discrepancies between the design intent and
the implementation. They also provide an opportunity for suggest-
ing coding improvements, such as better comments, better structure
or better organization.

Identify qualitative
problems and
functional errors.

A code review is an excellent venue for evaluating the maintain-
ability of a source file, and the relevance of its comments. Other
qualitative coding style issues can also be identified. If the code is

Sample 2-9.
Race condition
on OpenVera
code

{
 integer i;
 fork
 i = 1;
 i = 0;
 join
}

Simulators

Writing Testbenches: Functional Verification of HDL Models 33

well understood, it is often possible to identify functional errors or
omissions.

Code reviews are not new ideas either. They have been used for
many years in the software design industry. Detailed information on
how to conduct effective code reviews can be found in the
resources section at:

http://janick.bergeron.com/wtb

SIMULATORS

Simulate your
design before
implementing it.

Simulators are the most common and familiar verification tools.
They are named simulators because their role is limited to approxi-
mating reality. A simulation is never the final goal of a project. The
goal of all hardware design projects is to create real physical
designs that can be sold and generate profits. Simulators attempt to
create an artificial universe that mimics the future real design. This
type of verification lets the designers interact with the design before
it is manufactured, and correct flaws and problems earlier.

Simulators are
only approxima-
tions of reality.

You must never forget that a simulator is an approximation of real-
ity. Many physical characteristics are simplified—or even
ignored—to ease the simulation task. For example, a four-state dig-
ital simulator assumes that the only possible values for a signal are
0, 1, unknown, and high-impedance. However, in the physical—
and analog—world, the value of a signal is a continuous function of
the voltage and current across a thin aluminium or copper wire
track: an infinite number of possible values. In a discrete simulator,
events that happen deterministically 5 ns apart may be asynchro-
nous in the real world and may occur randomly.

Simulators are at
the mercy of the
descriptions being
simulated.

Within that simplified universe, the only thing a simulator does is
execute a description of the design. The description is limited to a
well-defined language with precise semantics. If that description
does not accurately reflect the reality it is trying to model, there is
no way for you to know that you are simulating something that is
different from the design that will be ultimately manufactured.
Functional correctness and accuracy of models is a big problem as
errors cannot be proven not to exist.

Verification Tools

34 Writing Testbenches: Functional Verification of HDL Models

Stimulus and Response

Simulation
requires stimulus.

Simulators are not static tools. A static verification tool performs its
task on a design without any additional information or action
required by the user. For example, linting tools are static tools. Sim-
ulators, on the other hand, require that you provide a facsimile of
the environment in which the design will find itself. This facsimile
is called a testbench. Writing this testbench is the main objective of
this textbook. The testbench needs to provide a representation of
the inputs observed by the design, so the simulator can emulate the
design’s responses based on its description.

The simulation
outputs are vali-
dated externally,
against design
intents.

The other thing that you must not forget is that simulators have no
knowledge of your intentions. They cannot determine if a design
being simulated is correct. Correctness is a value judgment on the
outcome of a simulation that must be made by you, the verification
engineer. Once the design is subjected to an approximation of the
inputs from its environment, your primary responsibility is to
examine the outputs produced by the simulation of the design’s
description and determine if that response is appropriate.

Event-Driven Simulation

Simulators are
never fast enough.

Simulators are continuously faced with one intractable problem:
They are never fast enough. They are attempting to emulate a phys-
ical world where electricity travels at the speed of light and millions
of transistors switch over one billion times in a second. Simulators
are implemented using general purpose computers that can execute,
under ideal conditions, up to one billion sequential instructions per
second. The speed advantage is unfairly and forever tipped in favor
of the physical world.

Outputs change
only when an input
changes.

One way to optimize the performance of a simulator is to avoid
simulating something that does not need to be simulated. Figure 2-1
shows a 2-input XOR gate. In the physical world, if the inputs do
not change (Figure 2-1(a)), even though voltage is constantly
applied to the output, current is continuously flowing through the
transistors (in some technologies), and the atomic particles in the
semiconductor are constantly moving, the interpretation of the out-
put electrical state as a binary value (either a logic 1 or a logic 0)

Simulators

Writing Testbenches: Functional Verification of HDL Models 35

does not change. Only if one of the inputs change (as in Figure 2-
1(b)), does the output change.

Change in values,
called events, drive
the simulation pro-
cess.

Sample 2-10 shows a VHDL description (or model) of an XOR
gate. The simulator could choose to execute this model continu-
ously, producing the same output value if the input values did not
change. An opportunity to improve upon that simulator’s perfor-
mance becomes obvious: do not execute the model while the inputs
are constants. Phrased another way: Only execute a model when an
input changes. The simulation is therefore driven by changes in
inputs. If you define an input change as an event, you now have an
event-driven simulator.

Sometimes, input
changes do not
cause the output to
change.

But what if both inputs change, as in Figure 2-1(c)? In the logical
world, the output does not change. What should an event-driven
simulator do? For two reasons, the simulator should execute the
description of the XOR gate. First, in the real world, the output of
the XOR gate does change. The output might oscillate between 0
and 1 or remain in the “neither-0-nor-1” region for a few hun-
dredths of picoseconds (see Figure 2-2). It just depends on how
accurate you want your model to be. You could decide to model the
XOR gate to include the small amount of time spent in the

Figure 2-1.
Behavior of an
XOR gate

(a) (b) (c)

1..1
0..0

1..1
1 ..0

0..1

1..1
1..1

0 ..1

1 ..0

Sample 2-10.
VHDL model
for an XOR
gate

XOR_GATE: process (A, B)
begin
 if A = B then
 Z <= ’0’;
 else
 Z <= ’1’
 end if;
end process XOR_GATE;

Verification Tools

36 Writing Testbenches: Functional Verification of HDL Models

unknown (or x) state to more accurately reflect what happens when
both inputs change at the same time.

Descriptions
between inputs
and outputs are
arbitrary.

The second reason is that the event-driven simulator does not know
apriori that it is about to execute a model of an XOR gate. All the
simulator knows is that it is about to execute a description of a 2-
input, 1-output function. Figure 2-3 shows the view of the XOR
gate from the simulator’s perspective: a simple 2-input, 1-output
black box. The black box could just as easily contain a 2-input
AND gate (in which case the output might very well change if both
inputs change), or a 1024-bit linear feedback shift register (LFSR).

The mechanism of event-driven simulation introduces some limita-
tions and interesting side effects that are discussed further in
Chapter 4.

Acceleration
options are often
available in event-
driven simulators

Simulation vendors are forever locked in a constant battle of beat-
ing the competition with an easier-to-use, faster simulator. It is pos-
sible to increase the performance of an event-driven simulator by
simplifying some underlying assumptions in the design or in the
simulation algorithm. For example, reducing delay values to identi-
cal unit delays or using two states (0 and 1) instead of four states (0,
1, x and z) are techniques used to speed-up simulation. You should
refer to the documentation of your simulator to see what accelera-
tion options are provided. It is also important to understand what
are the consequences, in terms of reduced accuracy, of using these
acceleration options.

Figure 2-2.
Behavior of an
XOR gate
when both
inputs change

A

B
Z

A

B

Figure 2-3.
Event-driven
simulator view
of an XOR
gate

Simulators

Writing Testbenches: Functional Verification of HDL Models 37

Cycle-Based Simulation

Figure 2-4 shows the event-driven view of a synchronous circuit
composed of a chain of three 2-input gates between two edge-trig-
gered flip-flops. Assuming that Q1 holds a 0, Q2 holds a 1 and all
other inputs remain constant, a rising edge on the clock input would
cause an event-driven simulator to simulate the circuit as follows:

1. The event (rising edge) on the clock input causes the execution
of the description of the flip-flop models, changing the output
value of Q1 to 1 and of Q2 to 0, after a delay of 1 ns.

2. The event on Q1 causes the description of the AND gate to exe-
cute, changing the output S1 to 1, after a delay of 2 ns.

3. The event on S1 causes the description of the OR gate to exe-
cute, changing the output S2 to 1, after a delay of 1.5 ns.

4. The event on S2 causes the description of the XOR gate to exe-
cute, changing the output S3 to 1 after a delay of 3 ns.

5. The next rising edge on the clock causes the description of the
flip-flops to execute, Q1 remains unchanged, and Q2 changes
back to 1, after a delay of 1 ns.

Many intermedi-
ate events in syn-
chronous circuits
are not function-
ally relevant.

To simulate the effect of a single clock cycle on this simple circuit
required the generation of six events and the execution of seven
models (some models were executed twice). If all we are interested
in are the final states of Q1 and Q2, not of the intermediate combi-
natorial signals, then the simulation of this circuit could be opti-
mized by acting only on the significant events for Q1 and Q2: the

Figure 2-4.
Event-driven
simulator view
of a
synchronous
circuit

1
1

0 ..1

0 0

0 ..1 0 ..1

0 ..1
1 ..0

AND OR XORDFF DFF

S1 S2 S3Q1 Q2

Q1

Q2

S1

S2

S3

Clock

Verification Tools

38 Writing Testbenches: Functional Verification of HDL Models

active edge of the clock. Phrased another way: Simulation is based
on clock cycles. This is how cycle-based simulators operate.

The synchronous circuit in Figure 2-4 can be simulated in a cycle-
based simulator using the following sequence:

Cycle-based simu-
lators collapse
combinatorial
logic into equa-
tions.

1. When the circuit description is compiled, all combinatorial
functions are collapsed into a single expression that can be used
to determine all flip-flop input values based on the current state
of the fan-in flip-flops.

For example, the combinatorial function between Q1 and Q2
would be compiled from the following initial description:

S1 = Q1 & ’1’
S2 = S1 | ’0’
S3 = S2 ^ ’0’

into this final single expression:

S3 = Q1

The cycle-based simulation view of the compiled circuit is
shown in Figure 2-5.

2. During simulation, whenever the clock input rises, the value of
all flip-flops are updated using the input value returned by the
pre-compiled combinatorial input functions.

The simulation of the same circuit, using a cycle-based simulator,
required the generation of two events and the execution of a single
model. The number of logic computations performed is the same in
both cases. They would have been performed whether the “A” input
changed or not. As long as the time required to perform logic com-
putation is smaller than the time required to schedule intermediate

events,3 and there are many registers changing state at every clock
cycle, cycle-based simulation will offer greater performance.

Figure 2-5.
Cycle-based
simulator view
of a
synchronous
circuit

A->Q 1

B->Q 2

1

C lock

A

B

Simulators

Writing Testbenches: Functional Verification of HDL Models 39

Cycle-based simu-
lations have no
timing informa-
tion.

This great improvement in simulation performance comes at a cost:
All timing and delay information is lost. Cycle-based simulators
assume that the entire design meets the setup and hold requirements
of all the flip-flops. When using a cycle-based simulator, timing is
usually verified using a static timing analyzer.

Cycle-based simu-
lators can only
handle synchro-
nous circuits.

Cycle-based simulators further assume that the active clock edge is
the only significant event in changing the state of the design. All
other inputs are assumed to be perfectly synchronous with the
active clock edge. Therefore, cycle-based simulators can only sim-
ulate perfectly synchronous designs. Anything containing asyn-
chronous inputs, latches or multiple-clock domains cannot be
simulated accurately. Fortunately, the same restrictions apply to
static timing analysis. Thus, circuits that are suitable for cycle-
based simulation to verify the functionality are suitable for static
timing verification to verify the timing.

Co-Simulators

No real-world design and testbench is perfectly suited for a single
simulator, simulation algorithm or modeling language. Different
components in a design may be specified using different languages.
A design could contain small sections that cannot be simulated
using a cycle-based algorithm. Testbenches may (and should) be
written using an HVL while the design is written in VHDL or Ver-
ilog.

Multiple simula-
tors can handle
separate portions
of a simulation.

To handle the portions of a design that do not meet the requirements
for cycle-based simulation, most cycle-based simulators are inte-
grated with an event-driven simulator. As shown in Figure 2-6, the
synchronous portion of the design is simulated using the cycle-
based algorithm, while the remainder of the design is simulated
using a conventional event-driven simulator. Both simulators

3. And they are. By a long shot.

Verification Tools

40 Writing Testbenches: Functional Verification of HDL Models

(event-driven and cycle-based) are running together, cooperating to
simulate the entire design.

Other popular co-simulation environments provide VHDL and Ver-
ilog, HDL and HVL or digital and analog co-simulation. For exam-
ple, Figure 2-7 shows the testbench (written in e) and a design co-
simulated using Specman Elite and a HDL simulator.

All simulators
operate in locked-
step.

During co-simulation, all simulators involved progress along the
time axis in lock-step. All are at simulation time T1 at the same

time and reach the next time T2 at the same time. This implies that

the speed of a co-simulation environment is limited by the slowest
simulator. Some experimental co-simulation environments imple-
ment time warp synchronization where some simulators are
allowed to move ahead of the others.

Performance is
decreased by the
communication
and synchroniza-
tion overhead.

The biggest hurdle of co-simulation comes from the communica-
tion overhead between the simulators. Whenever a signal generated
within a simulator is required as an input by another, the current
value of that signal, as well as the timing information of any change
in that value, must be communicated. This communication usually

Figure 2-6.
Event-driven
and cycle-
based co-
simulation

Event-Driven
Simulator

Cycle-Based
Simulator

Async Path

Figure 2-7.
HVL and
HDL co-
simulation

Specman
Elite

HDL
Simulator

DUV

Testbench (e)

Simulators

Writing Testbenches: Functional Verification of HDL Models 41

involves a translation of the event from one simulator into an
(almost) equivalent event in another simulator. Ambiguities can
arise during that translation when each simulation has different
semantics. The difference in semantics is usually present: the
semantic difference often being the requirement for co-simulation
in the first place.

Translating values
and events from
one simulator to
another can create
ambiguities.

Examples of translation ambiguities abound. How do you map Ver-
ilog’s 128 possible states (composed of orthogonal logic values and
strengths) into VHDL’s nine logic values (where logic values and
strengths are combined)? How do you translate a voltage and cur-
rent value in an analog simulator into a logic value and strength in a
digital simulator? How do you translate an x or z value into a 2-
state e value? How do you translate the timing of zero-delay events

from Verilog (which has no strict concept of delta cycles)4 to
VHDL?

Co-simulation
should not be con-
fused with single-
kernel simulation.

Co-simulation is when two (or more) simulators are cooperating to
simulate a design, each simulating a portion of the design, as shown
in Figure 2-8. It should not be confused with simulators able to read
and compile models described in different languages. For example,
Cadence’s NCSIM simulator and Model Technology’s ModelSim
simulator can both simulate a design described using a mix of
VHDL and Verilog. Synopsys’s VCS simulator can simulate Ver-
ilog and a subset of OpenVera. As shown in Figure 2-9, all lan-
guages are compiled into a single internal representation or
machine code and the simulation is performed using a single simu-
lation engine.

4. See “The Simulation Cycle” on page 194 for more details on delta
cycles.

Figure 2-8.
Co-simulator

V H D L
so u rc e

Ve r ilo g
so u rce

VHDL
Compiler

Verilog
Compiler

Verilog
Simulator

VHDL
Simulator

Verification Tools

42 Writing Testbenches: Functional Verification of HDL Models

VERIFICATION INTELLECTUAL PROPERTY

You can buy IP for
standard functions.

If you want to verify your design, it is necessary to have models for
all the parts included in a simulation. The model of the RTL design
is a natural by-product of the design exercise and the actual objec-
tive of the simulation. Models for embedded or external RAMs are
also required, as well as models for standard interfaces and off-the-
shelf parts. If you were able to procure the RAM, design IP, specifi-
cation or standard part from a third party, you should be able to
obtain a model for it as well. You may have to obtain the model
from a different vendor than the one who supplies the physical part.

It is cheaper to buy
models than write
them yourself.

At first glance, buying a simulation model from a third-party pro-
vider may seem expensive. Many have decided to write their own
models to save on licensing costs. However, you have to decide if
this endeavor is truly economically fruitful: Are you in the model-
ing business or in the chip design business? If you have a shortage
of qualified engineers, why spend critical resources on writing a
model that does not embody any competitive advantage for your
company? If it was not worth designing on your own in the first
place, why is writing your own model suddenly justified?

Your model is not
as reliable as the
one you buy.

Secondly, the model you write has never been used before. Its qual-
ity is much lower than a model that has been used by several other
companies before you. The value of a functionally correct and reli-
able model is far greater than an uncertain one. Writing and verify-
ing a model to the same degree of confidence as the third-party
model is always more expensive than licensing it. And be assured:
No matter how simple the model is (such as a quad 2-input NAND
gate, 74LS00), you’ll get it wrong the first time. If not functionally,
then at least with respect to timing or connectivity.

There are several providers of verification IP. Many are written
using an HVL or C code; others are provided as non-synthesizeable

Figure 2-9.
Mixed-
language
simulator

In te rm ed ia te
o b je c t c o d e

V H D L
so u rc e

Ver ilo g
so u rce

VHDL
Compiler

Verilog
Compiler

Simulation
Engine

Verification Intellectual Property

Writing Testbenches: Functional Verification of HDL Models 43

VHDL or Verilog source code. For intellectual property protection
and licensing technicalities, most are provided as compiled binary
models. Verification IP includes, but is not limited to functional
models of external and embedded memories, bus-functional models
for standard interfaces, protocol generators and analyzers, assertion
sets for standard protocols and black-box models for off-the-shelf
components and processors.

Hardware Modelers

What if you cannot
find a model to
buy?

You may be faced with procuring a model for a device that is so
new or so complex, that no provider has had time to develop a reli-
able model for it. For example, at the time the first edition of this
book was written, you could license full-functional models for the
Pentium processor from at least two vendors. However, you could
not find a model for the Pentium III. If you want to verify that your
new PC board, which uses the latest Intel microprocessor, is func-
tionally correct before you build it, you have to find some other
way to include a simulation model of the processor.

You can “plug” a
chip into a simula-
tor.

Hardware modelers provide a solution for that situation. A hard-
ware modeler is a small box that connects to your network. A real,
physical chip that needs to be simulated is plugged into it. During
simulation, the hardware modeler communicates with your simula-
tor (through a special interface package) to supply inputs from the
simulator to the device, then sends the sampled output values from
the device back to the simulation. Figure 2-10 illustrates this com-
munication process.

Timing of I/O sig-
nals still needs to
be modeled.

Using a hardware modeler is not a trivial task. Often, an adaptor
board must be built to fit the device onto the socket on the modeler
itself. Also, the modeler cannot perform timing checks on the
device’s inputs nor accurately reflect the output delays. A timing
shell performing those checks and delays must be written to more
accurately model a device using a hardware modeler.

Figure 2-10.
Interfacing a
hardware
modeler and a
simulator

H D L
M odels

Hardware
Modeler

Simulation
Engine

Verification Tools

44 Writing Testbenches: Functional Verification of HDL Models

Hardware model-
ers offer better
simulation perfor-
mance.

Hardware modelers are also very useful when simulating a model
of the part at the required level of abstraction. A full-functional
model of a modern processor that can fetch, decode and execute
instructions could not realistically execute more than 10 to 50
instructions within an acceptable time period. The real physical
device can perform the same task in a few milliseconds. Using a
hardware modeler can greatly speed up board- and system-level
simulation.

WAVEFORM VIEWERS

Waveform view-
ers display the
changes in signal
values over time.

Waveform viewers are the most common verification tools used in
conjunction with simulators. They let you visualize the transitions
of multiple signals over time, and their relationship with other tran-
sitions. With such a tool, you can zoom in and out over particular
time sequences, measure time differences between two transitions,
or display a collection of bits as bit strings, hexadecimal or as sym-
bolic values. Figure 2-11 shows a typical display of a waveform
viewer showing the inputs and outputs of a 4-bit synchronous
counter.

Waveform view-
ers are used to
debug simulations.

Waveform viewers are indispensable during the authoring phase of
a design or a testbench. With a viewer you can casually inspect that
the behavior of the code is as expected. They are needed to diag-
nose, in an efficient fashion, why and when problems occur in the
design or testbench. They can be used interactively during the sim-
ulation, but more importantly offline, after the simulation has com-
pleted. As shown in Figure 2-12, a waveform viewer can play back

Figure 2-11.
Hypothetical
waveform
view of a 4-bit
synchronous
counter

9 A B B 0

CK

Q[3:0]

UP

RST

100 110 120 130 140 150

Waveform Viewers

Writing Testbenches: Functional Verification of HDL Models 45

the events that occurred during the simulation that were recorded in
some trace file.

Recording wave-
form trace data
decreases simula-
tion performance.

Viewing waveforms as a post-processing step lets you quickly
browse through a simulation that can take hours to run. However,
keep in mind that recording trace information significantly reduces
the performance of the simulator. The quantity and scope of the sig-
nals whose transitions are traced, as well as the duration of the
trace, should be limited as much as possible. Of course, you have to
trade-off the cost of tracing a greater quantity or scope of signals
versus the cost of running the simulation over again to get a trace of
additional signals that turn out to be required to completely diag-
nose the problem. If it is likely or known that bugs will be reported,
such as the beginning of the project or during a debugging iteration,
trace all the signals required to diagnose the problem. If no errors
are expected, such as during regression runs, no signal should be
traced.

Do not use a wave-
form viewer to
determine if a
design passes or
fails.

In a functional verification environment, using a waveform viewer
to determine the correctness of a design involves interpreting the
dozens (if not hundreds) of wavy lines on a computer screen against
some expectation. It can be an acceptable verification method used
two or three times, for less than a dozen signals. As the number of
signals and transitions increases, so does the number of relation-
ships that must be checked for correctness. Multiply that by the
duration of the simulation. Multiply again by the number of simula-
tion runs. Very soon, the probability that a functional error is
missed reaches one.

Some viewers can
compare sets of
waveforms.

Some waveform viewers can compare two sets of waveforms. One
set is presumed to be a golden reference, while the other is verified
for any discrepancy. The comparator visually flags or highlights
any differences found. This approach has two significant problems.

How do you define
a set of waveforms
as “golden”?

First, how is the golden reference waveform set declared “golden”?
If visual inspection is required, the probability of missing a signifi-

Figure 2-12.
Waveform
viewing as
post-
processing

H D L
M odels

E v en t
D a tab ase

F ile

Simulation
Engine

Waveform
Viewer

Verification Tools

46 Writing Testbenches: Functional Verification of HDL Models

cant functional error remains equal to one in most cases. The only
time golden waveforms are truly available is in a redesign exercise,
where cycle-accurate backward compatibility must be maintained.
However, there are very few of these designs. Most redesign exer-
cises take advantage of the process to introduce needed modifica-
tions or enhancements, thus tarnishing the status of the golden
waveforms.

And are the differ-
ences really signif-
icant?

Second, waveforms are at the wrong level of abstraction to compare
simulation results against design intent. Differences from the
golden waveforms may not be significant. The value of all output
signals is not significant all the time. Sometimes, what is significant
is the relative relationships between the transitions, not their abso-
lute position. The new waveforms may be simply shifted by a few
clock cycles compared to the reference waveforms, but remain
functionally correct. Yet, the comparator identifies this situation as
a mismatch.

CODE COVERAGE

Did you forget to
verify some func-
tion in your code?

Code coverage is a tool that can identify what code has been (and
more importantly not been) executed in the design under verifica-
tion. It is a methodology that has been in use in software engineer-
ing for quite some time. The problem with false positive answers
(i.e., a bad design is thought to be good), is that they look identical
to a true positive answer. It is impossible to know, with 100 percent
certainty, that the design being verified is indeed functionally cor-
rect. All of your testbenches simulate successfully, but are there
sections of the RTL code that you did not exercise and therefore not
triggered a functional error? That is the question that code coverage
can help answer.

Code must first be
instrumented.

Figure 2-13 shows how a code coverage tool works. The source
code is first instrumented. The instrumentation process simply adds
checkpoints at strategic locations of the source code to record
whether a particular construct has been exercised. The instrumenta-
tion method varies from tool to tool. Some may use file I/O features
available in the language (i.e., use $write statements in Verilog or

Code Coverage

Writing Testbenches: Functional Verification of HDL Models 47

textio.write procedure calls in VHDL). Others may use special fea-
tures built into the simulator.

No need to instru-
ment the test-
benches.

Only the code for the design under verification is instrumented. The
objective is to determine if you have forgotten to exercise some
code in the design. The code for the testbenches need not be traced
to confirm that it has executed. If a significant section of a test-
bench was not executed, it should be reflected in some portion of
the design not being exercised. Furthermore, a significant portion
of the testbench code is executed only if an error is detected. Code
coverage metrics on testbench code are therefore of little interest.

Trace information
is collected at runt-
ime.

The instrumented code is then simulated normally using all avail-
able, uninstrumented, testbenches. The cumulative traces from all
simulations are collected into a database. From that database,
reports can be generated to measure various coverage metrics of the
verification suite on the design.

Statement and
block coverage are
the same thing.

The most popular metrics are statement, path and expression cover-
age. Statement coverage can also be called block coverage, where a
block is a sequence of statements that are executed if a single state-
ment is executed. The code in Sample 2-11 shows an example of a
statement block. The block named acked is executed entirely when-
ever the expression in the if statement evaluates to TRUE. So

Figure 2-13.
Code coverage
process

O rig in a l
M o d e l

In s tru m e n ted
M o d e l

Tes tb en ch e s

M e tr ics
D a tab ase

C o v era g e
M etr ics

Pre-processor

Simulation
Engine

Report
Generator

Verification Tools

48 Writing Testbenches: Functional Verification of HDL Models

counting the execution of that block is equivalent to counting the
execution of the four individual statements within that block.

But block bound-
aries may not be
that obvious.

Statement blocks may not be necessarily clearly delimited. In Sam-
ple 2-12, two statements blocks are found: one before (and includ-
ing) the wait statement, and one after. The wait statement may have
never completed and the process was waiting forever. The subse-
quent sequential statements may not have executed. Thus, they
form a separate statement block.

Statement Coverage

Did you execute
all the statements?

Statement, line or block coverage measures how much of the total
lines of code were executed by the verification suite. A graphical
user interface usually lets the user browse the source code and
quickly identify the statements that were not executed. Figure 2-14
shows, in a graphical fashion, a statement coverage report for a
small portion of code from a model of a modem. The actual form of

Sample 2-11.
Block vs.
statement exe-
cution

if (dtack == 1’b1) begin: acked
 as <= 1’b0;
 data <= 16’hZZZZ;
 bus_rq <= 1’b0;
 state <= IDLE;
end

Sample 2-12.
Blocks sepa-
rated by a wait
statement

address <= 16#FFED#;
ale <= ’1’;
rw <= ’1’;
wait until dtack = ’1’;
read_data := data;
ale <= ’0’;

Code Coverage

Writing Testbenches: Functional Verification of HDL Models 49

the report from any code coverage tool or source code browser will
likely be different.

Why did you not
execute all state-
ments?

The example in Figure 2-14 shows that two out of the eight execut-
able statements—or 25%—were not executed. To bring the state-

ment coverage metric up to 100%, a desirable goal5, it is necessary
to understand what conditions are required to cause the execution
of the uncovered statements. In this case, the parity must be set to
either ODD or EVEN. Once the conditions have been determined,
you must understand why they never occurred in the first place. Is it
a condition that can never occur? Is it a condition that should have
been verified by the existing verification suite? Or is it a condition
that was forgotten?

It is normal for
some statements
not to be executed.

If it is a condition that can never occur, the code in question is
effectively dead: It will never be executed. Removing that code is a
definite option; it reduces clutter and increases the maintainability
of the source code. However, a good defensive (and paranoid)
coder often includes code that is not meant to be executed. This
additional code simply monitors for conditions that should never
occur and reports that an unexpected condition happened should the
hypothesis prove false. This practice is very effective (see “Asser-
tions” on page 64). Functional problems are positively identified
near the source of the malfunction, without having to rely on the

Figure 2-14.
Example of
statement
coverage

if (parity == ODD || parity == EVEN) begin
 tx <= compute_parity(data, parity);
 #(tx_time);
end
tx <= 1’b0;
#(tx_time);
if (stop_bits == 2) begin
 tx <= 1’b0;
 #(tx_time);
end

5. But not necessarily achievable. For example, the default clause in a
fully specified VHDL case statement should never be executed.

Verification Tools

50 Writing Testbenches: Functional Verification of HDL Models

possibility that it produces an unexpected response at the right
moment when you were looking for something else.

Your model can
tell you if things
are not as
assumed.

Sample 2-13 shows an example of defensive modeling in synthe-
sizeable case statements. Even though there is a directive instruct-
ing the synthesis tool that the case statement describes all possible
conditions, it is possible for an unexpected condition to occur dur-
ing simulation. If that were the case, the simulation results would
differ from the results produced by the hardware implementation,
and that difference would go undetected until a gate-level simula-
tion is performed, or the device failed in the system.

Do not measure
coverage for code
not meant to be
executed.

It should be possible to identify code that was not meant to be exe-
cuted and have it eliminated from the code coverage statistics. In
Sample 2-13, significant comments are used to remove the defen-
sive coding statements from being measured by our hypothetical
code coverage tool. Some code coverage tools may be configured
to ignore any statement found between synthesis translation on/off
directives. It may be more interesting to configure a code coverage
tool to ensure that code included between synthesis translate on/off
directives is indeed not executed!

Add testcases to
execute all state-
ments.

If the conditions that would cause the uncovered statements to be
executed should have been verified, it is an indication that one or
more testbenches are either not functionally correct or incomplete.
If the condition was entirely forgotten, it is necessary to add to an
existing testbench, create an entirely new one or make additional
runs with different seeds.

Sample 2-13.
Defensive pro-
gramming
technique

case (mode[1:0]) // synopsys full_case
2’b00: ...
2’b10: ...
2’b01: ...
// synopsys translate_off
// coverage off
default: $write("Case was not really full!\n");
// coverage on
// synopsys translate_on
endcase

Code Coverage

Writing Testbenches: Functional Verification of HDL Models 51

Path Coverage

There is more than
one way to execute
a sequence of
statements.

Path coverage measures all possible ways you can execute a
sequence of statements. The code in Sample 2-14 has four possible
paths: the first if statement can be either true or false. So can the
second. To verify all paths through this simple code section, it is
necessary to execute it with all possible state combinations for both
if statements: false-false, false-true, true-false, and true-true.

Why were some
sequences not exe-
cuted?

The current verification suite, although it offers 100% statement
coverage, only offers 75% path coverage through this small code
section. Again, it is necessary to determine the conditions that
cause the uncovered path to be executed. In this case, a testcase
must set the parity to neither ODD nor EVEN and the number of
stop bits to two. Again, the important question one must ask is
whether this is a condition that will ever happen, or if it is a condi-
tion that was overlooked.

Limit the length of
statement
sequences.

The number of paths in a sequence of statements grows exponen-
tially with the number of control-flow statements. Code coverage
tools give up measuring path coverage if their number is too large
in a given code sequence. To avoid this situation, keep all sequen-
tial code constructs (in Verilog: always and initial blocks, tasks and
functions; in VHDL: processes, procedures and functions) to under
100 lines.

Reaching 100% path coverage is very difficult.

Sample 2-14.
Example of
statement and
path coverage

if (parity == ODD || parity == EVEN) begin
 tx <= compute_parity(data, parity);
 #(tx_time);
end
tx <= 1’b0;
#(tx_time);
if (stop_bits == 2) begin
 tx <= 1’b0;
 #(tx_time);
end

Verification Tools

52 Writing Testbenches: Functional Verification of HDL Models

Expression Coverage

There may be
more than one
cause for a con-
trol-flow change.

If you look closely at the code in Sample 2-15, you notice that there
are two mutually independent conditions that can cause the first if
statement to branch the execution into its then clause: parity being
set to either ODD or EVEN. Expression coverage, as shown in
Sample 2-15, measures the various ways paths through the code are
executed. Even if the statement coverage is at 100%, the expression
coverage is only at 50%.

Once more, it is necessary to understand why a controlling term of
an expression has not been exercised. In this case, no testbench sets
the parity to EVEN. Is it a condition that will never occur? Or was it
another oversight?

Reaching 100% expression coverage is extremely difficult.

FSM Coverage

Statement cover-
age detects unvis-
ited states.

Because each state in an FSM is usually explicitly coded using a
choice in a case statement, any unvisited state will be clearly identi-
fiable through uncovered statements. The state corresponding to an
uncovered case statement choice was not visited during verifica-
tion.

FSM coverage
identifies state
transitions.

Figure 2-15 shows a bubble diagram for an FSM. Although is has
only five states, it has significantly more possible transitions: 14
possible transitions exist between adjoining states. State coverage
of 100% can be easily reached through the sequence Reset, A, B, D,
then C. However, this would yield only 36% transition coverage. To

Sample 2-15.
Example of
statement and
expression
coverage

if (parity == ODD || parity == EVEN) begin
 tx <= compute_parity(data, parity);
 #(tx_time);
end
tx <= 1’b0;
#(tx_time);
if (stop_bits == 2) begin
 tx <= 1’b0;
 #(tx_time);
end

Code Coverage

Writing Testbenches: Functional Verification of HDL Models 53

completely verify the implementation of this FSM, it is necessary to
ensure the design operates according to expectation for all transi-
tions.

What about
unspecified states?

The FSM illustrated in Figure 2-15 only shows five specified states.
Once synthesized into hardware, a 3-bit state register will be neces-
sary (maybe more if a different state encoding scheme, such as one-
hot, is used). This leaves three possible state values that were not
specified. What if some cosmic rays zap the design into one of
these unspecified states? Will the correctness of the design be
affected? Logic optimization may yield decode logic that creates an
island of transitions within those three unspecified states, never let-
ting the design recover into specified behavior unless reset is
applied. The issues of design safety and reliability and techniques
for ensuring them are beyond the scope of this book. But it is the
role of a verification engineer to ask those questions.

What Does 100% Code Coverage Mean?

Completeness
does not imply
correctness.

The short answer is: Everything you wrote was executed. Code
coverage indicates how thoroughly your entire verification suite
exercises the source code. But it does not provide an indication, in
any way, about the correctness or completeness of the verification
suite. Figure 2-16 shows the reconvergence model for automati-
cally extracted code coverage metrics. It clearly shows that it does

Figure 2-15.
Example FSM
bubble
diagram Reset

A B

C D

Any State

Verification Tools

54 Writing Testbenches: Functional Verification of HDL Models

not help verify design intent, only that the RTL code, correct or not,
was fully exercised.

Results from code coverage tools should be interpreted with a grain
of salt. They should be used to help identify corner cases that were
not exercised by the verification suite or implementation-dependent
features that were introduced during the implementation. You
should also determine if the uncovered cases are relevant and
deserve additional attention, or a consequence of the mindlessness
of the coverage tool.

Code coverage lets
you know if you
are not done.

Code coverage indicates if the verification task is not complete
through low coverage numbers. A high coverage number is by no
means an indication that the job is over. Code coverage is an addi-
tional indicator for the completeness of the verification job. It can
help increase your confidence that the verification job is complete,
but it should not be your only indicator.

Code coverage
tools can be used
as profilers.

When developing models for simulation only, where performance
is an important criteria, code coverage tools can be used for profil-
ing. The aim of profiling is the opposite of code coverage. The aim
of profiling is to identify the lines of codes that are executed most
often. These lines of code become the primary candidates for per-
formance optimization efforts.

Figure 2-16.
Reconvergent
paths in
automated
code coverage

Code Coverage

Simulation

RTL
coding

Specifi-
cation

Functional Coverage

Writing Testbenches: Functional Verification of HDL Models 55

FUNCTIONAL COVERAGE

Did you forget to
verify some condi-
tion?

Functional coverage is another tool to help ensure that a bad design
is not hiding behind passing testbenches. Although this methodol-
ogy has been in use at some companies for quite some time, it is a
recent addition to the arsenal of general-purpose verification tools.
Functional coverage records relevant metrics (e.g., packet length,
instruction opcode, buffer occupancy level) to ensure that the veri-
fication process has exercised the design through all of the interest-
ing values. Whereas code coverage measures how much of the
implementation has been exercised, functional coverage measures
how much of the original design specification has been exercised.

It complements
code coverage.

High functional coverage does not necessarily correlate with high
code coverage. Whereas code coverage is concerned with recording
the mechanics of code execution, functional coverage is concerned
with the intent or purpose of the implemented function. For exam-
ple, the decoding of a CPU instruction may involve separate case
statements for each field in the opcode. Each case statement may be
100% code-covered due to combinations of field values from previ-
ously decoded opcodes. However, the particular combination
involved in decoding a specific CPU instruction may not have been
exercised.

It will detect errors
of omission.

Sample 2-16 shows a case statement decoding a CPU instruction.
Notice how the decoding of the RTS instruction is missing. If I
relied solely on code coverage, I would be lulled in a false sense of
completeness by having 100% coverage of this code. For code cov-
erage to report a gap, the unexercised code must a priori exist.
Functional coverage does not rely on actual code. It will report gaps
in the recorded values whether the code to process them is there or
not.

Sample 2-16.
Example of
coding error
undetectable
by code cover-
age

type OPCODE_TYP is [ADD, SUB, JMP, RTS, NOP];
...
case (OPCODE) is
when ADD => ...
when SUB => ...
when JMP => ...
when others => ...
end case;

Verification Tools

56 Writing Testbenches: Functional Verification of HDL Models

It must be manu-
ally defined.

Code coverage tools were quickly adopted into verification pro-
cesses because of their low adoption cost. They require very little
additional action from the user: At most, execute one more com-
mand before compiling your code. Functional coverage, because it
is a measure of values deemed to be interesting and relevant, must
be manually specified. Since relevance and interest are qualities
that are extracted from the intent of the design, functional coverage
is not something that can be automatically extracted from the RTL
source code. Your functional coverage metrics will be only as good
as what you implement.

Metrics are col-
lected at runtime
and graded.

Like code coverage, functional coverage metrics are collected at
runtime, during a simulation run. The values from individual runs
are collected into a database or separate files. The functional cover-
age metrics from these separate runs are then merged for offline
analysis. The marginal coverage of individual runs can then be
graded to identify which runs contributed the most toward the over-
all functional coverage goal. These runs are then given preference
in the regression suite, while pruning runs that did not significantly
contribute to the objective.

Coverage data can
be used at runtime.

Functional coverage tools usually provide a set of runtime proce-
dures that let a testbench dynamically query a particular functional
coverage metric. The testbench can then use the information to
modify its current behavior. For example, it could increase the
probability of generating values that have not been covered yet. It
could decide to abort the simulation should the functional coverage
not have significantly increased since the last query.

Although touted as a powerful mechanism by vendors, it is no sil-
ver bullet. Implementing the dynamic feedback mechanism is not
easy: You have to correlate your stimulus generation process with
the functional coverage metric, and ensure that one will cause the
other to converge toward the goal. Dynamic feedback works best
when there is a direct correlation between the input and the mea-
sured coverage, such as instruction types. It may be more efficient
to achieve your goal with three or four runs of a simpler testbench
without dynamic feedback than with a single run of a much more
complex testbench.

Functional Coverage

Writing Testbenches: Functional Verification of HDL Models 57

Item Coverage

Did I generate all
interesting and rel-
evant values?

Item coverage is the recording of individual scalar values. It is a
basic function of all functional coverage tools. The objective of the
coverage metric is to ensure that all interesting and relevant values
have been observed going to, coming out of, or in the design.
Examples of item coverage include, but are not limited to, packet
length, instruction opcode, interrupt level, bus transaction termina-
tion status, buffer occupancy level, bus request patterns and so on.

Define what to
sample.

It is extremely easy to record functional coverage and be inundated
with vast amounts of coverage data. But data is not the same thing
as information. You must restrict coverage to only (but all!) values
that will indicate how thoroughly your design has been verified. For
example, measuring the value of the read and write pointers in a
FIFO is fine if you are concerned about the full utilization of the
buffer space and wrapping around of the pointer values. But if you
are interested in the FIFO occupancy level (Was it ever empty? Was
it ever full? Did it overflow?), you should measure and record the
difference between the pointer values.

Define where to
sample it.

Next, you must decide where in your testbench or design is the
measured value accurate and relevant. For example, you can sam-
ple the opcode of an instruction at several places: at the output of
the code generator, at the interface of the program memory, in the
decoder register or in the execution pipeline. You have to ensure
that a value, once recorded, is indeed processed or committed as
implied by the coverage metric.

For example, if you are measuring opcodes that were executed,
they should be sampled in the execution unit. Sampling them in the
decode unit could result in false samples when the decode pipeline
is flushed on branches or exceptions. Similarly, sampling the length
of packets at the output of the generator may yield false samples: If
a packet is corrupted by injecting an error during its transmission to
the design in lower-level functions of the testbench, it may be
dropped.

Define when to
sample it.

Values are sampled at some point in time during the simulation. It
could be at every clock cycle, whenever the address strobe signal is
asserted, every time a request is made or after randomly generating
a new value. You must carefully chose your sampling time. Over-

Verification Tools

58 Writing Testbenches: Functional Verification of HDL Models

sampling will decrease simulation performance and consume data-
base resources without contributing additional information.

The sampled data must also be stable so race conditions must be
avoided between the sampled data and the sampling event (see
“Read/Write Race Conditions” on page 209). To reduce the proba-
bility that a transient value is being sampled, functional coverage
tools may delay the sampling of values to the end of their simula-
tion cycle, before time is about to advance (see “The Simulation
Cycle” on page 194 and “The Co-Simulation Cycle” on page 196).

High-level testbench functions usually operate on different values
in zero-time within the same simulation cycle. If the functional cov-
erage tool delays its sampling to the end of the simulation cycle, it
will not be possible to sample all of the intermediate values. Only
the last value will be recorded, resulting in under-sampling.

Define why we
cover it.

If functional coverage is supposed to measure interesting and rele-
vant values, it is necessary to define what makes those values so
interesting and relevant. For example, measuring the functional
coverage of a 32-bit address will yield over 4 billion “interesting
and relevant” values. Not all values are created equal—but most
are. Values may be numerically different but functionally equiva-
lent. By identifying those functionally equivalent values into a sin-
gle set, you can reduce the number of interesting and relevant
values to a more manageable size. For example, based on the
decoder architecture, addresses 0x00000001 through 0x7FFFFFFF
and addresses 0x80000000 through 0x8FFFFFFE are functionally
equivalent, reducing the number of relevant and interesting values
to 4 sets (min, 1 to mid, mid to max-1, max).

It can detect
invalid values.

If you can define sets of equivalent values, it is possible to define
sets of invalid or unexpected values. Functional coverage can be
used as an error detecting tool, just like an if statement in your test-
bench code. However, you should not rely on functional coverage
to detect invalid values. Functional coverage is an optional runtime
tool that may not be turned on at all times. If functional coverage is
not enabled to improve simulation performance and if a value is
defined as invalid in only the functional coverage, then an invalid
value may go undetected.

It can report holes. The ultimate purpose of functional coverage is to identify what
remains to be done. During analysis, the functional coverage tool

Functional Coverage

Writing Testbenches: Functional Verification of HDL Models 59

can compare the number of value sets that contain at least one sam-
ple against the total number of value sets. Any value set that does
not contain at least one sample is a hole in your functional cover-
age. By enumerating the empty value sets, you can focus on the
holes in your test cases and complete your verification sooner
rather than continue to exercise functionality that has already been
verified.

For this enumeration to be possible, the total number of value sets
must be relatively small. For example, it is practically impossible to
fill the coverage for a 32-bit value without broad value sets. The
number of holes will be likely in the millions, making enumeration
impossible. You should strive to limit the number of possible value
sets as much as possible. For example, Specman Elite has a default
limit of 16 value sets for hole enumeration.

Cross Coverage

Did I generate all
interesting combi-
nation of values?

Whereas item coverage is concerned with individual scalar values,
cross coverage measures the presence or occurrence of combina-
tions of values. It helps answer questions like, “Did I inject a cor-
rupted packet on all ports?” “Did we execute all combinations of
opcodes and operand modes?” and “Did this state machine visit
each state while that buffer was full, not empty and empty?” Cross
coverage can involve more than two scalar items. However, the
number of possible value sets grows factorially with the number of
crossed items.

Similar to item
coverage.

Mechanically, cross coverage is identical to item coverage. Specific
values are sampled at specific locations at specific points in time
with specific value sets. The only difference is that two or more val-
ues are sampled instead of one.

Can be done in
post-processing
step.

It may be possible to perform offline cross coverage by post-pro-
cessing the item coverage metrics. In some tools, it is the only cross
coverage mechanism available. To enable offline cross-coverage
analysis, it is necessary to sample the simulation time along with
each individual value sample. The recording of additional informa-
tion such as simulation time increases the size of the coverage data
and reduces runtime performance. Most tools make gathering addi-
tional cross coverage information optional, and this feature is usu-
ally turned off by default. As shown in Sample 2-17, the cross

Verification Tools

60 Writing Testbenches: Functional Verification of HDL Models

coverage report is generated by identifying the values that were
sampled at the same simulation time.

Offline cross-cov-
erage reports may
yield false sam-
ples.

As long as each item value is sampled at different points in time,
offline cross-coverage analysis works fine. When recording values
located inside an RTL design or a bus-functional model sampled at
clock edges, there can be only one value per simulation time. How-
ever, covering values in higher-level testbench functions, which
operate in zero-time, may result in multiple values sampled at the
same simulation time. Sample 2-18 shows the same item coverage
as before, but sampled when all of the packets were generated at the
same time. This approach yields an incorrect offline cross-coverage
report. The same cross-coverage measure, if collected at runtime,
would yield a correct report.

Transition Coverage

Did I generate all
interesting
sequences of val-
ues?

Whereas cross coverage is concerned with combination scalar val-
ues at the same point in time, transition coverage measures the pres-
ence or occurrence of sequences of values. Transition coverage
helps answer questions like, “Did I perform all combinations of
back-to-back read and write cycles?” “Did we execute all combina-
tions of arithmetic opcodes followed by test opcodes?” and “Did
this state machine traverse all significant paths?” Transition cover-
age can involve more than two consecutive values of the same sca-

Sample 2-17.
Example of
offline cross-
coverage anal-
ysis

 Packet Packet Length x Valid
 Length Valid

 short @10 good@10 good bad
 long @20 bad @20 short X
 medium@30 good@30 medium X
 long X

Sample 2-18.
Example of
invalid offline
cross-cover-
age analysis

 Packet Packet Length x Valid
 Length Valid

 short @10 good@10 good bad
 long @10 bad @10 short X X
 medium@10 good@10 medium X X
 long X X

Functional Coverage

Writing Testbenches: Functional Verification of HDL Models 61

lar item. However, the number of possible value sets grows
factorially with the number of transition states.

Similar to item
coverage.

Mechanically, transition coverage is identical to item coverage.
Specific values are sampled at specific locations at specific points
in time with specific value sets. The only difference is that a sample
is said to have occurred in a value set after two or more consecutive
item samples instead of one. The other difference is that transition
can overlap, hence two transition samples may be composed of the
same item sample.

Similar to FSM
path coverage.

Conceptually, transition coverage is identical to FSM path coverage
(see “FSM Coverage” on page 52). Both record the consecutive
values at a particular location of the design (for example, a state
register), and both compare against the possible set of paths. But
unlike FSM coverage tools, which are limited to state registers in
RTL code, transition coverage can be applied to any sampled value
in testbenches and behavioral models.

Transition cover-
age reflects intent.

Because transition coverage is (today) manually specified from the
intent of the design or the implementation, it provides a true inde-
pendent path to verifying the correctness of the design and the com-
pleteness of the verification. It can detect invalid transitions as well
as specify transitions that may be missing from the implementation
of the design.

What Does 100% Functional Coverage Mean?

It indicates com-
pleteness, not cor-
rectness.

Functional coverage indicates which interesting and relevant condi-
tions were verified. It provides an indication of the thoroughness of
the implementation of the verification plan. Unless some value sets
are defined as invalid, it cannot provide an indication, in any way,
about the correctness of those conditions or of the design’s
response to those conditions. Functional coverage metrics are only
as good as the functional coverage model you have defined. Cover-
age of 100% means that you’ve covered all of the coverage points
you included in the simulation. It makes no statement about the
completeness of your functional coverage model.

Results from functional coverage tools should also be interpreted
with a grain of salt. Since they are generated by additional test-
bench code, they have to be debugged and verified for correctness

Verification Tools

62 Writing Testbenches: Functional Verification of HDL Models

before being trusted. They will help identify additional interesting
conditions that were not included in the verification plan.

If a metric is not
interesting, don’t
measure it.

It is extremely easy to define functional coverage metrics and gen-
erate many reports. If coverage is not measured according to a spe-
cific purpose, you will soon drown under megabytes of functional
coverage reports. And few of them will ever be close to 100%. It
will also become impossible to determine which report is signifi-
cant or what is the significance of the holes in others. The verifica-
tion plan (see the next chapter) should serve as the functional
specification for the coverage models, as well as for the rest of the
verification environment. If a report is not interesting or meaningful
to look at, if you are not eager to look at a report after a simulation
run, then you should question its existence.

Functional cover-
age lets you know
if you are done.

When used properly, functional coverage becomes a formal specifi-
cation of the verification plan. Once you reach 100% functional
coverage, it indicates that you have created and exercised all of the
relevant and interesting conditions you originally identified. It con-
firms that you have implemented everything in the verification
plan. However, it does not provide any indication of the complete-
ness of the verification plan itself or the correctness of the design
under such conditions.

VERIFICATION LANGUAGES

VHDL and Verilog
are simulation lan-
guages, not verifi-
cation languages.

Verilog was designed with a focus on describing low-level hard-
ware structures. Verilog-2001 only recently introduced support for
basic high-level data structures. VHDL was designed for very large
design teams. It strongly encapsulates all information and commu-
nicates strictly through well-defined interfaces. Very often, these
limitations get in the way of an efficient implementation of a verifi-
cation strategy. VHDL and Verilog also lack features important in
efficiently implementing a modern verification process.

Verification lan-
guages can raise
the level of
abstraction.

As mentioned in Chapter 1, one way to increase productivity is to
raise the level of abstraction used to perform a task. High-level lan-
guages, such as C or Pascal, raised the level of abstraction from
assembly-level, enabling software engineers to become more pro-
ductive. Similarly, computer languages specifically designed for
verification are able to raise the level of abstraction compared to
general-purpose simulation languages. Hardware verification lan-

Verification Languages

Writing Testbenches: Functional Verification of HDL Models 63

guages maintain important concepts necessary to interact with
hardware: time, concurrency and instantiation. They also offer fea-
tures that help raise the level of abstraction: complex data types,
object-orientedness with inheritance and temporal assertions.

Verification lan-
guage can auto-
mate verification.

If the main benefit of a hardware verification language was the
higher level of abstraction and object-orientedness, then C++

would have long been identified as the best solution6: It is free and
widely known. The main benefit of HVLs, as shown in Figure 2-17,
is their capability of automating a portion of the verification by ran-
domly generating stimulus, collecting functional coverage to iden-
tify holes then the ability to add constraints easily to create more
stimulus targeted to fill those holes. To support this productivity
cycle, some HVLs offer constrainable random generation, func-
tional coverage measurement and a code extension mechanism.

Several verifica-
tion languages
exist.

At the time of this writing, commercial verification language solu-
tions include e from Verisity, OpenVera from Synopsys and RAVE
from Forte. Open-source or public-domain solutions are available:

the SystemC Verification Library7 from Cadence and Jeda from
Juniper Networks. Accelera is working on introducing HVL func-
tionality in SystemVerilog. There is also a plethora of home-grown
proprietary solutions based on C++ , Perl or TCL.

The definition of what makes a language an HVL is still nebulous.
Of the languages mentioned, most do not include all of the features
identified in the productivity cycle. The large number of verifica-
tion language solutions confirms that the industry recognizes the

6. C++ still lacks a native concept of time, concurrency and instantiation.

Figure 2-17.
HVL
productivity
cycle

Functional
Coverage

Constraints
Random

Generation

Multiple runs,
Multiple seeds

Identify
holes

Minimal code
modifications

7. Formerly known as TestBuilder.

Verification Tools

64 Writing Testbenches: Functional Verification of HDL Models

limitations of Verilog and VHDL for verification. It is also a classic
characteristic of a young market, before coalescing around one or
two market leaders and de-facto standards.

You must learn the
basics of verifica-
tion before learn-
ing verification
languages.

In this book, I use VHDL and Verilog as the first implementation
medium for the basic components of the verification infrastructure
and to introduce the concept of self-checking transaction-level
directed testbenches. Even though HVLs make implementing such
testbenches easier (especially the self-checking part), you still need
to plan your verification, define your verification objectives, design
its strategy and architecture, design the stimulus, determine the
expected response and compare the actual output. These are con-
cepts that can be learned and applied using VHDL or Verilog.

Coverage-driven
constrained ran-
dom approach
requires HVLs.

All HVLs can be used as if they were souped-up Verilog or VHDL
languages. In fact, most HVL solutions are just that. But if your
HVL contains all of the features required to support the HVL pro-
ductivity cycle, the verification process must be approached—and
implemented—in a different fashion.

This change is just like taking advantage of the productivity offered
by logic synthesis tools: It requires an approach different from
schematic capture. To successfully implement a coverage-driven
constrained random verification approach, you need to modify the
way you plan your verification, design its strategy and implement
the testcases. Because Verilog and VHDL lack all of the required
features, e and OpenVera will be used to illustrate these concepts.

ASSERTIONS

Assertions detect
conditions that
should always be
true.

An assertion boils down to an if statement and an error message
should the expression in the if statement become false. Assertions
have been used in software design for many years: the assert()
function has been part of the ANSI C standard from the beginning.
In software for example, assertions are used to detect conditions
such as NULL pointers or empty lists. VHDL has had an assert
statement from day one too, but it was never a popular construct—
except to terminate a simulation (see Sample 5-44 on page 264 for
an example).

Assertions

Writing Testbenches: Functional Verification of HDL Models 65

Hardware asser-
tions require a
form of temporal
language.

A software assertion simply checks that, at the time the assert state-
ment is executed, the condition evaluates to TRUE. This simple
zero-time test is not sufficient for supporting assertions in hardware
designs. In hardware, functional correctness usually involves
behavior over a period of time. Some hardware assertions such as,
“This state register is one-hot encoded.” or “This FIFO never over-
flows.” can be expressed as immediate, zero-time expressions. But
checking simple hardware assertions such as, “This signal must be
asserted for a single clock period.” or “A request must always be
followed by a grant or abort within 10 clock cycles.” require that
the assertion condition be evaluated over time. Thus, assertions
require the use of a temporal language to be able to describe rela-
tionships over time.

There are two
classes of asser-
tions.

Assertions fall in two broad classes: those specified by the designer
and those specified by the verification engineer.

• Implementation assertions are specified by the designers.

• Specification assertions are specified by the verification engi-
neers.

Implementation
assertions verify
assumptions.

Implementation assertions are used to formally encode the
designer’s assumptions about the interface of the design or condi-
tions that are indications of misuse or design faults. For example,
the designer of a FIFO would add assertions to detect if it ever
overflows or underflows or that, because of a design limitation, the
write and read pulses are ever asserted at the same time. Because
implementation assertions are specified by the designer, they will
not detect discrepancies between the functional intent and the
design. But implementation assertions will detect discrepancies
between the design assumptions and the implementation.

Specification
assertions verify
intent.

Specification assertions formally encode expectations of the design
based on the functional intent. These assertions are used as a func-
tional error detection mechanism and supplement the error detec-
tions performed in the self-checking section of testbenches.
Specification assertions are typically white-box strategies because
the relationships between the primary inputs and outputs of a mod-
ern design are too complex to be described in today’s temporal lan-
guages. For example, rather than relying on the scoreboard to detect
that an arbiter is not fair, it is much simpler to perform this check
using a block-level assertion.

Verification Tools

66 Writing Testbenches: Functional Verification of HDL Models

Assertion specifi-
cation is a com-
plex topic.

This simple introduction to assertions does not do justice to the
richness and power—and ensuing complexity—of assertion. Entire
books ought to be (and probably are being) written about the sub-
ject.

Simulation Assertions

The OVL started
the storm.

Assertions took the hardware design community by storm when

Foster and Bening’s book8 introduced the concept using a library of
predefined Verilog modules that implemented all of the common
design assertions. The library, available in source form as the Open

Verification Library,9 was a clever way of using Verilog to specify
temporal expressions. Foster, then at Hewlett-Packard, had a hidden
agenda: Get designers to specify design assertions he could then try
to prove using formal methods. Using Verilog modules was a con-
venient solution to ease the adoption of these assertions by the
designers. The reality of what happened next proved to be even
more fruitful.

They detect errors
close in space and
time to the fault.

If a design assumption is violated during simulation, the design will
not operate correctly. The cause of the violation is not important: It
could be a misunderstanding by the designer of the block or the
designer of the upstream block or an incorrect testbench. The rele-
vant fact is that the design is failing to operate according to the
original intent. The symptoms of that low-level failure are usually
not visible (if at all) until the affected data item makes its way to the
outputs of the design and is flagged by the self-checking structure.

An assertion formally encoding the design assumption immediately
fires and reports a problem at the time it occurs, in the area of the
design where it occurs. Debugging and fixing the assertion failure
(whatever the cause) will be a lot more efficient than tracing back
the cause of a corrupted packet. In one of Foster’s projects, 85% of
the design errors where caught and quickly fixed using simulated
assertions.

8. Harry Foster and Lionel Bening, “Principles of Verifiable RTL Design,”
second edition, Kluwer Academic Publisher, ISBN 0-7923-7368-5.

9. See http://verificationlib.org.

Assertions

Writing Testbenches: Functional Verification of HDL Models 67

Formal Assertion Proving

Is it possible for an
assertion to fire?

Simulation can show only the presence of bugs, never prove their
absence. The fact that an assertion has never reported a violation
throughout a series of simulation does not mean that it can never be
violated. Tools like code and functional coverage can satisfy us that
a portion of a design was thoroughly verified—but there will (and
should) always be a nagging doubt.

Model checking
can mathemati-
cally prove or dis-
prove an assertion.

Formal tools called model checker or assertion provers can mathe-
matically prove that, given an RTL design and some assumptions
about the relationships of the input signals, an assertion will always
hold true. If a counter example is found, the formal tool will pro-
vide details on the sequence of events that leads to the assertion
violation. It is then up to you to decide if this sequence of events is
possible, given additional knowledge about the environment of the
design.

Some assertions
are used as
assumptions.

Given total freedom over the inputs of a design, you can probably
violate any and all assertions about its implementation. Fortunately,
the usage of the inputs of a design are subject to limitation and rules
to ensure proper operation of the design. Furthermore, these input
signals usually come from other designs that do not behave (one
hopes!) erratically. When proving some assertions on a design, it is
thus necessary to supply assertions on the inputs or state of the
design. The latter assertions are not proven. Rather, they are
assumed to be true and used to constrain the solution space for the
proof.

Assumptions need
to be proven too.

The correctness of a proof depends on the correctness of the

assumptions10 made on the design inputs. Should any assumption
be wrong, the proof no longer stands. An assumption on a design’s
inputs thus becomes an assertion to be proven on the upstream
design supplying those inputs.

Semi-formal tools
combine model
checking with sim-
ulation.

Semi-formal tools are hybrid tools that combine formal methods
with simulation. Semi-formal tools are an attempt to bridge the gap
between a familiar technology (simulation) and the fundamentally

10.The formal verification community calls these input assertions “con-
straints.” I used the term “assumptions” to differentiate them from ran-
dom-generation constraints, which are randomization concepts.

Verification Tools

68 Writing Testbenches: Functional Verification of HDL Models

different formal tools. They use intermediate simulation informa-
tion—such as the current state of a design—as a starting point for
proving or disproving assertions.

Use formal meth-
ods to prove cases
uncovered in sim-
ulation.

Formal verification does not replace simulation or make it obsolete.
Simulation (including simulated assertions) is the lawnmower of
the verification garden: It is still the best tool for covering broad
swaths of functionality and for weeding out the easy-to-find and
some not-so-easy-to-find bugs. Formal verification puts the finish-
ing touch on those hard-to-reach corners in critical and important
design sections and ensures that the job is well done. Using func-
tional coverage metrics collected from simulation (for example,
request patterns on an arbiter), identifies conditions that remain to
be verified. If those conditions would be difficult to create within
the simulation environment, using these conditions as assumptions,
proves the correctness of the design for the remaining uncovered
cases.

REVISION CONTROL

Are we all looking
at the same thing?

One of the major difficulties in verification is to ensure that what is
being verified is actually what will be implemented. When you
compile a Verilog source file, what is the guarantee that the design
engineer will use that exact same file when synthesizing the design?

When the same person verifies and then synthesizes the design, this
problem is reduced to that person using proper file management
discipline. However, as I hope to have demonstrated in Chapter 1,
having the same person perform both tasks is not a reliable func-
tional verification process. It is more likely that separate individuals
perform the verification and synthesis tasks.

Files must be cen-
trally managed.

In very small and closely knit groups, it may be possible to have
everyone work from a single directory, or to have the design files
distributed across a small number of individual directories. Every-
one agrees where each other’s files are, then each is left to his or her
own device. This situation is very common and very dangerous:
How can you tell if the designer has changed a source file and
maybe introduced a functional bug since you last verified it?

Revision Control

Writing Testbenches: Functional Verification of HDL Models 69

It must be easy to
get at all the files,
from a single loca-
tion.

This methodology is not scalable either. It quickly breaks down
once the team grows to more than two or three individuals. And it
does not work at all when the team is distributed across different
physical or geographical areas. The verification engineer is often
the first person to face the non-scalability challenge of this environ-
ment. Each designer is content working independently in his or her
own directories. Individual designs, when properly partitioned,
rarely need to refer to some other design in another designer’s
working directory. As the verification engineer, your first task is to
integrate all the pieces into a functional entity. That’s where the dif-
ficulties of pulling bits and pieces from heterogeneous working
environments scattered across multiple file servers become
apparent.

The Software Engineering Experience

HDL models are
software projects!

For about 25 years, software engineering has been dealing with the
issues of managing a large number of source files, authored by
many different individuals, verified by others and compiled into a
final product. Make no mistake: Managing an HDL-based hardware
design project is no different than managing a software project.

Free and commer-
cial tools are avail-
able.

To help manage files, software engineers use source control man-
agement systems. Some are available, free of charge, either bundled
with the UNIX operating systems (RCS, CVS, SCCS), or distrib-
uted by the GNU project (RCS, CVS) and available in source form
at:

ftp://prep.ai.mit.edu/pub/gnu

Commercial systems, some very sophisticated, are also available.

All source files are
centrally managed.

Figure 2-18 shows how source files are managed using a source
control management system. All accesses and changes to source
files are mediated by the management system. Individual authors

Verification Tools

70 Writing Testbenches: Functional Verification of HDL Models

and users interact solely through the management system, not by
directly accessing files in working directories.

The history of a
file is maintained.

Source code management systems maintain not only the latest ver-
sion of a file, but also keep a complete history of each file as sepa-
rate versions. Thus, it is possible to recover older versions of files,
or to determine what changed from one version to another. It is a
good idea to frequently check in file versions. You do not have to
rely on a backup system if you ever accidentally delete a file.
Sometimes, a series of modifications you have been working on for
the last couple of hours is making things worse, not better. You can
easily roll back the state of a file to a previous version known to
work.

The team owns all
the files.

When using a source management system, files are no longer
owned by individuals. Designers may be nominally responsible for
various sections of a design, but anyone—with the proper permis-
sions—can make any change to any file. This lets a verification
engineer fix bugs found in RTL code without having to rely on the
designer, busy trying to get timing closure on another portion of the
design. The source management system mediates changes to files
either through exclusive locks, or by merging concurrent modifica-
tions.

Figure 2-18.
Data flow in a
source control
system

1. Create

2. Check in
3. Check out 4. Modify

5. Check in6. Update

3. Update
6. Update

Vault
3. Check out

8. Check in

6. Merge

4. Modify
7. Modify

9. Update

9. Update

9. Update

Revision Control

Writing Testbenches: Functional Verification of HDL Models 71

Configuration Management

Each user works
from a view of the
file system.

Each engineer working on a project managed with a source control
system has a private view of all the source files (or a subset thereof)
used in the project. Figure 2-19 shows how two users may have two
different views of the source files in the management system.
Views need not be always composed of the latest versions of all the
files. In fact, for a verification engineer, that would be a hindrance.
Files checked in on a regular basis by their authors may include
syntax errors, be simple placeholders for future work, or be totally
broken. It would be very frustrating if the model you were trying to
verify kept changing faster than you could identify problems with
it.

Configurations are
created by tagging
a set of versions.

All source management systems use the concept of symbolic tags
that can be attached to specific versions of files. You may then refer
to particular versions of files, or set of files, using the symbolic
name, without knowing the exact version number they refer to. In
Figure 2-19, the user on the left could be working with the versions
that were tagged as “ready to simulate” by the author. The user on
the right, the system verification engineer, could be working with
the versions that were tagged as “golden” by the ASIC verification
engineer.

Configuration
management trans-
lates to tag man-
agement.

Managing releases becomes a problem of managing tags, which can
be a complex task. Table 2-1 shows a list of tags that could be used
in a project to identify the various versions of a file as it progresses
through the design process. Some tags, such as the “Version_M.N”
tag, never move once applied to a specific version. Others, such as
the “Submit” tag, move to newer versions as the development of the
design progresses. Before moving a tag, it may be a good idea to
leave a trace of the previous position of a tag. One possible mecha-
nism for doing so is to append the date to the tag name. For exam-
ple, the old “Submit” version gets tagged with the new tag

Figure 2-19.
User views of
managed
source files design.v 1.1..1.56

cpuif.v 1.1..1.32
tb.v 1.1..1.49

Vault

design.v 1.53
cpuif.v 1.28
tb.v 1.38

design.v 1.41
cpuif.v 1.17
tb.v 1.38

Verification Tools

72 Writing Testbenches: Functional Verification of HDL Models

“Submit_000302” on March 2nd, 2000 and the “Submit” tag is
moved to the latest version.

Working with Releases

Views can become out-of-date as new versions of files are checked
into the source management system database and tags are moved
forward.

Releases are spe-
cific configura-
tions.

The author of the RTL for a portion of the design would likely
always work with the latest version of the files he or she is actively
working on, checking in and updating them frequently (typically at
relevant points of code development throughout the day and at the
end of each day). Once the source code is syntactically correct and
its functionality satisfies the designer (by using a few ad hoc test-

Table 2-1.
Example tags
for release
management

Tag Name Description

Submit Ready to submit to functional verification.
Author has verified syntax correctness and
basic level of functionality.

Bronze Passes a basic set of functional testcases.
Release is sufficiently functional for integra-
tion.

Silver Passes all functional testcases.

Gold Passes all functional testcases and meets cod-
ing coverage guidelines (requires additional
corner-case testcases).

To_Synthesis Ready to submit to synthesis. Usually
matches “Silver” or “Gold”.

To_Layout Ready to submit to layout. Usually matches
“Gold”.

Version_M.N Version that was manufactured. Matches cor-
responding “To_Layout” release. Future ver-
sions of the same chip will move tags beyond
this point.

ON_YYMMDD Some meaningful release on the specified
date.

Revision Control

Writing Testbenches: Functional Verification of HDL Models 73

benches), the corresponding version of the files are tagged as ready
for verification.

Users must update
their view to the
appropriate
release.

You, as the verification engineer, must be constantly on the look-
out for updates to your view. When working on a particularly diffi-
cult testbench, you may spend several days without updating your
view to the latest version ready to be verified. That way, you main-
tain a consistent view of the design under test and limit changes to
the testbenches, which you make. Once the actual verification and
debugging of the design starts, you probably want to refresh your
view to the latest “ready-to-verify” release of the design before run-
ning a testbench.

Update often. When using a concurrent development model where multiple engi-
neers are working in parallel on the same files, it is important to
check in modifications often, and update your view to merge con-
current modifications even more often. If you wait too long, there is
a greater probability of collisions that will require manual resolu-
tion. The concept of concurrently modifying files then merging the
differences sounds impossibly risky at first. However, experience
has shown that different functions or bug fixes rarely involve modi-
fication to the same lines of source code. As long as the modifica-
tions are separated by two or three lines of unmodified code,
merging will proceed without any problems. Trust me, concurrent
development is the way to go!

You can be noti-
fied of new
releases.

An interesting feature of some source management systems is the
ability to issue email notification whenever a significant event
occurs. For example, such a system could send e-mail to all verifi-
cation engineers whenever the tag identifying the release that is
ready for verification is moved. Optionally, the e-mail could con-
tain a copy of the descriptions of the changes that were made to the
source files. Upon receiving such an e-mail, you could make an
informed decision about whether to update your view immediately.

Verification Tools

74 Writing Testbenches: Functional Verification of HDL Models

ISSUE TRACKING

All your bug are
belong to us!

The job of any verification engineer is to find bugs. Under normal
conditions, you should expect to find functional irregularities. You
should be really worried if no problems are being found. Their
occurrence is normal and do not reflect the abilities of the hardware
designers. Even the most experienced software designers write
code that includes bugs, even in the simplest and shortest routines.
Now that we’ve established that bugs will be found, how will you
deal with them?

Bugs must be
fixed.

Once a problem has been identified, it must be resolved. All design
teams have informal systems to track issues and ensure their resolu-
tions. However, the quality and scalability of these informal sys-
tems leaves a lot to be desired.

What Is an Issue?

Is it worth worry-
ing about?

Before we discuss the various ways issues can be tracked, we must
first consider what is an issue worth tracking. The answer depends
highly on the tracking system used. The cost of tracking the issue
should not be greater than the cost of the issue itself. However, do
you want the tracking system to dictate what kind of issues are
tracked? Or, do you want to decide on what constitutes a trackable
issue, then implement a suitable tracking system? The latter posi-
tion is the one that serves the ultimate goal better: Making sure that
the design is functionally correct.

An issue is anything that can affect the functionality of the design:

1. Bugs found during the execution of a testbench are clearly
issues worth tracking.

2. Ambiguities or incompleteness in the specification document
should also be tracked issues. However, typographical errors
definitely do not fit in this category.

3. Architectural decisions and trade-offs are also issues.

4. Errors found at all stages of the design, in the design itself or in
the verification environment should be tracked as well.

5. If someone thinks about a new relevant testcase, it should be
filed as an issue.

Issue Tracking

Writing Testbenches: Functional Verification of HDL Models 75

When in doubt,
track it.

It is not possible to come up with an exhaustive list of issues worth
tracking. Whenever an issue comes up, the only criterion that deter-
mines whether it should be tracked, should be its effect on the cor-
rectness of the final design. If a bad design can be manufactured
when that issue goes unresolved, it must be tracked. Of course, all
issues are not created equal. Some have a direct impact on the func-
tionality of the design, others have minor secondary effects. Issues
should be assigned a priority and be addressed in order of that
priority.

You may choose
not to fix an issue.

Some issues, often of lower importance, may be consciously left
unresolved. The design or project team may decide that a particular
problem or shortcoming is an acceptable limitation for this particu-
lar project and can be left to be resolved in the next incarnation of
the product. The principal difficulty is to make sure that the deci-
sion was a conscious and rational one!

The Grapevine System

Issues can be ver-
bally reported.

The simplest, and most pervasive issue tracking system is the
grapevine. After identifying a problem, you walk over to the hard-
ware designer’s cubicle (assuming you are not the hardware
designer as well!) and discuss the issue. Others may be pulled into
the conversation or accidentally drop in as they overhear something
interesting being debated. Simple issues are usually resolved on the
spot. For bigger issues, everyone may agree that further discussions
are warranted, pending the input of other individuals. The priority
of issues is implicitly communicated by the insistence and fre-
quency of your reminders to the hardware designer.

It works only
under specific con-
ditions.

The grapevine system works well with small, closely knit design
groups, working in close proximity. If temporary contractors or
part-time engineers are on the team, or members are distributed
geographically, this system breaks down as instant verbal commu-
nications are not readily available. Once issues are verbally
resolved, no one has a clear responsibility for making sure that the
solution will be implemented.

You are con-
demned to repeat
past mistakes.

Also, this system does not maintain any history. Once an issue is
resolved, there is no way to review the process that led to the deci-
sion. The same issue may be revisited many times if the implemen-
tation of the solution is significantly delayed. If the proposed
resolution turns out to be inappropriate, the team may end up going

Verification Tools

76 Writing Testbenches: Functional Verification of HDL Models

in circles, repeatedly trying previous solutions. Without history, you
are condemned to repeat it. There is no opportunity for the team to
learn from its mistakes. Learning is limited to individuals, and to
the extent that they keep encountering similar problems.

The Post-It System

Issues can be
tracked on little
pieces of paper.

When teams become larger, or when communications are no longer
regular and casual, the next issue tracking system that is used is the
3M Post-It™ note system. It is easy to recognize at a glance: Every
team member has a number of telltale yellow pieces of paper stuck
around the periphery of their computer monitor.

If the paper disap-
pears, so does the
issue.

This evolutionary system only addresses the lack of ownership of
the grapevine system: Whoever has the yellow piece of paper is
responsible for its resolution. This ownership is tenuous at best.
Many issues are “resolved” when the sticky note accidentally falls
on the floor and is swept away by the janitorial staff.

Issues cannot be
prioritized.

With the Post-It system, issues are not prioritized. One bug may be
critical to another team member, but the owner of the bug may
choose to resolve other issues first simply because they are simpler
and because resolving them instead reduces the clutter around his
computer screen faster. All notes look alike and none indicate a
sense of urgency more than the others.

History will repeat
itself.

And again, the Post-It system suffers from the same learning dis-
abilities as the grapevine system. Because of the lack of history,
issues are revisited many times, and problems are recreated
repeatedly.

The Procedural System

Issues can be
tracked at group
meetings.

The next step in the normal evolution of issue tracking is the proce-
dural system. In this system, issues are formally reported, usually
through free-form documents such as e-mail messages. The out-
standing issues are reviewed and resolved during team meetings.

Only the biggest
issues are tracked.

Because the entire team is involved and the minutes of meetings are
usually kept, this system provides an opportunity for team-wide
learning. But the procedural system consumes an inordinate amount
of precious meeting time. Because of the time and effort involved
in tracking and resolving these issues, it is usually reserved for the

Issue Tracking

Writing Testbenches: Functional Verification of HDL Models 77

most important or controversial ones. The smaller, less important—
but much more numerous—issues default back to the grapevine or
Post-It note systems.

Computerized System

Issues can be
tracked using data-
bases.

A revolution in issue tracking comes from using a computer-based
system. In such a system, issues must be seen through to resolution:
Outstanding issues are repeatedly reported loud and clear. Issues
can be formally assigned to individuals or list of individuals. Their
resolution need only involve the required team members. The com-
puter-based system can automatically send daily or weekly status
reports to interested parties.

A history of the decision making process is maintained and
archived. By recording various attempted solutions and their effec-
tiveness, solutions are only tried once without going in circles. The
resolution process of similar issues can be quickly looked-up by
anyone, preventing similar mistakes from being committed repeat-
edly.

But it should not
be easier to track
them verbally or
on paper.

Even with its clear advantages, computer-based systems are often
unsuccessful. The main obstacle is their lack of comparative ease-
of-use. Remember: The grapevine and Post-It systems are readily
available at all times. Given the schedule pressure engineers work
under and the amount of work that needs to be done, if you had the
choice to report a relatively simple problem, which process would
you use:

1. Walk over to the person who has to solve the problem and ver-
bally report it.

2. Describe the problem on a Post-It note, then give it to that same
person (and if that person is not there, stick it in the middle of
his or her computer screen).

3. Enter a description of the problem in the issue tracking database
and never leave your workstation?

It should not take
longer to submit
an issue than to fix
it.

You would probably use the one that requires the least amount of
time and effort. If you want your team to use a computer-based
issue tracking system successfully, then select one that causes the
smallest disruption in their normal work flow. Choose one that is a

Verification Tools

78 Writing Testbenches: Functional Verification of HDL Models

simple or transparent extension of their normal behavior and tools
they already use.

I was involved in a project where the issue tracking system used a
proprietary X-based graphical interface. It took about 15 seconds to
bring up the entire interface on your screen. You were then faced
with a series of required menu selections to identify the precise
division, project, system, sub-system, device and functional aspect
of the problem, followed by several other dialog boxes to describe
the actual issue. Entering the simplest issue took at least three to
four minutes. And the system could not be accessed when working
from home on dial-up lines. You can guess how successful that sys-
tem was...

Email-based sys-
tems have the
greatest accep-
tance.

The systems that have the most success invariably use an e-mail-
based interface, usually coupled with a Web-based interface for
administrative tasks and reporting. Everyone on your team uses e-
mail. It is probably already the preferred mechanism for discussing
issues when members are distributed geographically or work in dif-
ferent time zones. Having a system that simply captures these e-
mail messages, categorizes them and keeps track of the status and
resolution of individual issues (usually through a minimum set of
required fields in the e-mail body or header), is an effective way of
implementing a computer-based issue tracking system.

METRICS

Metrics are essen-
tial management
tools.

Managers love metrics and measurements. They have little time to
personally assess the progress and status of a project. They must
rely on numbers that (more or less) reflect the current situation.

Metrics are best
observed over time
to see trends.

Metrics are most often used in a static fashion: “What are the values
today?” “How close are they to the values that indicate that the
project is complete?” The odometer reports a static value: How far
have you travelled. However, metrics provide the most valuable
information when observed over time. Not only do you know where
you are, but also you can know how fast you are going, and what
direction you are heading. (Is it getting better or worse?)

Historical data
should be used to
create a baseline.

When compared with historical data, metrics can paint a picture of
your learning abilities. Unless you know how well (or how poorly)
you did last time, how can you tell if you are becoming better at

Metrics

Writing Testbenches: Functional Verification of HDL Models 79

your job? It is important to create a baseline from historical data to
determine your productivity level. In an industry where the manu-
facturing capability doubles every 18 months, you cannot afford to
maintain a constant level of productivity.

Metrics can help
assess the verifica-
tion effort.

There are several metrics that can help assess the status, progress
and productivity of functional verification. One has already been
introduced: code coverage.

Code-Related Metrics

Code coverage
may not be rele-
vant.

Code coverage measures how thoroughly the verification suite
exercises the source code being verified. That metric should climb
steadily toward 100% over time. From project to project, it should
climb faster, and get closer to 100%.

However, code coverage is not a suitable metric for all verification
projects. It is an effective metric for the smallest design unit that is
individually specified (such as an FPGA, a reusable component or
an ASIC). But it is ineffective when verifying designs composed of
sub-designs that have been independently verified. The objective of
that verification is to confirm that the sub-designs are interfaced
and cooperate properly, not to verify their individual features. It is
unlikely (and unnecessary) to execute all the statements.

The number of
lines of code can
measure imple-
mentation effi-
ciency.

The total number of lines of code that is necessary to implement a
verification suite can be an effective measure of the effort required
in implementing it. This metric can be used to compare the produc-
tivity offered by new verification languages or methods. If they can
reduce the number of lines of code that need to be written, then they
should reduce the effort required to implement the verification.

Lines-of-code
ratio can measure
complexity.

The ratio of lines of code between the design being verified and the
verification suite may measure the complexity of the design. His-
torical data on that ratio could help predict the verification effort for
a new design by predicting its estimated complexity.

Code change rate
should trend
toward zero.

If you are using a source control system, you can measure the
source code changes over time. At the beginning of a project, code
changes at a very fast rate as new functionality is added and initial
versions are augmented. At the beginning of the verification phase,
many changes in the code are required by bug fixes. As the verifica-
tion progresses, the rate of changes should decrease as there are

Verification Tools

80 Writing Testbenches: Functional Verification of HDL Models

fewer and fewer bugs to be found and fixed. Figure 2-20 shows a
plot of the expected code change rate over the life of a project.
From this metric, you are able to determine if the code is becoming
stable, or identify the most unstable sections of a design.

Quality-Related Metrics

Quality is subjec-
tive, but it can be
measured indi-
rectly.

Quality-related metrics are probably more directly related with the
functional verification than other productivity metrics. Quality is a
subjective value, yet, it is possible to find metrics that correlate
with the level of quality in a design. This is much like the number
of customer complaints or the number of repeat customers can be
used to judge the quality of retail services.

Functional cover-
age can measure
testcase complete-
ness.

Functional coverage measures the range and combination of input
and output values that were submitted to and observed from the
design, and of selected internal values. By assigning a weight to
each functional coverage metric, it can be reduced to a single func-
tional coverage grade measuring how thoroughly the functionality
of the design was exercised. By weighing the more important func-
tional coverage measures more than the less important ones, it gives
a good indicator of the progress of the functional verification. This
metric should evolve rapidly toward 100% at the beginning of the
project then significantly slow down as only hard-to-reach func-
tional coverage points remain.

A simple metric is
the number of
known issues.

The easiest metric to collect is the number of known outstanding
issues. The number could be weighed to count issues differently
according to their severity. When using a computer-based issue
tracking system, this metric, as well as trends and rates, can be eas-
ily generated. Are issues accumulating (indicating a growing qual-
ity problem)? Or, are they decreasing and nearing zero?

Code will be worn
out eventually.

If you are dealing with a reusable or long-lived design, it is useful
to measure the number of bugs found during its service life. These

Figure 2-20.
Ideal code
change rate
metric over
time

R
at

e
 o

f c
ha

n
ge

Time

Metrics

Writing Testbenches: Functional Verification of HDL Models 81

are bugs that were not originally found by the verification suite. If
the number of bugs starts to increase dramatically compared to his-
torical findings, it is an indication that the design has outlived its
useful life. It has been modified and adapted too many times and
needs to be re-designed from scratch. Throughout the normal life
cycle of a reusable design, the number of outstanding issues exhib-
its a behavior as shown in Figure 2-21.

Interpreting Metrics

Whatever gets
measured gets
done.

Because managers rely heavily on metrics to measure performance
(and ultimately assign reward and blame), there is a tendency for
any organization to align its behavior with the metrics. That is why
you must be extremely careful to select metrics that faithfully rep-
resent the situation and are correlated with the effect you are trying
to measure or improve. If you measure the number of bugs found
and fixed, you quickly see an increase in the number of bugs found
and fixed. But do you see an increase in the quality of the code
being verified? Were bugs simply not previously reported? Are
designers more sloppy when writing their code since they’ll be
rewarded only when and if a bug is found and fixed?

Make sure metrics
are correlated with
the effect you want
to measure.

Figure 2-22 shows a list of file names and current version numbers
maintained by two different designers. Which designer is more pro-
ductive? Do the large version numbers from the designer on the left
indicate someone who writes code with many bugs that had to be

Figure 2-21.
Number of
outstanding
issues
throughout the
life cycle of a
design

R
at

e
 o

f i
ss

u
es

Tme

Development
Worn out

Useful life

Verification Tools

82 Writing Testbenches: Functional Verification of HDL Models

fixed? Or, are they from a cautious designer who checkpoints
changes often?

On the other hand, Figure 2-23 shows a plot of the code change rate
for each designer. What is your assessment of the code quality from
designer on the left? It seems to me that the designer on the right is
not making proper use the revision control system.

Figure 2-22.
Using version
numbers as a
metric

alu_e.vhd 1.15
alu_rtl.vhd 1.234
decoder_e.vhd 1.12
decoder_rtl.vhf 1.155
dpath_e.vhd 1.7
dpath_rtl.vhd 1.176

cpuif_e.vhd 1.2
cpuif_rtl.vhd 1.4
regfile_e.vhd 1.1
regfile_rtl.vhf 1.7
addr_dec_e.vhd 1.3
addr_dec_rtl.vhd 1.6

Figure 2-23.
Using code
change rate as
a metric

Summary

Writing Testbenches: Functional Verification of HDL Models 83

SUMMARY

Despite their reporting many false errors, linting and other static
code checking tools are still the most efficient mechanism for find-
ing certain classes to problems.

Simulators are only as good as the model they are simulating. Sim-
ulators offer many performance enhancing options and the possibil-
ity to co-simulate with other languages or simulators.

Assertion-based verification is a powerful addition to any verifica-
tion methodology. This approach allows the quick identification of
problems, where and when they occur.

Hardware verification languages offer an increase in productivity
because of their specialization to the verification task and their sup-
port for coverage-driven random-based verification.

Use code and functional coverage metrics to provide a quantitative
assessment of your progress. Do not focus on reaching 100% at all
cost, nor should you consider the job done when you’ve reached
your coverage goals.

Use a source control system and an issue tracking system to man-
age your code and bug reports.

