
Writing Testbenches: Functional Verification of HDL Models xix

PREFACE

If you survey hardware design groups, you will learn that between
60% and 80% of their effort is now dedicated to verification.
Unlike synthesizeable coding, there is no particular coding style nor
language required for verification. The freedom of using any lan-
guage that can be interfaced to a simulator and of using any features
of that language has produced a wide array of techniques and
approaches to verification. The absence of constraints and historical
lack of available expertise and references in verification has
resulted in ad hoc approaches. The consequences of an informal
verification process can range from a non-functional design requir-
ing several re-spins, through a design with only a subset of the
intended functionality, to a delayed product shipment.

WHY THIS BOOK IS IMPORTANT

Take a survey of the books about Verilog or VHDL currently avail-
able. You will notice that the majority of the pages are devoted to
explaining the details of the languages. In addition, several chapters
are focused on the synthesizeable—or RTL—coding style replete
with examples. Some books are even devoted entirely to the subject
of RTL coding.

When verification is addressed, only one or two chapters are dedi-
cated to the topic. And often, the primary focus is to introduce more
language constructs. Verification is usually presented in a very rudi-

Preface

xx Writing Testbenches: Functional Verification of HDL Models

mentary fashion, using simple, non-scalable techniques that
become tedious in large-scale, real-life designs.

The first edition of this book was the first book specifically devoted
to functional verification techniques for hardware models. Since
then, several other verification-only books have appeared. Major
conferences now include verification tracks. Universities, in collab-
oration with industry, are now offering verification courses in their
engineering curriculum. Pure verification EDA companies are now
offering new tools to improve productivity and the overall design
quality. All of these contribute to create a formal body of knowl-
edge in design verification. Such a body of knowledge is an essen-
tial foundation to creating a science of verification and fueling
progress in methodology and productivity.

In this second edition, I will present the latest verification tech-
niques that are successfully being used to produce fully functional
first-silicon ASICs, systems-on-a-chip (SoC), boards and entire
systems. It builds on the content of the first edition—transaction-
level self-checking testbenches—to introduce a revolution in func-
tional verification: coverage-driven constrainable random test-
benches.

WHAT THIS BOOK IS ABOUT

I will first introduce the necessary concepts and tools of verifica-
tion, then I’ll describe a process for planning and carrying out an
effective functional verification of a design. I will also introduce
the concept of coverage models that can be used in a coverage-
driven verification process.

It will be necessary to cover some VHDL and Verilog language
semantics that are often overlooked or oversimplified in textbooks
intent on describing the synthesizeable subset. These unfamiliar
semantics become important in understanding what makes a well-
implemented and robust testbench and in providing the necessary
control and monitor features. Once these new semantics are under-
stood in a familiar language, the same semantics are presented in
new verification-oriented languages.

I will also present techniques for applying stimulus and monitoring
the response of a design, by abstracting the physical-level transac-

What Prior Knowledge You Should Have

Writing Testbenches: Functional Verification of HDL Models xxi

tions into high-level procedures using bus-functional models. The
architecture of testbenches built around these bus-functional mod-
els is important to create a layer of abstraction relevant to the func-
tion being verified and to minimize development and maintenance
effort. I also show some strategies for making testbenches self-
checking.

Creating random testbenches involves more than calling the ran-
dom() function in whatever language is used to implement them. I
will show how random stimulus generators, built on top of bus-
functional models, can be architected and designed to be able to
produce the desired stimulus patterns. Random generators must be
easily externally constrained to increase the likelihood that a set of
interesting patterns will be generated.

Behavioral modeling is another important concept presented in this
book. It is used to parallelize the implementation and verification of
a design and to perform more efficient simulations. For many,
behavioral modeling is synonymous with synthesizeable or RTL
modeling. In this book, the term “behavioral” is used to describe
any model that adequately emulates the functionality of a design,
usually using non-synthesizeable constructs and coding style.

WHAT PRIOR KNOWLEDGE YOU SHOULD HAVE

This book focuses on the functional verification of hardware
designs using VHDL, Verilog, e or OpenVera. I expect the reader to
have at least a basic knowledge of VHDL, Verilog, OpenVera or e.
Ideally, you should have experience in writing models and be famil-
iar with running a simulation using any of the available VHDL or
Verilog simulators. There will be no detailed description of lan-
guage syntax or grammar. It may be a good idea to have a copy of a

language-focused textbook as a reference along with this book1. I
do not describe a synthesizeable subset, nor limit the implementa-
tion of the verification techniques to using that subset. Verification
is a complex task: The power of a language will be used to its full-
est.

I also expect that you have a basic understanding of digital hard-
ware design. This book uses several hypothetical designs from var-
ious application domains (video, datacom, computing, etc.). How

Preface

xxii Writing Testbenches: Functional Verification of HDL Models

these designs are actually specified, architected and then imple-
mented is beyond the scope of this book. The content focuses on the
specification, architecture, then implementation of the verification
of these same designs.

READING PATHS

You should really read this book from cover to cover. However, if
you are pressed for time, here are a few suggested paths.

If you are using this book as a university or college textbook, you
should focus on Chapter 4 through 6 and Appendix A. If you are a
junior engineer who has only recently joined a hardware design
group, you may skip Chapters 3 and 7. But do not forget to read
them once you have gained some experience.

Chapters 3 and 6, as well as Appendix A, will be of interest to a
senior engineer in charge of defining the verification strategy for a
project. If you are an experienced designer, you may wish to skip
ahead to Chapter 3. If you are an experienced Verilog or VHDL
user, you may wish to skip Chapter 4—but read it anyway, just to
make sure your definition of “experienced” matches mine.

If you have a software background, Chapter 4 and Appendix A may
seem somewhat obvious. If you have a hardware design and RTL
coding mindset, Chapters 4 and 7 are probably your best friends.

1. For Verilog, I recommend The Verilog Hardware Description Language
by Thomas & Moorby, 3rd edition or later (Kluwer Academic Pub-
lisher).

For VHDL, I recommend VHDL Coding Styles and Methodologies by
Ben Cohen (Kluwer Academic Publisher).

For OpenVera, the OpenVera Language Reference Manual is available
at http://Open-Vera.com. Vera users will find the Vera Users Manual
available under $VERA_HOME/doc/vum.

For e, Specman Elite users will find the e Language Reference Manual
under the HELP menu. It can also be found at https://verificationva-
ult.com.

Choosing a Language

Writing Testbenches: Functional Verification of HDL Models xxiii

If your responsibilities are limited to managing a hardware verifica-
tion project, you probably want to concentrate on Chapter 3, Chap-
ter 6 and Chapter 7.

CHOOSING A LANGUAGE

The first decision a design group is often faced with is deciding
which language to use. As the author of this book, I faced the same
dilemma. In many cases, the choice does not exist as the company
has selected a language over others and has invested heavily into
supporting that language in terms of licenses, training and intellec-
tual property. But for small companies, companies in transition or
companies without a central CAD group, the answer is usually dic-
tated by the decision maker’s own knowledge or personal prefer-
ence.

VHDL vs. Verilog

In my opinion, VHDL and Verilog are inadequate by themselves,
especially for verification. They are both equally poor for synthe-
sizeable description. Some things are easier to accomplish in one
language than in the other. For a specific model, one language is
better than the other: One language has features that map better to
the functionality to be modeled. However, as a general rule, neither
is better than the other.

Some sections are Verilog only. In my experience, Verilog is a
much abused language. It has the reputation for being easier to
learn than VHDL, and to the extent that the learning curve is not as
steep, it is true. However, all languages provide similar concepts:
sequential statements, parallel constructs, structural constructs and
the illusion of parallelism.

For all languages, these concepts must be learned. Because of its
lax requirements, Verilog lulls the user into a false sense of security.
The user believes that he or she knows the language because there
are no syntax errors or because the simulation results appear to be
correct. Over time, and as a design grows, race conditions and frag-
ile code structures become apparent, forcing the user to learn these
important concepts. Both languages have the same area under the
learning curve. VHDL’s is steeper but Verilog’s goes on for much

Preface

xxiv Writing Testbenches: Functional Verification of HDL Models

longer. Some sections in this book take the reader farther down the
Verilog learning curve.

Hardware Verification Languages

Hardware verification languages (HVLs) are languages that were
specifically designed to implement testbenches efficiently and pro-
ductively. As I write this book, there are several to choose from.
Commercial solutions include e from Verisity, OpenVera from Syn-
opsys and RAVE from Forte Design. Open-source solutions include
the SystemC Verification Library (SCV) from Cadence and Jeda
from Juniper Networks. There are also a plethora of home-grown
solutions based on Perl, SystemC, C++ or TCL. Verification exten-
sions to the Verilog language are also being added in SystemVer-
ilog. Not all support a coverage-driven constrainable random
verification strategy (see “Coverage-Driven Random-Based
Approach” on page 109) equally well. Many are still better suited
to a directed test strategy (see “Directed Testbenches Approach” on
page 104).

Switching from Verilog or VHDL to an HVL involves more than
simply learning a new syntax. Although one can continue to use an
HDL-like directed methodology with an HVL, using an HVL
requires a shift in the way verification is approached and test-
benches are implemented. The directed verification strategy used
with Verilog and VHDL is the schematic capture of verification.
Using an HVL with a constraint-driven random verification strat-
egy is the synthesis of verification. When used properly, HVLs are
an incredible productivity boost (see Figure 2-17 on page 63).

If this book had been written from scratch, I would not have both-
ered including Verilog or VHDL examples. Because they were
already there and they can be useful as a foundation for understand-
ing the new concepts provided by HVLs, I’ve decided to keep these
examples. I also took advantage of this second edition to update the
Verilog content to reflect the new Verilog-2001 standard.

Choosing a Language

Writing Testbenches: Functional Verification of HDL Models xxv

And the Winner Is...

I know VHDL, Verilog, C++, e and OpenVera equally well. I work
using all of them. I teach all of them. When asked which one I pre-
fer, I usually answer that I was asked the wrong question. The right
question should be, “Which one do I hate the least?” And the
answer to that question is, “The one I’m not currently working
with.” When working in one language, you do not notice the things
that are simple to describe or achieve in that language. Instead, you
notice the frustrations and how it would be easy to do it if only you
were using the other language.

Verification techniques transcend the language used. VHDL, Ver-
ilog, e and OpenVera are only implementation vehicles. All are
used throughout the book, but examples are typically shown in only
one language. I trust that a monolingual reader will be able to
understand the example in the other languages, even though the
syntax is slightly different. In areas where each language requires
different approaches or methodologies, I will present each individu-
ally. However, I will make no attempt to cover all of the features of
each language. This is a methodology book, not a language book.

I have selected e and OpenVera because they are the languages I
know best and, at the time of writing, are the HVLs that best sup-
port a coverage-driven constrainable random verification process.
The book was not written as a medium for comparing language fea-
tures or the number of lines required to implement various func-
tionality. The decision to use one language over another involves
more than a mere side-by-side comparison of features and syntax.

The code syntax in all examples, any mentioned language or tool
limitations and any example or discussion of tool output or feature

is up-to-date and factually correct2 at the time of writing. For
VHDL, VHDL-93 and ModelSim™ 5.5.e were used. For Verilog,
VCSi 6.1 and ModelSim 5.5.e were used. For OpenVera, Vera™
6.0.0 was used. For e, Specman Elite™ 4.1 was used.

2. I welcome correction of any factual errors in the book via email at
janick@bergeron.com . These corrections will be posted in the
errata section of the book website.

Preface

xxvi Writing Testbenches: Functional Verification of HDL Models

A common complaint I received about the first edition was the lack
of complete examples. You’ll notice that in this edition, like the
first, code samples are still provided only as excerpts. I fundamen-
tally believe that this is a better way to focus the reader’s attention
on the important point I’m trying to convey. I do not want to bury
you under pages and pages of complete but dry (and ultimately
mostly irrelevant) source code. Instead, the entire source code for
all examples can now be found in the source section at the follow-
ing URL:

http://janick.bergeron.com/wtb

FOR MORE INFORMATION

If you want more information on topics mentioned in this book, you
will find links to relevant resources in the book-companion Web
site at the following URL:

http://janick.bergeron.com/wtb

In the resources area, you will find links to publicly available utili-
ties, documents and tools that make the verification task easier. You
will also find an errata section listing and correcting the errors that

inadvertently made their way in this edition.3

ACKNOWLEDGEMENTS

My wife, Danielle, continued to give this book energy against its
constant drain. Kyle Smith, my editor, once more gave it form from
its initial chaos. Chris Macionski, Andrew Piziali, Chris Spear, Ben
Cohen and Grant Martin, my technical reviewers, gave it light from
its stubborn darkness. And FrameMaker, my word processing soft-
ware, once more reliably went where no Word had gone before!

I also thank Mentor Graphics for supplying licenses for their Mod-
elSim™ HDL simulator, Verisity Design Ltd. for supplying

3. If you know of a verification-related resource or an error in this book
that is not mentioned in the Web site, please let me know via email at
janick@bergeron.com . I thank you in advance.

Acknowledgements

Writing Testbenches: Functional Verification of HDL Models xxvii

licenses for their Specman Elite™ environment, and Synopsys Inc.
for supplying licenses for their VCS™ and Vera™ simulators.

ModelSim is a trademark of Mentor Graphics Ltd. Specman Elite
and eVC are trademarks of Verisity Design Ltd. The e language is
the intellectual property of and copyrighted by Verisity Design Ltd.
and used in this book under license. VCS and Vera are trademarks
of Synopsys Inc. All other trademarks are the property of their
respective owners.

