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Flows in Porous Media

2.1 Use Simple Methods First

We now turn our attention to the results that constitute the core of modern
research on convective heat and mass transfer through porous media. Our
objective is not only to organize the compact presentation of these results, but
also to explain their origin. We want to show the student how to anticipate
these results and the results for related problems. This is why we begin with
methodology. We emphasize the freedom that educators and researchers have
in choosing methods to solve problems, present the results, and put results
into practice.

The field of convection in porous media is an excellent candidate for stress-
ing this important message. It is mature enough, and at the same time it is
rich: its results cover a wide spectrum of problems and applications in thermal
engineering, physics, geophysics, bioengineering, civil engineering, and many
other fields. These fields are united by several key phenomena, some of which
are selected for review in this chapter. The opportunity that the maturity of
our field offers is this: after a few decades of development, we find that more
than one method is available for attacking a certain problem. Older meth-
ods, such as analysis and experiments (direct laboratory measurements), are
as eligible to be used as the newer methods based on computational analysis.
The point is that the available methods compete for the researcher’s attention.
The researcher has the freedom to choose the method that suits him or her
(Bejan, 1995a).

Methods are literally competitive because each is an example of a tradeoff
between cost (effort) and accuracy. The simpler methods require less effort
and produce less accurate results than the more complicated methods. The
researcher enters the marketplace of methodology with a personal profile: tal-
ent, time to work, interest in details, and users of the results of the contem-
plated work (e.g., customers, students). The match of researcher, problem, and
method is not the result of chance. It is an optimization decision (structure,
configuration) in the sense of constructal theory and design (Bejan, 2000). This
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configuration maximizes the performance (benefit) for all parties concerned.
The intellectual work that goes on in research and education is a conglom-
erate of mind–problem–method matches of the kind illustrated in this book.
The so-called “knowledge industry” thrives on the optimization of matches
and connections—it thrives on the development (growth) and optimization of
structure.

Among the methods that have emerged in fluid mechanics and heat trans-
fer, scale analysis (scaling) is one of the simplest and most cost effective
(Bejan, 1984, 1995a); see Sections 2.1, 2.5, and 4.4. Scaling is now used by
many, yet the need to explain its rules and promise remains. To accomplish
this in a compact and effective format is the first objective of this chapter.
Scale analysis is so cost effective that it is beneficial as a first step (prelimi-
nary, prerequisite) even in situations where the appropriate method is more
laborious and the sought results are more accurate. The results of scale ana-
lysis serve as a guide. They tell the researcher what to expect before the use
of a more laborious method, what the ultimate (accurate) results mean, and
how to report them in dimensionless form. The engineering advice to “try the
simplest first” fits perfectly in the optimization of research.

The second objective of this chapter is to explain the rules and the promise
of another simple method: the intersection of asymptotes (Section 2.11). This
method was born by accident, in the search for a quick solution to a homework
problem, namely, the optimal spacing between parallel plates with natural
convection (Bejan, 1984, problem 11, p. 157). What led to the quick solution
is an idea of more permanent and general value: when one is challenged to
describe a complicated system or phenomenon (e.g., a flow structure), it is
helpful to describe the phenomenon in the simpler extremes (asymptotes) in
which it may manifest itself. The complicated phenomenon lies somewhere
between the extremes, and its behavior may be viewed as the result of the
competition (clash, collision) between the extremes. This idea has helped us
in many areas. For example, the highly complicated relations between the
thermodynamic properties of a real substance (e.g., steam tables) make more
sense when viewed as the intersection of two extremes of thermodynamic
behavior: the incompressible substance model and the ideal gas model.

Although newer than scaling, the intersection of asymptotes method is
now used frequently in thermal design and optimization (e.g., Sadeghipour
and Razi, 2001). Optimization of global performance is an integral part of
the physics of flow structures: flows choose certain patterns (shapes, struc-
tures, regimes) as compromises between the available extremes. Flows design
for themselves paths for easiest access (Bejan, 2000). To illustrate this con-
structal characteristic of natural flows, in Section 2.11 we take a look at
the classical phenomenon of natural convection in a porous layer saturated
with fluid and heated from below (Horton and Rogers, 1945; Lapwood, 1948).
This phenomenon has been investigated with increasingly accurate analyti-
cal, numerical, and experimental tools, as shown by recent reviews [e.g., Nield
and Bejan (1999)]. Just like scaling, the intersection of asymptotes method
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provides a surprisingly direct alternative, a short cut to the most important
characteristics of the flow.

2.2 Scale Analysis of Forced Convection Boundary
Layers

Scaling is a method for determining answers to concrete problems, such as the
heat transfer rate in a configuration that is described completely. The results
are correct and accurate, but only in an order of magnitude sense. The follow-
ing examples exhibit an accuracy better than within a factor of 2 or 1/2. The
analysis is based on the complete problem statement, that is, the conserva-
tion equations and all the initial and boundary conditions. Partial differential
equations are replaced by global algebraic statements, which are approximate.
Scale analysis is a problem-solving method—a method of solution that should
not be confused with dimensional analysis.

A simple class of flows that can be described based on scale analysis is
boundary layers. Figure 2.1 shows the thermal boundary layer in the vicinity
of an isothermal solid wall (T0) embedded in a saturated porous medium

Fig. 2.1. Thermal boundary layer near an isothermal wall with parallel flow.
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with uniform flow parallel to the wall (U∞, T∞). For simplicity, we assume
temperature-independent properties, so that the temperature field is indepen-
dent of the flow field. The flow field is known: it is the uniform flow U∞, which
in Darcy or Darcy–Forchheimer flow (cf. Section 1.3) is driven by a uniform
and constant pressure gradient (dP/dx). Unknown are the temperature dis-
tribution in the vicinity of the wall and the heat transfer between the wall
and the porous medium.

The analysis refers to the boundary layer regime, which is based on the
assumption that the region in which the thermal effect of the wall is felt is
slender,

δT � x. (2.1)

The boundary layer region has the length x and thickness δT . The latter is
defined as the distance y where the temperature is practically the same as the
approaching temperature (T∞), or where ∂T/∂y ∼= 0. The thermal boundary
layer thickness δT is the unknown geometric feature that is also the solution
to the heat transfer problem. The wall heat flux is given by

q′′ = k

(
−∂T

∂y

)
y=0

, (2.2)

where k is the effective thermal conductivity of the porous medium saturated
with fluid. The scale of the temperature gradient appearing in Equation (2.2)
is given by (

−∂T

∂y

)
y=0

∼ −T∞ − T0

δT − 0
=

∆T
δT

, (2.3)

where ∆T is the overall temperature difference that drives q′′. In conclusion,
the heat flux scale is given by

q′′ ∼ k
∆T
δT

, (2.4)

which means that in order to estimate q′′ we must first estimate δT .
The required equation for δT is provided by the energy equation, namely,

Equation (1.32),

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2 , (2.5)

where α = k/(ρcp)f is the thermal diffusivity of the saturated porous medium.
The volume-averaged velocity components of the uniform flow are u = U∞ and
v = 0, such that Equation (2.5) becomes

U∞
∂T

∂x
= α

∂2T

∂y2 . (2.6)
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To determine the order of magnitude of ∂2T/∂y2, we use the same tech-
nique as in Equation (2.3): we evaluate the change in ∂T/∂y from y = 0 to
y ∼ δT ,

∂2T

∂y2 =
∂

∂y

(
∂T

∂y

)
∼ (∂T/∂y)δT

− (∂T/∂y)0
δT − 0

=
0 + ∆T/δT

δT
=

∆T
δ2T

. (2.7)

Similarly, for ∂T/∂x we look at the change in T along the system, from x = 0
to x, at a constant y sufficiently close to the wall:

∂T

∂x
∼ (T )x − (T )x=0

x− 0
=
T0 − T∞

x
=

∆T
x
. (2.8)

Together, Equations (2.6) to (2.8) produce

U∞
∆T
x

∼ α
∆T
δ2T

, (2.9)

which is the approximate algebraic statement that replaces the partial
differential Equation (2.6). The boundary layer thickness follows from
Equation (2.9),

δT ∼
(
αx

U∞

)1/2

(2.10)

and so does the conclusion that δT increases as x1/2, as shown in Figure 2.1.
The heat flux decreases as x−1/2, [cf. Equation (2.4)],

q′′ ∼ k∆T
(
U∞
αx

)1/2

. (2.11)

The dimensionless version of this heat transfer rate is given by

Nux ∼ Pe1/2
x , (2.12)

where the Nusselt and Péclet numbers are given by

Nux =
q′′x
k∆T

Pex =
U∞x
α

. (2.13)

These estimates are valid when the heart of boundary layer theory, the slen-
derness assumption (1), is respected, and this translates into the requirement
that Pex � 1, or that U∞ and/or x must be sufficiently large.

How approximate is this heat transfer solution? The exact solution to
the same thermal boundary layer problem is available in closed form, after
solving Equation (2.6) in similarity formulation. The details of this analysis
may be found in Bejan (1995a). The similarity solution for the local heat flux
is given by

Nux = 0.564Pe1/2
x . (2.14)
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This agrees with the scaling estimate (2.12). The heat flux averaged over
a wall of length L,

q′′ =
1
L

∫ L

0
q′′ dx (2.15)

can be estimated based on Equation (2.14),

Nu = 1.128PeL, (2.16)

where corresponding Nusselt and Péclet number definitions are given by

Nu =
q′′L
k∆T

, PeL =
U∞L
α

. (2.17)

Equation (2.16) shows that the scaling estimate (2.12) is again accurate within
a factor of order 1. Furthermore, scale analysis makes no distinction between
local flux and wall-averaged heat flux: both have the same scale, and the
correct scale is delivered by scale analysis, Equation (2.11).

The analysis that produced Equation (2.11) did not require the wall tem-
perature be uniform, ∆T = constant. We made this assumption only later,
when we formulated Nux and Nu. Equation (2.11) is the general and correct
relation between the heat flux scale (q′′) and wall excess temperature scale
(∆T ) in the boundary layer configuration. Equation (2.11) can be used in sit-
uations other than the isothermal-wall case of Figure 2.1. For example, when
the wall heat flux is uniform, Equation (2.11) delivers the scale and charac-
ter of the wall temperature distribution, ∆T = T0(x) − T∞. In local Nusselt
number formulation, the scaling result is

Nux =
q′′x

k[T0(x) − T∞]
∼ Pe1/2

x . (2.18)

The corresponding local and overall Nusselt numbers derived from the simi-
larity solution to the same problem are

Nux =
q′′x

k[T0(x) − T∞]
= 0.886Pe1/2

x (2.19)

Nu =
q′′L

k(T̄ − T∞)
= 1.329Pe1/2

L , (2.20)

where T̄ is T (x) averaged from x = 0 to x = L. Once again, the scaling result
(2.18) anticipates within 12 and 33% the similarity solution, Equations (2.19)
and (2.20). The trends are identical, and correct. To appreciate how simple,
direct, and cost effective scale analysis is, the reader should try to solve the
problems using other methods.
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2.3 Sphere and Cylinder with Forced Convection

We continue with several examples of forced convection around other bodies
embedded in porous media. Figure 2.2a shows the thermal boundary layer
region around a sphere, or around a circular cylinder that is perpendicular to
a uniform flow with volume averaged velocity u. The sphere or cylinder radius
is r0, and the surface temperature is Tw. The distributions of heat flux around
the sphere and cylinder in Darcy flow were determined in Cheng (1982). With
reference to the angular coordinate θ, the local peripheral Nusselt numbers
for the sphere are

Nuθ = 0.564
(
ur0θ

α

)1/2 (
3
2
θ

)1/2

sin2 θ

(
1
3

cos3 θ − cos θ +
2
3

)−1/2

(2.21)

and for the cylinder:

Nuθ = 0.564
(
ur0θ

α

)1/2

(2θ)1/2 sin θ (1 − cos θ)−1/2. (2.22)

The Péclet number is based on the swept arc r0θ, namely, Peθ = ur0θ/α. The
local Nusselt number is defined as

Nuθ =
q′′

Tw − T∞
r0θ

k
. (2.23)

Equations (2.21) and (2.22) are valid when the boundary layers are distinct
(thin), that is, when the boundary layer thickness r0Pe−1/2

θ is smaller than the
radius r0. This requirement can also be written as Pe1/2

θ � 1, or Nuθ � 1.
The analogy between the thermal boundary layers of the cylinder and the

sphere (Figure 2.2a) and that of the flat wall (Figure 2.1) is illustrated further
by Nield and Bejan’s (1999) correlation of the heat transfer results for these

Fig. 2.2. Forced convection in porous media: (a) boundary layer around a sphere
or cylinder; (b) channel filled with a porous medium.
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three configurations. The heat flux averaged over the area of the cylinder and
sphere, q̄ ′′, can be calculated by averaging the local heat flux q′′ expressed by
Equations (2.21) through (2.23). The results for the sphere are

NuD = 1.128Pe1/2
D (2.24)

and for the cylinder
NuD = 1.015Pe1/2

D . (2.25)

In these expressions, the Nusselt and Péclet numbers are based on the dia-
meter D = 2r0,

NuD =
q′′D

(Tw − T∞)k
, PeD =

uD

α
. (2.26)

In summary, the overall Nusselt number is nearly equal to Pe1/2
D , in accordance

with the scale analysis presented in Section 2.2. The purpose of the present
section was to review the exact results that are available for the sphere and
cylinder, and to direct the reader to the appropriate sources in the literature.

2.4 Channels with Porous Media and Forced Convection

Consider now the forced convection heat transfer in a channel or duct packed
with a uniform and isotropic porous material as in Figure 2.2b. In the Darcy
flow regime the longitudinal volume-averaged velocity u is uniform over the
channel cross-section. When the temperature field is fully developed, the rela-
tionship between the wall heat flux q′′ and the local temperature difference
(Tw − Tb) is analogous to the relationship for fully developed heat transfer
to slug flow through a channel without a porous matrix (Bejan, 1995a). The
temperature Tb is the mean or bulk temperature of the stream that flows
through the channel,

Tb =
1
A

∫
A

T dA, (2.27)

in which A is the area of the channel cross-section. In general, when the
velocity u is not uniform over the channel cross-section, Tb is weighted with
the velocity,

Tb =
1
ūA

∫
A

uT dA, (2.27′)

where ū is the velocity averaged over A. In cases where the confining wall is a
tube with internal diameter D, the relation for fully developed heat transfer
can be expressed as a constant Nusselt number (Rohsenow and Choi, 1961):

NuD =
q′′(x)

Tw − Tb(x)
D

k
= 5.78 (tube, Tw = uniform), (2.28)

NuD =
q′′

Tw(x) − Tb(x)
D

k
= 8 (tube, q′′ = uniform). (2.29)
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When the porous matrix is sandwiched between two parallel plates with the
spacing D, the corresponding Nusselt numbers are (Rohsenow and Hartnett,
1973)

NuD =
q′′(x)

Tw − Tb(x)
D

k
= 4.93 (parallel plates, Tw = uniform), (2.30)

NuD =
q′′

Tw(x) − Tb(x)
D

k
= 6 (parallel plates, q′′ = uniform). (2.31)

The forced convection results of Equations (2.28) through (2.31) are valid
when the temperature profile across the channel is fully developed (sufficiently
far from the entrance x = 0). The entrance length, or the length needed for
the temperature profile to become fully developed, can be estimated by not-
ing that the thermal boundary layer thickness scales as (αx/u)1/2. Setting
(αx/u)1/2 ∼ D, the thermal entrance length xT ∼ D2u/α is obtained. Inside
the entrance region 0 < x < xT , the heat transfer is impeded by the forced
convection thermal boundary layers that line the channel walls, and can be
calculated approximately using the results of Section 2.2.

One important application of the results for a channel packed with a porous
material is in the area of heat transfer augmentation. As shown by Nield and
Bejan (1999), the Nusselt numbers for fully developed heat transfer in a
channel without a porous matrix are given by expressions similar to Equa-
tions (2.28) through (2.31) except that the saturated porous medium conduc-
tivity k is replaced by the thermal conductivity of the fluid alone, kf . The
relative heat transfer augmentation effect is indicated approximately by the
ratio

hx(with porous matrix)
hx(without porous matrix)

∼ k

kf
(2.32)

in which hx is the local heat transfer coefficient q′′/(Tw − Tb). In conclusion,
a significant heat transfer augmentation effect can be achieved by using a
high-conductivity matrix material, so that k is considerably greater than kf .
This effect is accompanied by a significant increase in fluid flow resistance.

Key results for forced convection in porous media have been developed based
on constructal theory for tree networks of cracks (Bejan, 2000), time-dependent
heating, annular channels, stepwise changes in wall temperature, local thermal
nonequilibrium, and other external flows (such as over a cone or wedge). The
concepts of heatfunctions and heatlines were introduced for the purpose of
visualizing the true path of the flow of energy through a convective medium
(Bejan, 1984, 1995a). The heatfunction accounts simultaneously for the trans-
fer of heat by conduction and convection at every point in the medium. The
heatlines are a generalization of the flux lines used routinely in the field of con-
duction. The concept of heatfunction is a spatial generalization of the concept
of the Nusselt number, that is, a way of indicating the magnitude of the heat
transfer rate through any unit surface drawn through any point on the convec-
tive medium. The heatline method was extended to several configurations of
convection through fluid saturated porous media (Morega and Bejan, 1994).
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2.5 Scale Analysis of Natural Convection Boundary
Layers

We return to the method of scale analysis, and consider the natural convec-
tion boundary layer near a vertical impermeable wall embedded in a saturated
porous medium at a different temperature. The boundary conditions are indi-
cated in Figure 2.3, where the gravitational acceleration points in the negative
y-direction. The equations for mass conservation and Darcy flow,

∂u

∂x
+
∂v

∂y
= 0, (2.33)

u = −K

µ

∂P

∂x
, v = −K

µ

(
∂P

∂y
+ ρg

)
, (2.34)

can be rewritten as a single equation

∂2ψ

∂x2 +
∂2ψ

∂y2 = −Kgβ

ν

∂T

∂x
, (2.35)

Fig. 2.3. Natural convection boundary layer near a heated vertical impermeable
wall.
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where ψ(x, y) is the streamfunction for volume-averaged flow, u = ∂ψ/∂y
and v = −∂ψ/∂x. In Equation (2.35) we used the Boussinesq approximation
ρ = ρ0[1 − β(T − T0)], which effects the coupling of the velocity field to the
temperature field. The energy conservation equation for boundary layer flow
is given by [cf. Equation (2.5)]

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
= α

∂2T

∂x2 . (2.36)

The problem is to determine the heat transfer rate between the wall and
the medium, q′′ ∼ k∆T/δT , where ∆T = T0 − T∞, and δT is the thickness of
the boundary layer region (δT � y). By invoking the temperature boundary
conditions sketched in Figure 2.3, and using the rules of scale analysis outlined
in Section 2.2, we find that the terms of Equations (2.35) and (2.36) are
represented by the following scales,

ψ

δ2T
,

ψ

y2 ∼ Kgβ∆T
νδT

, (2.37)

ψ∆T
yδT

,
ψ∆T
δT y

∼ α
∆T
δ2T

. (2.38)

On the left side of Equation (2.37) we retain the first scale, because ψ/δ2T >
ψ/y2. On the left side of Equation (2.38), the two scales are represented by
the same order of magnitude, ψ∆T/(yδT ). Together, Equations (2.37) and
(2.38) are sufficient for determining the two unknown scales, δT and ψ,

δT
y

∼ Ra−1/2
y , ψ ∼ αRa1/2

y , (2.39)

where Ray is the Darcy-modified Rayleigh number, Ray = Kgβy∆T/(αν).
From the ψ scale we conclude that the vertical velocity scale is v ∼ ψ/δT , or
v ∼ (α/y)Ray ∼ Kgβ∆T/ν. From the δT scale we deduce the heat flux, or
the Nusselt number,

Nuy =
q′′y
k∆T

∼ Ra1/2
y . (2.40)

This scale agrees with the similarity solution to the problem of the
boundary layer along an isothermal wall of temperature T0 (Cheng and
Minkowycz, 1977),

Nuy =
q′′y

(T0 − T∞)k
= 0.444Ra1/2

y , (2.41)

Nu =
q′′H

(T0 − T∞)k
= 0.888Ra1/2

H . (2.42)
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If the wall has uniform heat flux, then the local wall temperature and the
boundary layer thickness must vary such that

q′′ ∼ k
T0(y) − T∞

δT
= constant. (2.43)

Combining this with the δT scale (2.39), we conclude that

δT
y

∼ Ra−1/3
∗y , (2.44)

where Ra∗y is the Darcy-modified Rayleigh number based on heat flux, Ra∗y =
Kgβy2q′′/(ανk). The local heat transfer rate must therefore scale as

Nuy =
q′′

T0(y) − T∞
y

k
∼ Ra1/3

∗y . (2.45)

The numerical solution to the similarity for formulation of this problem is
given by (Bejan, 1995a)

Nuy =
q′′

T0(y) − T∞
y

k
= 0.772Ra1/3

∗y , (2.46)

Nu =
q′′

T̄0 − T∞

H

k
= 1.03Ra1/3

∗H , (2.47)

where H is the wall height. In conclusion, Equations (2.45) to (2.47) show that
the exact results are anticipated within 23% by the results of scale analysis.
More examples of boundary layer natural convection in porous media are
reviewed in the next section.

2.6 Thermal Stratification and Vertical Partitions

When the porous medium of Figure 2.3 is finite in the x- and y-directions, the
discharge of the heated vertical stream into the rest of the medium leads in
time to thermal stratification. This problem was considered in Bejan (1984).
As shown in Figure 2.4, the original wall excess temperature is T0 − T∞,0,
and the porous medium is stratified according to the positive vertical gradi-
ent γ = dT∞/dy. The local temperature difference T0 − T∞(y) decreases as y
increases, which is why a monotonic decrease in the total heat transfer rate
as γ increases should be expected. This trend is confirmed by the right-hand
part of the figure, which shows the integral solution developed for this con-
figuration. The overall Nusselt number, Rayleigh number, and stratification
parameter are defined as

NuH = q′′H
k(T0−T∞,0)

, RaH = KgβH
αν (T0 − T∞,0), b = γH

T0−T∞,0
.

(2.48)
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Fig. 2.4. Heat transfer solution for a vertical isothermal wall facing a linearly
stratified porous medium saturated with fluid (Bejan, 1984; from Bejan, Convection
Heat Transfer, 2nd ed., Copyright c© 1995 Wiley. This material is used by permission
of John Wiley & Sons, Inc.).

The accuracy of this integral solution can be assessed by comparing its b = 0
limit

NuH

Ra1/2
H

= 1 (b = 0) (2.49)

with the similarity solution for an isothermal wall adjacent to an isother-
mal porous medium, Equation (2.42). The integral solution overestimates the
global heat transfer rate by only 12.6% (Figure 2.4).

The breakdown of the Darcy flow model in vertical boundary layer
natural convection was the subject of several studies (Plumb and Huenefeld,
1981; Bejan and Poulikakos, 1984; Nield and Joseph, 1985). Assuming the
Dupuit–Forchheimer modification of the Darcy flow model, at local pore
Reynolds numbers greater than 10, the local Nusselt number for the verti-
cal wall configuration of Figure 2.3 approaches the following limits (Bejan
and Poulikakos, 1984),

Nuy = 0.494Ra1/4
∞,y for the isothermal wall, (2.50)

Nuy = 0.804Ra∗1/5
∞,y for the constant heat flux wall, (2.51)

where Ra∞,y = gβy2(Tw − T∞)/(bα2) and Ra∗
∞,y = gβy3q′′/(kbα2), and

b[m−1] is defined in Equation (1.12). Equations (2.50) and (2.51) are valid
provided G � 1, where G = (ν/K)[bgβ(Tw − T∞)]−1/2. In the intermediate
range between the Darcy limit and the inertia-dominated limit (or form drag
limit), that is, in the range where G is of order one, numerical results for a
vertical isothermal wall (Bejan and Poulikakos, 1984) are correlated within
2% by the closed-form expression (Bejan, 1987)

Nuy = [(0.494)n + (0.444G−1/2)n]1/nRa1/4
∞,y, (2.52)
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where n = −3. The heat transfer results summarized in this section also apply
to configurations where the vertical wall is inclined (slightly) to the vertical. In
such cases, the gravitational acceleration that appears in the definition of the
Rayleigh-type numbers in this section must be replaced by the gravitational
acceleration component that acts along the nearly vertical wall.

When a vertical wall divides two porous media, and a temperature differ-
ence exists between the two systems, there is a pair of conjugate boundary
layers, one on each side of the wall, with neither the temperature nor the
heat flux specified on the wall but rather to be found as part of the solu-
tion to the problem (Figure 2.5a) (Bejan and Anderson, 1981). The overall
Nusselt number results for this configuration are correlated within 1% by the
expression

NuH = 0.382(1 + 0.615ω)−0.875Ra1/2
H , (2.53)

where NuH = q′′H/[(T∞,H − T∞,L)k], and where q′′ is the heat flux averaged
over the entire height H. In addition, RaH = KgβH(T∞,H − T∞,L)/(αν).

Fig. 2.5. Natural convection boundary layers in porous media: (a) vertical partition
with porous media on both sides; (b) vertical wall separating a porous medium and
a fluid reservoir; (c) hot surface facing upward; (d) cold surface facing downward;
(e) sphere or cylinder embedded in a porous medium.
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The wall thickness parameter ω is

ω =
W

H

k

kw
Ra1/2

H , (2.54)

where W and H are the width and height of the wall cross-section, k and kw

are the conductivities of the porous medium and wall material, respectively,
and RaH is the Rayleigh number based on H and the temperature difference
between the two systems. The progress on conjugate boundary layers was
reviewed by Kimura et al. (1997).

In thermal insulation and architectural applications, the porous media on
both sides of the vertical partition of Figure 2.5a may be thermally stratified.
If the stratification on both sides is the same and linear (e.g., Figure 2.4), so
that the vertical temperature gradient far enough from the wall is dT/dy =
b1(T∞,H − T∞,L)/H, where b1 is a constant, and if the partition is thin enough
so that ω ≈ 0, then it is found that the overall Nusselt number increases
substantially with the degree of stratification (Bejan and Anderson, 1983). In
the range 0 < b1 < 1.5, these findings are summarized by the correlation

NuH = 0.382(1 + 0.662b1 − 0.073b21)Ra1/2
H . (2.55)

Another configuration of engineering interest is sketched in Figure 2.5b: a
vertical impermeable surface separates a porous medium of temperature T∞,H

from a fluid reservoir of temperature T∞,L (Bejan and Anderson, 1983). When
both sides of the interface are lined by boundary layers, the overall Nusselt
number is

NuH = [(0.638)−1 + (0.888B)−1]−1Ra1/4
H,f , (2.56)

where NuH = q′′H/[(T∞,H − T∞,L)k] and B = kRa1/2
H /(kfRa1/4

H,f ). The para-
meter kf is the fluid-side thermal conductivity, and the fluid-side Rayleigh
number RaH,f = g(β/αν)fH

3(T∞,H − T∞,L). Equation (2.56) is valid in the
regime where both boundary layers are distinct, Ra1/2

H � 1 and Ra1/4
H,f � 1. It

is also assumed that the fluid on the right side of the partition in Figure 2.5b
has a Prandtl number of order 1 or greater. For a numerical model and simu-
lation of a porous-fluid interface, see Costa et al. (2004). Additional solutions
for boundary layer convection in the vicinity of vertical partitions in porous
media are reviewed in Nield and Bejan (1999). The heat flow near the inter-
face between a porous medium with natural convection and a conducting solid
was illustrated with heatlines by Costa (2003).

2.7 Horizontal Walls with Natural Convection

With reference to Figure 2.5c, boundary layers form in the vicinity of a heated
horizontal surface that faces upward (Cheng and Chang, 1976). Measuring x
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horizontally away from the vertical plane of symmetry of the flow, the local
Nusselt number for an isothermal wall is

Nux = 0.42Ra1/3
x , (2.57)

where Nux = q′′x/[k(Tw − T∞)] and Rax = Kgβx(Tw − T∞)/(αν). The local
Nusselt number for a horizontal wall heated with uniform flux is

Nux = 0.859Ra∗1/4
x , (2.58)

where Ra∗
x = Kgβx2q′′/(kαν). Equations (2.57) and (2.58) are valid in the

boundary layer regime, Ra1/3
x � 1 and Ra∗1/4

x � 1, respectively. They also
apply to porous media bounded from above by a cold surface; this new con-
figuration is obtained by rotating Figure 2.5c by 180◦.

The upward-facing cold plate of Figure 2.5d was studied in Kimura et al.
(1985). The overall Nusselt number in this configuration is

Nu = 1.47Ra1/3
L , (2.59)

where Nu = q′/[k(T∞ − Tw)] and RaL = KgβL(T∞ − Tw)/(αν), and where
q′ is the overall heat transfer rate through the upward-facing cold plate of
length L. Equation (2.59) holds if RaL � 1, and applies equally to hot hori-
zontal plates facing downward in an isothermal porous medium. Note the
exponent 1/3, which is in contrast to the exponent 1/2 for the vertical wall
in Equation (2.42).

2.8 Sphere and Horizontal Cylinder with Natural
Convection

With reference to the coordinate system shown in the circular cross-section
sketched in Figure 2.5e, the local Nusselt numbers for boundary layer convec-
tion around an impermeable sphere or a horizontal cylinder embedded in an
infinite porous medium are, in order (Cheng, 1982),

Nuθ = 0.444Ra1/2
θ

(
3
2
θ

)1/2

sin2 θ

(
1
3

cos3 θ − cos θ +
2
3

)−1/2

, (2.60)

Nuθ = 0.444Ra1/2
θ (2θ)1/2 sin θ(1 − cos θ)−1/2, (2.61)

where Nuθ = q′′r0θ/[k(Tw − T∞)] and Raθ = Kgβθr0(Tw − T∞)/(αν). These
steady-state results are valid provided the boundary layer region is slender
enough, that is, if Nuθ � 1. The overall Nusselt numbers for the sphere and
horizontal cylinder are, respectively (Nield and Bejan, 1999),

NuD = 0.362Ra1/2
D , (2.62)

NuD = 0.565Ra1/2
D , (2.63)
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where NuD = q′′D/[k(Tw − T∞)] and RaD = KgβD(Tw − T∞)/(αν). Solu-
tions for convection at low and intermediate Rayleigh numbers are summa-
rized in Nield and Bejan (1999).

In the review conducted in this chapter we considered separately the funda-
mentals of forced convection and natural convection. There are many practical
situations in which these two flow mechanisms occur together. The resulting
class of flows is called mixed convection, and is reviewed in Nield and Bejan
(1999). A recent study of mixed convection was performed by Magyari et al.
(2001). There are many other effects that complicate the modeling of convec-
tion in porous media. The effect of a magnetic field and heat generation was
considered by Chamkha and Quadri (2001). The modeling of coupled heat
and mass transfer was discussed by Mendes et al. (2002). Dissipation effects
were discussed by Nield (2000).

2.9 Enclosures Heated from the Side

The most basic configuration of a porous layer heated in the horizontal direc-
tion is sketched in Figure 2.6. In Darcy flow, the heat and fluid flow driven
by buoyancy depend on two parameters: the geometric aspect ratio H/L, and
the Rayleigh number based on height, RaH = KgβH(Th − Tc)/(αν). There
exist four heat transfer regimes (Bejan, 1984, 1995a), that is, four ways to
calculate the overall heat transfer rate q′ =

∫ H

0 q′′dy. These are summarized
in Figure 2.6:

Regime I. The pure conduction regime, defined by RaH � 1. In this regime,
q′ is approximately equal to the pure conduction estimate kH(Th − Tc)/L.

Regime II. The conduction-dominated regime in tall layers, defined by
H/L � 1 and (L/H)Ra1/2

H � 1. In this regime, the heat transfer rate
scales as q′ ≥ kH(Th − Tc)/L.

Regime III. The convection-dominated regime (or high Rayleigh number
regime), defined by Ra−1/2

H < H/L < Ra1/2
H . In this regime, q′ scales as

k(Th − Tc)Ra1/2
H .

Regime IV. The convection-dominated regime in shallow layers, defined by
H/L � 1 and (H/L)Ra1/2

H � 1. Here the heat transfer rate scales as q ≤
k(Th − Tc)Ra1/2

H .

Considerable analytical, numerical, and experimental work has been done
to estimate more accurately the overall heat transfer rate q′ or the overall
Nusselt number,

Nu =
q′

kH(Th − Tc)/L
. (2.64)

Note that unlike the single-wall configuration of Section 2.5, in confined layers
of thickness L the Nusselt number is defined as the ratio of the actual heat
transfer rate to the pure conduction heat transfer rate. An analytical solution
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Fig. 2.6. Four heat transfer regimes for natural convection in an enclosed rectan-
gular porous layer heated from the side (Bejan, 1984; from Bejan, Convection Heat
Transfer, 2nd ed., Copyright c© 1995 Wiley. This material is used by permission of
John Wiley & Sons, Inc.).

that covers the four heat transfer regimes smoothly is (Bejan and Tien, 1978)

Nu = K1 +
1

120
K3

1

(
RaH

H

L

)2

, (2.65)

where K1(H/L,RaH) is obtained by solving the system

1
120

δeRa2
HK

3
1

(
H

L

)3

= 1 −K1 =
1
2
K1

H

L

(
1
δe

− δe

)
. (2.66)

This result is displayed in chart form in Figure 2.7 along with numerical results
from Hickox and Gartling (1981). The asymptotic values of this solution are
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Fig. 2.7. The total heat transfer rate through an enclosed porous layer heated from
the side (Bejan and Tien, 1978).

Nu ∼ 0.508
L

H
Ra1/2

H as RaH → ∞ (2.67)

Nu ∼ 1 +
1

120

(
RaH

H

L

)2

as
H

L
→ 0. (2.68)

The heat transfer in the convection-dominated Regime III is well rep-
resented by Equation (2.67) or by alternate solutions developed solely for
Regime III, for example (Weber, 1975), Nu = 0.577(L/H)Ra1/2

H . More refined
estimates for Regime III were developed in Bejan (1979a) and Simpkins and
Blythe (1980), where the proportionality factor between Nu and (L/H)Ra1/2

H

is replaced by a function of both H/L and RaH ; see Figure 2.8. For expedient
engineering calculations of heat transfer dominated by convection, Figure 2.7
is recommended for shallow layers (H/L < 1), and Figure 2.8 for square and
tall layers (H/L � 1) in the boundary layer regime, Ra−1/2

H < H/L < Ra1/2
H .
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Fig. 2.8. The heat transfer rate in Regime III through a porous layer heated from
the side (Bejan, 1979a).

In the field of thermal insulation engineering, a more appropriate model
for heat transfer in the configuration of Figure 2.6 is the case where the heat
flux q′′ is distributed uniformly along the two vertical sides of the porous layer.
In the high Rayleigh number regime (Regime III), the overall heat transfer
rate is given by (Bejan, 1983a)

Nu =
1
2

(
L

H

)4/5

Ra∗2/5
H , (2.69)

where Ra∗
H = KgβH2q′′/(ανk). The overall Nusselt number is defined as in

Equation (2.64), where Th − Tc is the height-averaged temperature difference
between the two sides of the rectangular cross-section. Equation (2.69) holds
in the high Rayleigh number regime Ra∗−1/3

H < H/L < Ra∗1/3
H .

The progress reviewed so far is based on models that assume local thermal
equilibrium. Natural convection without local thermal equilibrium was studied
based on a two-temperature model by Rees and Pop (2000).

Impermeable partitions (flow obstructions) inserted in the confined porous
medium can have a dramatic effect on the overall heat transfer rate across the
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Fig. 2.9. Rectangular enclosure filled with porous medium: (a) partial horizontal
partition; (b) full vertical partition.

enclosure (Bejan, 1983b). With reference to the two-dimensional geometry
of Figure 2.9a, in the convection-dominated Regimes III and IV the overall
heat transfer rate decreases steadily as the length l of the horizontal partition
approaches L, that is, as the partition divides the porous layer into two shorter
layers. The horizontal partition has practically no effect in Regimes I and II
where the overall heat transfer rate is dominated by conduction. If the par-
tition is oriented vertically (Figure 2.9b), then in the convection-dominated
regime the overall heat transfer rate is approximately 40% of what it would
have been in the same porous medium without the internal partition.

The nonuniformity of permeability and thermal diffusivity can have a dom-
inating effect on the overall heat transfer rate (Poulikakos and Bejan, 1983a).
In cases where the properties vary so that the porous layer can be modeled
as a sandwich of vertical sublayers of different permeability and diffusivity
(Figure 2.10a), an important parameter is the ratio of the peripheral sublayer
thickness (d1) to the thermal boundary-layer thickness (δT,1) based on the

Fig. 2.10. Rectangular enclosure filled with several porous layers: (a) vertical layers;
(b) horizontal layers.
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properties of the d1 sublayer (note that δT,1 scales as H Ra−1/2
H,1 , where the

Rayleigh number RaH,1 = K1gβH(Th − Tc)/(α1ν) and where the subscript
l represents the properties of the d1 sublayer). If d1 > δT,1, then the heat
transfer through the left side of the porous system of Figure 2.10a is impeded
by a thermal resistance of order δT,1/(k1H). If the sublayer situated next
to the right wall (dN ) has exactly the same properties as the d1 sublayer,
and if δT,1 < (d1, dN ), then the overall heat transfer rate in the convection-
dominated regime can be estimated using Equation (2.67) in which both Nu
and RaH are based on the properties of the peripheral layers.

When the porous-medium inhomogeneity may be modeled as a sandwich
of N horizontal sublayers (Figure 2.10b), the scale of the overall Nusselt num-
ber in the convection-dominated regime can be evaluated as (Poulikakos and
Bejan, 1983a)

Nu ∼ 2−3/2Ra1/2
H,1

L

H

N∑
i=1

ki

k1

(
Kidiα1

K1d1αi

)1/2

, (2.70)

where both Nu and RaH,1 are based on the properties of the d1 sublayer
(Figure 2.10b). The correlation of Equation (2.70) was tested via numerical
experiments in two-layer systems.

The convection in a porous medium confined in a horizontal cylinder with
disk-shaped ends at different temperatures (Figure 2.11a) has features similar
to the configuration of Figure 2.6. A parametric solution for the horizontal
cylinder problem is reported in Bejan and Tien (1978). The corresponding
phenomenon in a porous medium in the shape of a horizontal cylinder with
annular cross-section (Figure 2.11b) is documented in Bejan and Tien (1979).

An important geometric configuration in thermal insulation engineering is
the horizontal cylindrical annular space filled with fibrous or granular insula-
tion (Figure 2.11c). In this configuration the heat transfer is oriented radially
between the concentric cylindrical surfaces of radii ri and ro. Experimental

Fig. 2.11. Enclosures filled with porous media: (a) horizontal cylindrical enclosure;
(b) horizontal cylindrical annulus with axial heat flow; (c) horizontal cylindrical
annular enclosure, or spherical annulus, with radial heat flow.
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measurements and numerical solutions for the overall heat transfer in the hori-
zontal cylindrical annulus were reported in Caltagirone (1976) and Burns and
Tien (1979). These results were correlated based on scale analysis in the range
1.19 ≤ ro/ri ≤ 4 (Bejan, 1987),

Nu =
q′
actual

q′
conduction

≈ 0.44Ra1/2
ri

ln (ro/ri)
1 + 0.916(ri/ro)1/2 , (2.71)

where Rari = Kgβri(Th − Tc)/(αν) and q′
conduction = 2πk(Th − Tc)/ ln(ro/ri).

This correlation is valid in the convection-dominated limit, Nu � 1.
Porous media confined to the space formed between two concentric

spheres are also an important component in thermal insulation engineer-
ing. Figure 2.11c can be interpreted as a vertical cross-section through the
concentric-sphere arrangement. Numerical heat transfer solutions for discrete
values of Rayleigh number and radius ratio are reported graphically in Burns
and Tien (1979). Using the method of scale analysis, the data that correspond
to the convection-dominated regime (Nu � 1.5) have been correlated within
2% by the scaling-correct expression (Bejan, 1987)

Nu =
qactual

qconduction
= 0.756Ra1/2

ri

1 − ri/ro
1 + 1.422(ri/ro)3/2 , (2.72)

where Rari = Kgβri(Th − Tc)/(αν) and qconduction = 4πk(Th − Tc)/(r−1
i −

r−1
o ).

Natural convection through an annular porous insulation oriented verti-
cally was investigated numerically (Havstad and Burns, 1982) and experimen-
tally (Prasad et al., 1985). These and other results are reviewed in Nield and
Bejan (1999).

Natural convection in enclosures with heating from the side continues
to attract interest. Heat and mass transfer (double diffusive convection)
was studied by Mohamad and Bennacer (2002), Bera and Khalili (2002),
Asbik et al. (2002), Benhadji and Vasseur (2001), Kalla et al. (2001), Ban-
sod et al. (2000, 2002), and Rathish Kumar et al. (2002). An enclosure
with a vertical fluid layer sandwiched between two porous layers was stud-
ied numerically by Bennacer et al. (2003). Enclosed porous media with heat
generation were analyzed in Dhanasekaran et al. (2002) and Kim et al.
(2001). The effect of variable porosity was documented in Marcondes et al.
(2001). Natural convection in a partly porous cavity was described by Mercier
et al. (2002). The effect of anisotropy was studied experimentally by
Kimura et al. (2002).

2.10 Enclosures Heated from Below

The most basic configuration of a confined porous layer heated in the vertical
direction is shown in Figure 2.12a. The most important difference between
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Fig. 2.12. Enclosed porous layers heated from below: (a) rectangular enclosure; (b)
vertical cylindrical enclosure; (c) inclined rectangular enclosure; (d) wedge-shaped
enclosure.

heat transfer in this configuration and heat transfer in confined layers heated
from the side is that in Figure 2.12a convection occurs only when the imposed
temperature difference or heating rate exceeds a certain finite value. Recall
that in configurations such as Figure 2.6 convection is present even in the
limit of vanishingly small temperature differences.

Assume that the fluid saturating the porous medium of Figure 2.12a
expands upon heating (β > 0). By analogy with the phenomenon of Bénard
convection in a pure fluid, in the convection regime the flow consists of
finite-size cells that become more slender and multiply discretely as the
destabilizing temperature difference Th − Tc increases. If Th − Tc does not
exceed the critical value necessary for the onset of convection, the heat
transfer mechanism through the layer of thickness H is that of pure ther-
mal conduction. If the porous layer is heated from above (i.e., if Th and
Tc change places in Figure 2.12a), then the fluid remains stably strati-
fied and the heat transfer is again due to pure thermal conduction: q′ =
kL(Th − Tc)/H.
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The onset of convection in an infinitely long porous layer heated from
below was examined on the basis of linearized hydrodynamic stability analy-
sis (Horton and Rogers, 1945; Lapwood, 1948; Nield and Bejan, 1999; Tyvand,
2002; Mamou, 2002). This subject continues to attract attention at the most
fundamental level [e.g., Bilgen and Mbaye (2001) Rees (2002), and Banu and
Rees (2002)]. For fluid layers confined between impermeable and isothermal
horizontal walls, it was found that convection is possible if the Rayleigh num-
ber based on height exceeds the critical value

RaH =
KgβH(Th − Tc)

αν
= 4π2 = 39.48. (2.73)

A much simpler analysis based on constructal theory (Nelson and Bejan,
1998) predicted the critical Rayleigh number 12π = 37.70, which approaches
the hydrodynamic stability result within 5%. This analysis is summarized in
Section 2.11. For a history of the early theoretical and experimental work on
the onset of Bénard convection in porous media, and for a rigorous general-
ization of the stability analysis to convection driven by combined buoyancy
effects, the reader is directed to Nield (1968), where it is shown that the crit-
ical Rayleigh number for the onset of convection in infinitely shallow layers
depends to a certain extent on the heat and fluid flow conditions imposed
along the two horizontal boundaries.

Of practical interest in heat transfer engineering is the heat transfer rate at
Rayleigh numbers that are higher than critical. There has been a considerable
amount of analytical, numerical, and experimental work devoted to this issue.
Reviews of these advances may be found in Nield and Bejan (1999) and Cheng
(1978). Constructal theory anticipates the entire curve relating heat transfer
to Rayleigh number (Nelson and Bejan, 1998).

The scale analysis of the convection regime with Darcy flow (Bejan, 1984)
indicates that the Nusselt number should increase linearly with the Rayleigh
number, whence the relationship

Nu ≈ 1
40

RaH for RaH > 40. (2.74)

This linear relationship is confirmed by numerical heat transfer calcula-
tions at large Rayleigh numbers in Darcy flow (Kimura et al., 1986). The
experimental data compiled in Cheng (1978) show that the scaling law (2.74)
serves as an upper bound for some of the high-RaH experimental data avail-
able in the literature.

Most of the data show that in the convection regime Nu increases as Ran
H ,

where n becomes progressively smaller than 1 as RaH increases. This behavior
is anticipated by the constructal theory solution (Nelson and Bejan, 1998);
see Section 2.11. The exponent n ∼ 1/2 revealed by data at high Rayleigh
numbers was anticipated based on a scale analysis of convection rolls in the
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Forchheimer regime (Bejan, 1995a):

Nu
Prp

∼
(

RaH

Prp

)1/2

(RaH > Prp), (2.75)

where Prp is the “porous medium Prandtl number” for the Forchheimer regime
(Bejan, 1995a),

Prp =
Hν

bKα
(2.76)

and b[m−1] is defined in Equation (1.12). In this formulation Nu is a function
of two groups, RaH and Prp, in which Prp accounts for the transition from
Darcy to Forchheimer flow (Figure 2.13). In this formulation the Darcy flow
result (2.74) becomes

Nu
Prp

∼ 1
40

RaH

Prp
(40 < RaH < Prp). (2.77)

The experimental data for convection in the entire regime spanned by the
asymptotes given by Equations (2.75) and (2.77) are correlated by

Nu =
{(

RaH

40

)n

+ [c(RaHPrp)1/2]n
}1/n

, (2.78)

where n = −1.65 and c = 1896 are determined empirically based on
measurements reported by many independent sources. The correlations of
Equations (2.74) through (2.78) refer to layers with length/height ratios con-
siderably greater than one. They apply when the length (lateral dimension
L, perpendicular to gravity) of the confined system is greater than the hori-
zontal length scale of a single convective cell, that is, greater than HRa−1/2

H ,
according to the scale analysis of Bejan (1984).

These principles become partial effects in real-life systems that demand
considerably more complex models. One important class for thermal and
structural engineering are the cavernous walls and multiscale regenerators
built with terra-cotta bricks. The terra-cotta material is porous, and mois-
ture and heat diffuse together across it (Vasile et al., 1998). The caverns can
be designed to have many shapes, and they play host to a combination of
natural convection and radiation (Lorente et al., 1994, 1996). Furthermore,
the thermal performance of the cavernous structure is in competition with
the mechanical stiffness: from this competition emerges the optimal size and
number of caverns (Lorente and Bejan, 2002). This subject is treated in some
detail in Section 8.1.

Natural-convection studies have also been reported for porous layers con-
fined in rectangular parallelepipeds heated from below, horizontal circular
cylinders, and horizontal annular cylinders. The general conclusion is that the
lateral walls have a convection-suppression effect. For example, in a circular
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Fig. 2.13. Convective heat transfer in a porous layer heated from below, in
the Darcy and Forchheimer regimes (Bejan, 1995a; from Bejan, Convection Heat
Transfer, 2nd ed., Copyright c© 1995 Wiley. This material is used by permission of
John Wiley & Sons, Inc.).

cylinder of diameter D and height H (Figure 2.12b), in the limit D � H the
critical condition for the onset of convection is (Bau and Torrance, 1982)

RaH = 13.56
(
H

D

)2

. (2.79)

In porous layers inclined from the horizontal position at an angle φ
(Figure 2.12c), convection sets in at Rayleigh numbers that satisfy the
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criterion (Combarnous and Bories, 1975)

RaH >
39.48
cosφ

, (2.80)

where it is assumed that the boundaries are isothermal and impermeable. The
average heat transfer rate at high Rayleigh numbers can be estimated by

Nu = 1 +
∞∑

s=1

ks

(
1 − 4π2s2

RaH cosφ

)
, (2.81)

where ks = 0 if RaH cosφ < 4π2s2, and ks = 2 if RaH cosφ ≥ 4π2s2.
In a porous medium confined in a wedge-shaped (or attic-shaped) space

cooled from above (Figure 2.12d), convection consisting of a single counter-
clockwise cell exists even in the limit RaH → 0, because in this direction
the imposed heating is not purely vertical. The same observation holds for
Figure 2.12c. Numerical solutions of transient high Rayleigh number con-
vection in wedge-shaped layers show the presence of a Bénard-type instabil-
ity at high enough Rayleigh numbers (Poulikakos and Bejan, 1983b). When
H/L = 0.2, the instability occurs above RaH

∼= 620. It was found that this
critical Rayleigh number increases as H/L increases.

Nuclear-safety issues have motivated the study of natural convection in
horizontal saturated porous layers (Figure 2.12a) heated volumetrically at a
rate q′′′. Boundary conditions and observations regarding the onset of con-
vection and overall Nusselt numbers are presented in Nield and Bejan (1999).
It is found that convection sets in at internal Rayleigh numbers RaI in the
range 33 to 46 (Kulacki and Freeman, 1979), where

RaI =
gβH3Kq′′′

2kανf
(2.82)

and the subscript f indicates properties of the fluid alone. Top and bot-
tom surface temperature experimental measurements in the convection-
dominated regime (103 < RaI < 104) are adequately represented by (Buretta
and Berman, 1976)

q′′′H2

2k(Th − Tc)
≈ 0.116Ra0.573

I , (2.83)

where Th and Tc are the resulting bottom and top temperatures when q′′′ is
distributed throughout the layer of Figure 2.12a.

2.11 The Method of Intersecting the Asymptotes

In this section we take a closer look at the phenomenon of convection in a
porous layer heated from below. Our objective is to show that most of the
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features of the flow can be determined based on a simple method: the intersec-
tion of asymptotes (Nelson and Bejan, 1998). This method was originally used
for the optimization of spacings for compact cooling channels for electronics
(Bejan, 1984), as we show in Sections 5.2 and 5.3. See also Lewins (2003).

Assume that the system of Figure 2.14 is a porous layer saturated with
fluid and that, if present, the flow is two-dimensional and in the Darcy regime.
The height H is fixed, and the horizontal dimensions of the layer are infinite in
both directions. The fluid has nearly constant properties such that its density–
temperature relation is described well by the Boussinesq linearization. The
volume-averaged equations that govern the conservation of mass, momentum,
and energy are

∂u

∂x
+
∂v

∂y
= 0, (2.84)

∂u

∂y
− ∂v

∂x
= −Kgβ

ν

∂T

∂x
, (2.85)

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2 +
∂2T

∂y2

)
. (2.86)

The horizontal length scale of the flow pattern (2Lr), or the geometric aspect
ratio of one roll, is unknown. The method consists of analyzing two extreme
flow configurations—many counterflows versus few plumes—and intersecting
these asymptotes for the purpose of maximizing the global thermal conduc-
tance of the flow system [cf. constructal theory, Bejan (2000)].

Fig. 2.14. Horizontal porous layer saturated with fluid and heated from below
(Nelson and Bejan, 1998).
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2.11.1 The Many Counterflows Regime

In the limit Lr → 0 each roll is a very slender vertical counterflow, as shown in
Figure 2.15. Because of symmetry, the outer planes of this structure (x = ±Lr)
are adiabatic: they represent the center planes of the streams that travel over
the distance H. The scale analysis of the H × (2Lr) region indicates that in
the Lr/H → 0 limit the horizontal velocity component u vanishes. This scale
analysis is not shown because it is well known as the defining statement of
fully developed flow [e.g., Bejan (1995a, p. 97)]. Equations (2.85) and (2.86)
reduce to

∂v

∂x
=
Kgβ

ν

∂T

∂x
, (2.87)

v
∂T

∂y
= α

∂2T

∂x2 , (2.88)

which can be solved exactly for v and T . The boundary conditions are
∂T/∂x = 0 at x = ±Lr, and the requirement that the extreme (corner) tem-
peratures of the counterflow region are dictated by the top and bottom walls,
T (−Lr, H) = Tc and T (Lr, 0) = Th. The solution is given by

v(x) =
α

2H

[
RaH −

(
πH

2Lr

)2
]

sin
(
πx

2Lr

)
, (2.89)

Fig. 2.15. The extreme in which the flow consists of many vertical and slender
counterflows (Nelson and Bejan, 1998).
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T (x, y) =
ν

Kgβ
v(x) +

ν

Kgβ

(
2
y

H
− 1

) α

2H

[
RaH −

(
πH

2Lr

)2
]

+(Th − Tc)
(
1 − y

H

)
, (2.90)

where the porous-medium Rayleigh number RaH = KgβH(Th − Tc)/(αν) is
a specified constant. The right side of Figure 2.15 shows the temperature dis-
tribution along the vertical boundaries of the flow region (x = ±Lr): the ver-
tical temperature gradient ∂T/∂y is independent of altitude. The transversal
(horizontal) temperature difference (∆Tt) is also a constant,

∆Tt = T (x = Lr) − T (x = −Lr) =
ν

Kgβ

α

H

[
RaH −

(
πH

2Lr

)2
]
. (2.91)

The counterflow convects heat upward at the rate q′, which can be calcu-
lated using Equations (2.89) and (2.90):

q′ =
∫ L

−L

(ρcP )fvT dx. (2.92)

The average heat flux convected in the vertical direction, q′′ = q′/(2Lr), can
be expressed as an overall thermal conductance

q′′

∆T
=

k

8HRaH

[
RaH −

(
πH

2Lr

)2
]2

. (2.93)

This result is valid provided the vertical temperature gradient does not exceed
the externally imposed gradient, (−∂T/∂y) < ∆T/H. This condition trans-
lates into

Lr

H
>
π

2
Ra−1/2

H , (2.94)

which in combination with the assumed limit Lr/H → 0 means that
the domain of validity of Equation (2.93) widens when RaH increases. In
this domain the thermal conductance q′′/∆T decreases monotonically as Lr

decreases [cf. Figure 2.16].

2.11.2 The Few Plumes Regime

As Lr increases, the number of rolls decreases and the vertical counterflow is
replaced by a horizontal counterflow in which the thermal resistance between
Th and Tc is dominated by two horizontal boundary layers, as in Figure 2.17.
Let δ be the scale of the thickness of the horizontal boundary layer. The ther-
mal conductance q′′/∆T can be deduced from the heat transfer solution for
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Fig. 2.16. The geometric maximization of the thermal conductance of a fluid-
saturated porous layer heated from below (Nelson and Bejan, 1998).

natural convection boundary layer flow over a hot isothermal horizontal sur-
face facing upward, or a cold surface facing downward. The similarity solution
for the horizontal surface with power-law temperature variation (Cheng and
Chang, 1976) can be used to develop an analytical result, as we show at the
end of this section. Plume flows have also been described by Shu and Pop
(1997).

A simpler analytical solution can be developed in a few steps using the
integral method. Consider the slender flow region δ × (2Lr), where δ � 2Lr,
and integrate Equations (2.84) to (2.86) from y = 0 to y → ∞, that is, into
the region just above the boundary layer. The surface temperature is Th,
and the temperature outside the boundary layer is T∞ (constant). The origin
x = 0 is set at the tip of the wall section of length 2Lr. The integrals of
Equations (2.84) and (2.86) yield

d

dx

∫ ∞

0
u(T − T∞)dy = −α

(
∂T

∂y

)
y=0

. (2.95)

The integral of Equation (2.85), in which we neglect ∂v/∂x in accordance
with boundary layer theory, leads to

u0(x) =
Kgβ

ν

d

dx

∫ ∞

0
T dy, (2.96)

where u0 is the velocity along the surface, u0 = u(x, 0). Reasonable shapes for
the u and T profiles are the exponentials

u(x, y)
u0(x)

= exp
[
− y

δ(x)

]
=
T (x, y) − T∞
Th − T∞

(2.97)
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which transform Equations (2.95) and (2.96) into

d

dx
(u0δ) =

2α
δ
, (2.98)

u0 =
Kgβ

ν
(Th − T∞)

dδ

dx
. (2.99)

These equations can be solved for u0(x) and δ(x),

δ(x) =
[

9αν
Kgβ(Th − T∞)

]1/3

x2/3. (2.100)

The solution for u0(x) is of the type u0 ∼ x−1/3, which means that the hori-
zontal velocities are large at the start of the boundary layer, and decrease as
x increases. This is consistent with the geometry of the H × 2Lr roll sketched
in Figure 2.17, where the flow generated by one horizontal boundary layer
turns the corner and flows vertically as a relatively narrow plume (narrow
relative to 2Lr), to start with high velocity (u0) a new boundary layer along
the opposite horizontal wall.

The thermal resistance of the geometry of Figure 2.17 is determined by
estimating the local heat flux k(Th − T∞)/δ(x) and averaging it over the total
length 2Lr:

q′′ =
(

3
4

)1/3
k∆T
H

(
Th − T∞

∆T

)4/3

Ra1/3
H

(
H

Lr

)2/3

. (2.101)

The symmetry of the sandwich of boundary layers requires Th − T∞ =
(1/2)∆T , such that

q′′

∆T
=

31/3k

4H
Ra1/3

H

(
H

Lr

)2/3

. (2.102)

Fig. 2.17. The extreme in which the flow consists of a few isolated plumes (Nelson
and Bejan, 1998).
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The goodness of this result can be tested against the similarity solution for a
hot horizontal surface that faces upward in a porous medium and has an excess
temperature that increases as xλ. The only difference is that the role that was
played by (Th − T∞) in the preceding analysis is now played by the excess tem-
perature averaged over the surface length 2Lr. If we use λ = 1/2, which corre-
sponds to uniform heat flux, then it can be shown that the solution of Cheng
and Chang (1976) leads to the same formula as Equation (2.102), except that
the factor 31/3 = 1.442 is replaced by 0.816(3/2)4/3 = 1.401. Equation (2.102)
is valid when the specified RaH is such that the horizontal boundary layers
do not touch. We write this geometric condition as δ(x = 2Lr) < H/2 and,
using Equation (2.100), we obtain

Lr

H
<

1
24

Ra1/2
H . (2.103)

Since in this analysis Lr/H was assumed to be very large, we conclude that
the Lr/H domain in which Equation (2.102) is valid becomes wider as the
specified RaH increases. The important feature of the “few rolls” limit is that
the thermal conductance decreases as the horizontal dimension Lr increases.
This second asymptotic trend has been added to Figure 2.16.

2.11.3 The Intersection of Asymptotes

Figure 2.16 presents a bird’s-eye view of the effect of flow shape on thermal
conductance. Even though we did not draw q′′/∆T completely as a function
of Lr, the two asymptotes tell us that the thermal conductance is maximum
at an optimal Lr value that is close to their intersection. There is a family of
such curves, one curve for each RaH . The q′′/∆T peak of the curve rises, and
the Lr domain of validity around the peak becomes wider as RaH increases.
Looking in the direction of small RaH values we see that the domain vanishes
(and the cellular flow disappears) when the following requirement is violated,

1
24
HRa1/2

H − π

2
HRa−1/2

H ≥ 0. (2.104)

This inequality means that the flow exists when RaH ≥ 12π = 37.70. This
conclusion is extraordinary: it agrees with the stability criterion for the onset
of two-dimensional convection, Equation (2.73), namely, RaH > 4π2 = 39.5,
which was derived based on a lengthier analysis and the assumption that a flow
structure exists, the initial disturbances (Horton and Rogers, 1945; Lapwood,
1948).

We obtain the optimal shape of the flow 2Lr,opt/H, by intersecting the
asymptotes (2.93) and (2.102):

π2
(

H

2Lr,opt
Ra−1/2

H

)2

+ 25/631/6
(

H

2Lr,opt
Ra−1

H

)1/3

= 1. (2.105)
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Over most of the RaH domain where Equation (2.104) is valid, Equa-
tion (2.105) is well approximated by its high RaH asymptote:

2Lr,opt

H
∼= πRa−1/2

H . (2.106)

The maximum thermal conductance is obtained by substituting the Lr,opt
value in either Equation (2.102) or Equation (2.93). This estimate is an upper
bound, because the intersection is above the peak of the curve. In the high-
RaH limit (2.106) this upper bound assumes the analytical form(

q′′

∆T

)
max

H

k
� 31/3

24/3π2/3 Ra2/3
H . (2.107)

Towards lower RaH values the slope of the (q′′/∆T )max curve increases such
that the exponent of RaH approaches 1. This behavior is in excellent agree-
ment with the large volume of experimental data collected for Bénard con-
vection in saturated porous media (Cheng, 1978). The less-than-1 exponent
of RaH in the empirical Nu(RaH) curve, and the fact that this exponent
decreases as RaH increases, has attracted considerable attention from theo-
reticians during the last two decades (Nield and Bejan, 1999).

In this section and Sections 2.2 and 2.5, we outlined the basic rule for two
methods of solution for problems of convection in porous media: scale analysis
and the intersection of asymptotes. These are two of the simplest methods
that are available. They yield concrete results for engineering problems such
as heat transfer rates, flow rates, velocities, temperature differences, and time
intervals. They distinguish themselves from other methods because they offer
a high return on investment: because they are so simple, they deserve to be
tried first, as preliminaries, even in problems where more exact results are
needed. Simple methods identify the proper dimensionless formulation for
presenting more exact (and more expensive) results developed based on more
complicated methods (analytical, numerical, and/or experimental).

Other simple methods are available, for example, the integral method
(Karman–Pohlhausen), Equations (2.95) to (2.100), and similarity formula-
tions [e.g., Bejan (1995a)]. A word of caution goes with the use of all “simple”
methods. More complicated problems with nonsimilar and singular solutions
may require more advanced treatments from the start.

The intersection of asymptotes method relied on an additional principle
that applies throughout the physics of flow systems: the constructal law, the
generation of flow geometry for the maximization of access for currents in
systems far from equilibrium. In Figure 2.16, we invoked this principle when
we minimized the global thermal resistance encountered by the flow of heat
across the horizontal porous layer. The intersection of the two asymptotes
is an approximation of the flow geometry that minimizes the global thermal
resistance. The same “constructal principle” has been used to predict flow
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geometry and transitions between flow regimes in a great variety of configu-
rations (Bejan, 2000).

The most important conclusion is that by learning simple methods, and
using them correctly, the young researcher learns two important lessons. One
is “try the simplest first.” Simple methods are valuable throughout thermal
and fluid sciences, not only in porous media. The other lesson is the open com-
petition among methodologies in the search for engineering answers to funda-
mental questions. A researcher with a personal mathematics background and,
most important, with a personal supply of curiosity and time can and should
judiciously evaluate the worthiness of any of these methodologies relative to
his or her ability and taste (Bejan, 1995a, p. 55).


