
Chapter 2

Optimal Markovian
Couplings

This chapter introduces our first mathematical tool, the coupling methods,
in the study of the topics in the book, and they will be used many times
in the subsequent chapters. We introduce couplings, Markovian couplings
(Section 2.1), and optimal Markovian couplings (Sections 2.2 and 2.3), mainly
for time-continuous Markov processes. The study emphasizes analysis of the
coupling operators rather than the processes. Some constructions of optimal
Markovian couplings for Markov chains and diffusions are presented, which
are often unexpected. Two general results of applications to the estimation
of the first eigenvalue are proved in Section 2.4. Furthermore, some typical
applications of the methods are illustrated through simple examples.

2.1 Couplings and Markovian couplings

Let us recall the simple definition of couplings.

Definition 2.1. Let µk be a probability on a measurable space (Ek, Ek), k=1, 2.
A probability measure µ̃ on the product measurable space (E1 ×E2, E1 × E2) is
called a coupling of µ1 and µ2 if the following marginality condition holds:

µ̃(A1 × E2) = µ1(A1), A1 ∈ E1,

µ̃(E1 ×A2) = µ2(A2), A2 ∈ E2.
(M)

Example 2.2 (Independent coupling µ̃0). µ̃0 = µ1 × µ2. That is, µ̃0 is
the independent product of µ1 and µ2.

This trivial coupling has already a nontrivial application. Let µk = µ on
R, k = 1, 2. We say that µ satisfies the FKG inequality if∫

R

fgdµ �
∫

R

fdµ
∫

R

gdµ, f, g ∈ M , (2.1)



18 2 Optimal Markovian Couplings

where M is the set of bounded monotone functions on R. Here is a one-line
proof based on the independent coupling:∫∫

µ̃0(dx, dy)[f(x) − f(y)][g(x) − g(y)] � 0, f, g ∈ M .

We mention that a criterion of FKG inequality for higher-dimensional
measures on Rd (more precisely, for diffusions) was obtained by Chen and
F.Y. Wang (1993a). However, a criterion is still unknown for Markov chains.

Open Problem 2.3. What is the criterion of FKG inequality for Markov jump
processes?

We will explain the meaning of the problem carefully at the end of this sec-
tion and explain the term “Markov jump processes” soon. The next example
is nontrivial.

Example 2.4 (Basic coupling µ̃b). Let Ek = E, k = 1, 2. Denote by ∆
the diagonals in E: ∆ = {(x, x) : x ∈ E}. Take

µ̃b(dx1, dx2) = (µ1 ∧ µ2)(dx1)I∆ +
(µ1 − µ2)+(dx1)(µ1 − µ2)−(dx2)

(µ1 − µ2)+(E)
I∆c ,

where ν± is the Jordan–Hahn decomposition of a signed measure ν and ν1∧ν2 =
ν1 − (ν1 − ν2)

+.

Note that one may ignore I∆c in the above formula, since (µ1 − µ2)
+ and

(µ1 − µ2)
− have different supports.

Actually, the basic coupling is optimal in the following sense. Let ρ be
the discrete distance: ρ(x, y)=1 if x �= y, and = 0 if x = y. Then a simple
computation shows that

µ̃b(ρ) =
1
2
‖µ1 − µ2‖Var.

Thus, by Dobrushin’s theorem (see Theorem 2.23 below), we have

µ̃b(ρ) = inf
µ̃
µ̃(ρ),

where µ̃ varies over all couplings of µ1 and µ2. In other words, µ̃b(ρ) is a
ρ-optimal coupling. This indicates an optimality for couplings that we are
going to study in this chapter.

Similarly, we can define a coupling process of two stochastic processes in
terms of their distributions at each time t for fixed initial points. Of course,
for given marginal Markov processes, the resulting coupled process may not
be Markovian. Non-Markovian couplings are useful, especially in the time-
discrete situation. However, in the time-continuous case, they are often not
practical. Hence, we now restrict ourselves to the Markovian couplings.
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Definition 2.5. Given two Markov processes with semigroups Pk(t) or tran-
sition probabilities Pk(t, xk, ·) on (Ek,Ek), k = 1, 2, a Markovian coupling is

a Markov process with semigroup P̃ (t) or transition probability P̃ (t;x1, x2; ·) on
the product space (E1 × E2,E1 × E2) having the marginality

P̃ (t;x1, x2;A1 × E2)= P1(t, x1, A1),

P̃ (t;x1, x2;E1 ×A2)=P2(t, x2, A2), t � 0, xk ∈ Ek, Ak ∈ Ek, k = 1, 2.
(MP)

Equivalently,

P̃ (t)f(x1, x2) = P1(t)f(x1),

P̃ (t)f(x1, x2) = P2(t)f(x2), t � 0, xk ∈ Ek, f ∈ bEk, k = 1, 2,
(MP)

where bE is the set of all bounded E -measurable functions. Here, on the left-hand
side, f is regarded as a bivariate function.

We now consider Markov jump processes. For this, we need some notation.
Let (E,E ) be a measurable space such that {(x, x) : x ∈ E} ∈ E × E and
{x} ∈ E for all x ∈ E. It is well known that for a given sub-Markovian
transition function P (t, x, A) (t � 0, x ∈ E,A ∈ E ), if it satisfies the jump
condition

lim
t→0

P (t, x, {x}) = 1, x ∈ E, (2.2)

then the limits

q(x) := lim
t→0

1 − P (t, x, {x})
t

and q(x,A) := lim
t→0

P (t, x, A \ {x})
t

(2.3)

exist for all x ∈ E and A ∈ R, where

R =
{
A ∈ E : lim

t→0
sup
x∈A

[
1 − P (t, x, {x})] = 0

}
.

Moreover, for each A ∈ R, q(·), q(·, A) ∈ E , for each x ∈ E, q(x, ·) is a finite
measure on (E,R), and 0 � q(x,A) � q(x) � ∞ for all x ∈ E and A ∈ R.
The pair (q(x), q(x,A)) (x ∈ E, A ∈ R) is called a q-pair (also called the
transition intensity or transition rate). The q-pair is said to be totally stable
if q(x) <∞ for all x ∈ E. Then q(x, ·) can be uniquely extended to the whole
space E as a finite measure. Next, the q-pair

(
q(x), q(x,A)

)
is called conserva-

tive if q(x,E) = q(x) <∞ for all x ∈ E (Note that the conservativity here is
different from the one often used in the context of diffusions). Because of the
above facts, we often call the sub-Markovian transition P (t, x, A) satisfying
(2.3) a jump process or a q-process. Finally, a q-pair is called regular if it is
not only totally stable and conservative but also determines uniquely a jump
process (nonexplosive).

When E is countable, conventionally we use the matrixQ = (qij : i, j ∈ E)
(called a Q-matrix) and P (t) = (pij(t) : i, j ∈ E),

p′ij(t)
∣∣
t=0

= qij ,
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instead of the q-pair and the jump process, respectively. Here qii = −qi, i ∈ E.
We also call P (t) = (pij(t)) a Markov chain (which is used throughout this
book only for a discrete state space) or a Q-process.

In practice, what we know in advance is the q-pair (q(x), q(x, dy)) but not
P (t, x, dy). Hence, our real interest goes in the opposite direction. How does
a q-pair determine the properties of P (t, x, dy)? A large part of the book
(Chen, 1992a) is devoted to the theory of jump processes. Here, we would
like to mention that the theory now has a very nice application to quantum
physics that was missed in the quoted book. Refer to the survey article by
A.A. Konstantinov, U.P. Maslov, and A.M. Chebotarev (1990) and references
within.

Clearly, there is a one-to-one correspondence between a q-pair and the
operator Ω:

Ωf(x) =
∫
E

q(x, dy)[f(y)− f(x)] − [q(x) − q(x,E)]f(x), f ∈ bE .

Because of this correspondence, we will use both according to our conve-
nience. Corresponding to a coupled Markov jump process, we have a q-pair
(q̃(x1, x2), q̃(x1, x2; dy1, dy2)) as follows:

q̃(x1, x2) = lim
t→0

1 − P̃ (t;x1, x2; {x1} × {x2})
t

, (x1, x2) ∈ E1 × E2,

q̃(x1, x2; Ã) = lim
t→0

P̃ (t;x1, x2; Ã)
t

, (x1, x2) /∈ Ã ∈ R̃,

R̃ :=
{
Ã ∈ E1 × E2 : lim

t→0
sup

(x1,x2)∈Ã

[
1 − P̃ (t;x1, x2; {(x1, x2)})

]
= 0

}
.

Concerning the total stability and conservativity of the q-pair of a coupling
(or coupled) process, we have the following result.

Theorem 2.6. The following assertions hold:

(1) A (equivalently, any) Markovian coupling is a jump process iff so are their
marginals.

(2) A (equivalently, any) coupling q-pair is totally stable iff so are the marginals.

(3) [Y. H. Zhang, 1994]. A (equivalently, any) coupling q-pair is conservative
iff so are the marginals.

Proof of parts (1) and (2). To obtain a feeling for the proof, we prove
here the easier part of the theorem. This proof is taken from Chen (1994b).

(a) First, we consider the jump condition. Let Pk(t, xk, dyk) and P̃ (t;x1, x2;
dy1, dy2) be the marginal and coupled Markov processes, respectively. By the
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marginality for processes, we have

P̃ (t;x1, x2; {x1} × {x2})
� P̃ (t;x1, x2; {x1} × E2) − P̃ (t;x1, x2;E1 × (E2 \ {x2}))
� P̃ (t;x1, x2; {x1} × E2) − 1 + P̃ (t;x1, x2;E1 × {x2})
= P1(t, x1, {x1})− 1 + P2(t, x2, {x2}).

If both of the marginals are jump processes, then limt→0 P̃ (t;x1, x2; {x1} ×
{x2}) � 1. Thus, a Markovian coupling P̃ (t) must be a jump process.

Conversely, since

P̃ (t;x1, x2; {x1} × {x2}) � P̃ (t;x1, x2; {x1} × E2) = P1(t, x1, {x1}),
if P̃ (t) is a jump process, then limt→0 P1(t, x1, {x1}) � 1, and so P1(t) is also
a jump process. Symmetrically, so is P2(t).

(b) Next, we consider the equivalence of total stability. Assume that all
the processes concerned are jump processes. Denote by (qk(xk), qk(xk, dyk))
the marginal q-pairs on (Ek,Rk), where

Rk =
{
A ∈ Ek : lim

t→0
sup
x∈A

[
1 − Pk(t, x, {x})

]
= 0

}
, k = 1, 2.

Denote by (q̃(x1, x2), q̃(x1, x2; dy1, dy2)) a coupling q-pair on (E1 × E2, R̃).
We need to show that q̃(x̃) < ∞ for all x̃ ∈ E1 × E2 iff q1(x1) ∨ q2(x2) < ∞
for all x1 ∈ E1 and x2 ∈ E2. Clearly, it suffices to show that

q1(x1) ∨ q2(x2) � q̃(x1, x2) � q1(x1) + q2(x2).

Note that we cannot use either the conservativity or uniqueness of the pro-
cesses at this step. But the last assertion follows from (a) and the first part
of (2.3) immediately. �

Due to Theorem 2.6, from now on, assume that all coupling operators
considered below are conservative. Then we have

q̃(x1, x2) = lim
t→0

1 − P̃ (t;x1, x2; {x1} × {x2})
t

, (x1, x2) ∈ E1 × E2,

q̃(x1, x2; Ã) = lim
t→0

P̃ (t;x1, x2; Ã)
t

, (x1, x2) /∈ Ã ∈ E1 × E2.

Note that in the second line, the original set R̃ is replaced by E1 × E2. Define

Ω1f(x1) =
∫
E1

q1(x1, dy1)[f(y1) − f(x1)], f ∈ bE1.

Similarly, we can define Ω2. Corresponding to a coupling process P̃ (t), we
also have an operator Ω̃. Now, since the marginal q-pairs and the coupling
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q-pairs are all conservative, it is not difficult to prove that (MP) implies the
following:

Ω̃f(x1, x2) = Ω1f(x1), f ∈ bE1,

Ω̃f(x1, x2) = Ω2f(x2), f ∈ bE2, xk ∈ Ek, k = 1, 2.
(MO)

Again, on the left-hand side, f is regarded as a bivariate function. Refer to
Chen (1986a) or Chen (1992a, Chapter 5). Here, “MO” means the marginality
for operators.

Definition 2.7. Any operator Ω̃ satisfying (MO) is called a coupling operator.

Do there exist any coupling operators?

Examples of coupling operators for jump processes

The simplest example to answer the above question is the following.

Example 2.8 (Independent coupling Ω̃0).

Ω̃0f(x1, x2) = [Ω1f(·, x2)](x1) + [Ω2f(x1, ·)](x2), xk ∈ Ek, k = 1, 2.

This coupling is trivial, but it does show that a coupling operator always
exists.

To simplify our notation, in what follows, instead of writing down a coup-
ling operator, we will use tables. For instance, a conservative q-pair can be
expressed as follows:

x→ dy \ {x} at rate q(x, dy).

In particular, in the discrete case, a conservative Q-matrix can be expressed
as

i→ j �= i at rate qij .

Example 2.9 (Classical coupling Ω̃c). Take E1 = E2 = E and let Ω1 =
Ω2 = Ω. If x1 �= x2, then take

(x1, x2) → (y1, x2) at rate q(x1, dy1)
→ (x1, y2) at rate q(x2, dy2).

Otherwise,
(x, x) → (y, y) at rate q(x, dy).

Each coupling has its own character. The classical coupling means that the
marginals evolve independently until they meet. Then they move together.
A nice way to interpret this coupling is to use a Chinese idiom: fall in love
at first sight. That is, a boy and a girl had independent paths of their lives
before the first time they met each other. Once they meet, they are in love at
once and will have the same path of their lives forever. When the marginal
Q-matrices are the same, all couplings considered below will have the property
listed in the last line, and hence we will omit the last line in what follows.
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Example 2.10 (Basic coupling Ω̃b). For x1, x2 ∈ E, take

(x1, x2) → (y, y) at rate
[
q1(x1, ·) ∧ q2(x2, ·)

]
(dy)

→ (y1, x2) at rate
[
q1(x1, ·) − q2(x2, ·)

]+(dy1)
→ (x1, y2) at rate

[
q2(x2, ·) − q1(x1, ·)

]+(dy2).

The basic coupling means that the components jump to the same place
at the greatest possible rate. This explains where the term q1(x1, dy1) ∧
q2(x2, dy2) comes from, which is the biggest one to guarantee the marginality.
This term is the key of the coupling. Note that whenever we have a termA∧B,
we should have the other two terms (A − B)+ and (B − A)+ automatically,
again, due to the marginality. Thus, in what follows, we will write down the
term A ∧B only for simplicity.

Example 2.11 (Coupling of marching soldiers Ω̃m). Assume that E is
an addition group. Take

(x1, x2) → (x1 + y, x2 + y) at rate q1(x1, x1 + dy) ∧ q2(x2, x2 + dy).

The word “marching” is a Chinese name, which is the command to sol-
diers to start marching. Thus, this coupling means that at each step, the
components maintain the same length of jumps at the biggest possible rate.

In the time-discrete case, the classical coupling and the basic coupling are
due to W. Doeblin (1938) (which was the first paper to study the convergence
rate by coupling) and L.N. Wasserstein (1969), respectively. The coupling of
marching soldiers is due to Chen (1986b). The original purpose of the last
coupling is mainly to preserve the order.

Let us now consider a birth–death process with regular Q-matrix:

qi,i+1 = bi, i � 0; qi,i−1 = ai, i � 1.

Then for two copies of the process starting from i1 and i2, respectively, we
have the following two examples taken from (Chen, 1990).

Example 2.12 (Modified coupling of marching soldiers Ω̃cm). Take

Ω̃cm = Ω̃c if |i1 − i2| � 1 and Ω̃cm = Ω̃m if |i1 − i2| � 2.

Example 2.13 (Coupling by inner reflection Ω̃ir). Again, take Ω̃ir = Ω̃c
if |i1 − i2| � 1. For i2 � i1 + 2, take

(i1, i2) → (i1 + 1, i2 − 1) at rate bi1 ∧ ai2
→ (i1 − 1, i2) at rate ai1
→ (i1, i2 + 1) at rate bi2 .

By exchanging i1 and i2, we can get the expression of Ω̃ir for the case that
i1 � i2.
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This coupling lets the components move to the closed place (not necessarily
the same place as required by the basic coupling) at the biggest possible rate.

From these examples one sees that there are many choices of a coupling
operator Ω̃. Indeed, there are infinitely many choices! Thus, in order to use
the coupling technique, a basic problem we should study is the regularity
(nonexplosive problem) of coupling operators, for which, fortunately, we have
a complete answer [Chen (1986a) or Chen (1992a, Chapter 5)]. The follow-
ing result can be regarded as a fundamental theorem for couplings of jump
processes.

Theorem 2.14 (Chen, 1986a).

(1) If a coupling operator is nonexplosive, then so are its marginals.

(2) If the marginals are both nonexplosive, then so is every coupling operator.

(3) In the nonexplosive case, (MP) and (MO) are equivalent.

Clearly, Theorem 2.14 simplifies greatly our study of couplings for general
jump processes, since the marginality (MP) of a coupling process is reduced
to the rather simpler marginality (MO) of the corresponding operators. The
hard but most important part of the theorem is the second assertion, since
there are infinitely many coupling operators having no unified expression.

Markovian couplings for diffusions

We now turn to study the couplings for diffusion processes in R
d with second-

order differential operator

L =
1
2

d∑
i, j=1

aij(x)
∂2

∂xi∂xj
+

d∑
i=1

bi(x)
∂

∂xi
.

For simplicity, we write L ∼ (a(x), b(x)). Given two diffusions with operators

Lk ∼ (ak(x), bk(x)), k = 1, 2,

respectively, an elliptic (may be degenerate) operator L̃ on the product space
R
d×R

d is called a coupling of L1 and L2 if it satisfies the following marginality:

L̃f(x, y) = L1f(x)
(
respectively, L̃f(x, y) = L2f(y)

)
,

f ∈ C2
b (R

d), x �= y.
(MO)

Again, on the left-hand side, f is regarded as a bivariate function. From this,
it is clear that the coefficients of any coupling operator L̃ should be of the
form

a(x, y) =
(
a1(x) c(x, y)
c(x, y)∗ a2(y)

)
, b(x, y) =

(
b1(x)
b2(y)

)
,
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where the matrix c(x, y)∗ is the conjugate of c(x, y). This condition and
the nonnegative definite property of a(x, y) constitute the marginality in the
context of diffusions. Obviously, the only freedom is the choice of c(x, y).

As an analogue of jump processes, we have the following examples.

Example 2.15 (Classical coupling). c(x, y) ≡ 0 for all x �= y.

Example 2.16 (Coupling of marching soldiers [Chen and S.F. Li 1989]).
Let ak(x) = σk(x)σk(x)∗, k = 1, 2. Take c(x, y) = σ1(x)σ2(y)∗.

The two choices given in the next example are due to T. Lindvall and
L.C.G. Rogers (1986), Chen and S.F. Li (1989), respectively.

Example 2.17 (Coupling by reflection). Let L1=L2 and a(x)=σ(x)σ(x)∗.
We have two choices:

c(x, y) = σ(x)
[
σ(y)∗ − 2

σ(y)−1ūū∗

|σ(y)−1ū|2
]
, det σ(y) �= 0, x �= y,

c(x, y) = σ(x)
[
I − 2ūū∗

]
σ(y)∗, x �= y,

where ū = (x − y)/|x− y|.
This coupling was generalized to Riemannian manifolds by W.S. Kendall

(1986) and M. Cranston (1991).
In the case that x = y, the first and the third couplings here are defined

to be the same as the second one.
In probabilistic language, suppose that the original process is given by the

stochastic differential equation

dXt =
√

2σ(Xt)dBt + b(Xt)dt,

where (Bt) is a Brownian motion. We want to construct a new process (X ′
t),

dX ′
t =

√
2σ′(Xt)dB′

t + b′(Xt)dt,

on the same probability space, having the same distribution as that of (Xt).
Then, what we need is only to choose a suitable Brownian motion (B′

t).
Corresponding to the above three examples, we have

(1) Classical coupling: B′
t is a new Brownian motion, independent of Bt.

(2) Coupling of marching soldiers: B′
t = Bt.

(3) Coupling by reflection: B′
t = [I − 2ūū∗](Xt, X

′
t)Bt, where ū is given in

Example 2.17.

It is important to remark that in the constructions, we need only consider
the time t < T , where T is the coupling time,

T = inf{t � 0 : Xt = X ′
t},

since Xt = X ′
t for all t � T . This avoids the degeneration of the coupling

operators.
Before moving further, let us mention a conjecture:
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Conjecture 2.18. The fundamental theorem (Theorem 2.14) holds for diffu-
sions.

The following facts strongly support the conjecture.

(a) A well known sufficient condition says that the operator Lk (k = 1, 2) is
well posed if there exists a function ϕk such that lim|x|→∞ ϕk(x) = ∞
and Lkϕk � cϕk for some constant c. Then the conclusion holds for all
coupling operators, simply taking

ϕ̃(x1, x2) = ϕ1(x1) + ϕ2(x2).

(b) Let τn,k be the first time of leaving the cube with side length n of the
kth process (k = 1, 2) and let τ̃n be the first time of leaving the product
cube of coupled process. Then we have

τn,1 ∨ τn,2 � τ̃n � τn,1 + τn,2.

Moreover, a process, the kth one for instance, is well posed iff

lim
n→∞ Pk[τn,k < t] = 0.

Having studied the Markovian couplings for Markov jump processes and
diffusions, it is natural to study the Lévy processes.

Open Problem 2.19. What should be the representation of Markovian coupling
operators for Lévy processes?

2.2 Optimality with respect to distances

Since there are infinitely many Markovian couplings, we asked ourselves se-
veral times in the past years, does there exist an optimal one? Now another
question arises: What is the optimality we are talking about? We now explain
how we obtained a reasonable notion for optimal Markovian couplings. The
first time we touched this problem was in Chen and S.F. Li (1989). It was
proved there for Brownian motion that coupling by reflection is optimal with
respect to the total variation, and moreover, for different probability metrics,
the effective couplings can be different. The second time, in Chen (1990), it
was proved that for birth–death processes, we have an order as follows:

Ω̃ir � Ω̃b � Ω̃c � Ω̃cm � Ω̃m,

where A � B means that A is better than B in some sense. However, only in
1992 it did become clear to the author how to optimize couplings.

To explain our optimal couplings, we need more preparation. As was
mentioned several times in previous publications [Chen (1989a; 1989b; 1992a)
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and Chen and S. F. Li (1989)], it should be helpful to keep in mind the relation
between couplings and the probability metrics. It will be clear soon that this
is actually one of the key ideas of the study. As far as we know, there are more
than 16 different probability distances, including the total variation and the
Lévy–Prohorov distance for weak convergence. But we often are concerned
with another distance. We now explain our understanding of how to introduce
this distance.

As we know, in probability theory, we usually consider the types of con-
vergence for real random variables on a probability space shown in Figure 2.1.

convergence in Lp

��
a.s. convergence �� convergence in P �� vague convergence���

�
�

�
�

�
�

�
�

�
weak convergence ��

����������

��������

Figure 2.1 Typical types of convergence in probability theory

Lp-convergence, a.s. convergence, and convergence in P all depend on the
reference frame, our probability space (Ω,F ,P). But vague (weak) conver-
gence does not. By a result of Skorohod [cf. N. Ikeda and S. Watanabe (1988,
p. 9 Theorem 2.7)], if Pn converges weakly to P , then we can choose a sui-
table reference frame (Ω,F ,P) such that ξn ∼ Pn, ξ ∼ P , and ξn → ξ a.s.,
where ξ ∼ P means that ξ has distribution P . Thus, all the types of conver-
gence listed in Figure 2.1 are intrinsically the same, except Lp-convergence.
In other words, if we want to find another intrinsic metric on the space of all
probabilities, we should consider an analogue of Lp-convergence.

Let ξ1, ξ2: (Ω,F ,P) → (E, ρ,E ). The usual Lp-metric is defined by

‖ξ1 − ξ2‖p =
{
E
[
ρ(ξ1, ξ2)p

]}1/p
.

Suppose that ξi ∼ Pi, i = 1, 2, and (ξ1, ξ2) ∼ P̃ . Then

‖ξ1 − ξ2‖p =
{∫

ρ(x1, x2)
pP̃ (dx1, dx2)

}1/p

.

Certainly, P̃ is a coupling of P1 and P2. However, if we ignore our reference
frame (Ω,F ,P), then there are many choices of P̃ for given P1 and P2. Thus,
the intrinsic metric should be defined as follows:

Wp(P1, P2) = inf
P̃

{∫
ρ(x1, x2)

pP̃ (dx1, dx2)
}1/p

, p � 1,

where P̃ varies over all couplings of P1 and P2.
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Definition 2.20. The metric defined above is called the Wp-distance or p th
Wasserstein distance. Briefly, we write W = W1.

From the probabilistic point of view, the Wp-metrics have an intrinsic pro-
perty that makes them more suitable for certain applications. For example, if
(E, ρ) is the Euclidean space for P2 obtained from P1 by a translation, then
Wp(P1, P2) is just the length of the translation vector.

In general, it is quite hard to compute the Wp-distance exactly. Here are
the main known results.

Theorem 2.21 (S.S. Vallender, 1973). Let Pk be a probability on the real line
with distribution function Fk(x), k = 1, 2. Then

W (P1, P2) =
∫ +∞

−∞
|F1(x) − F2(x)|dx.

Theorem 2.22 (D.C. Dowson and B.V. Landau (1982), C.R. Givens and
R.M. Shortt (1984), I. Olkin and R. Pukelsheim (1982)). Let Pk be the nor-
mal distribution on

(
Rd,B(Rd)

)
(d � 1) with mean value mk and covariance

matrix Mk, k = 1, 2. Then

W2(P1, P2) =
[|m1 −m2|2 + TraceM1 + TraceM2

− 2 Trace
(√

M1M2

√
M1

)1/2]1/2
,

where TraceM denotes the trace of M .

Theorem 2.23 (R.L. Dobrushin, 1970). (1) For bounded ρ, W is equiva-
lent to the Lévy-Prohorov distance.

(2) For discrete distance ρ, W = ‖ · ‖Var/2.

Fortunately, in most cases, what we need is only certain estimates of an
upper bound. Clearly, any coupling provides an upper bound of W (P1, P2).
Thus, it is very natural to introduce the following notion.

Definition 2.24. A coupling P of P1 and P2 is called ρ-optimal if∫
ρ(x1, x2)P (dx1, dx2) = W (P1, P2).

Now, it is natural to define the optimal coupling for time-discrete Markov
processes without restriction to the Markovian class. In the special case of ρ
being the discrete metric (or equivalently, restricted to the total variation),
it is just the maximal coupling, introduced by D. Griffeath (1978). How-
ever, the maximal couplings constructed in the quoted paper are usually
non-Markovian. Even though the maximal couplings as well as other non-
Markovian couplings now constitute an important part of the theory and
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have been widely studied in the literature (cf. T. Lindvall (1992), J.G.Propp
and D.B. Wilson (1996), H. Thorrison (2000), and references therein), they
are difficult to handle, especially when we come to the time-continuous situ-
ation. Moreover, it will be clear soon that in the context of diffusions, in
dealing with the optimal Markovian coupling in terms of their operators, the
discrete metric will lose its meaning. Thus, our optimal Markovian couplings
are essentially different from the maximal ones. It should also be pointed
out that the sharp estimates introduced in Chapter 1 were obtained from the
exponential rate in the W -metric with respect to some much more refined
metric ρ rather than the discrete one. Replacing Pk and P̃ with Pk(t) and
P̃ (t), respectively, and then going to the operators, it is not difficult to arrive
at the following notion [cf. Chen (1994b; 1994a) for details].

Definition 2.25. A coupling operator Ω is called ρ-optimal if

Ω ρ(x1, x2) = inf
Ω̃

Ω̃ ρ(x1, x2) for all x1 �= x2,

where Ω̃ varies over all coupling operators.

To see that the notion is useful, let us introduce one more coupling.

Example 2.26 (Coupling by reflection Ω̃r). Given a birth–death process
with birth rates bi and death rates ai, this coupling evolves in the following way.
If i2 = i1 + 1, then

(i1, i2) → (i1 − 1, i2 + 1) at rate ai1 ∧ bi2
→ (i1 + 1, i2) at rate bi1
→ (i1, i2 − 1) at rate ai2 .

If i2 � i1 + 2, then

(i1, i2) → (i1 − 1, i2 + 1) at rate ai1 ∧ bi2
→ (i1 + 1, i2 − 1) at rate bi1 ∧ ai2 .

By symmetry, we can write down the rates for the other case that i1 > i2.

Intuitively, the reflection in the outside direction is quite strange, since it
separates the components by distance 2 but not by 1. For this reason, even
though the coupling came to our attention years ago, we never believed that
it could be better than the coupling by inner reflection. But the next result
changed our mind.

Theorem 2.27 (Chen, 1994a). For birth–death processes, the coupling by re-
flection is ρ-optimal for any translation-invariant metric ρ on Z+ having the
property that

uk := ρ(0, k + 1)− ρ(0, k), k � 0

is nonincreasing in k.
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To see that the optimal coupling depends heavily on the metric ρ, note
that the above metric ρ can be rewritten as

ρ(i, j) =
∑

k<|i−j|
uk

for some positive nonincreasing sequence (uk). In this way, for any positive
sequence (uk), we can introduce another metric as follows:

ρ̃(i, j) =
∣∣∣∣∑
k<i

uk −
∑
k<j

uk

∣∣∣∣.
Because (uk > 0) is arbitrary, this class of metrics is still quite large. Now,
among the couplings listed above, which are ρ̃-optimal?

Theorem 2.28 (Chen, 1994a). For birth–death processes, every coupling men-
tioned above except the trivial (independent) one is ρ̃-optimal.

This result is again quite surprising, far from our probabilistic intuition.
Thus, our optimality does produce some unexpected results.

We are now ready to study the optimal couplings for diffusion processes.

Definition 2.29. Given ρ ∈ C2(Rd × Rd \ {(x, x) : x ∈ Rd}), a coupling
operator L is called ρ-optimal if

Lρ(x, y) = inf
L̃
L̃ρ(x, y), x �= y,

where L̃ varies over all coupling operators.

For the underlying Euclidean distance | · | in Rd, we introduce a family of
distances as follows:

ρ(x, y) = f(|x− y|), where f(0) = 0, f ′ > 0, and f ′′ � 0. (2.4)

In order to make ρ a distance, the first two conditions of f are necessary
and the third condition guarantees the triangle inequality. For this class of
distance, as mentioned in the paper quoted below, the existence of ρ-optimal
coupling for diffusion is not a serious problem. Here we introduce only some
explicit constructions.

Theorem 2.30 (Chen, 1994a). Let ρ(x, y)=f(|x−y|) for some f∈C2(R+; R+)
satisfying (2.4). Then the ρ-optimal solution c(x, y) is given as follows:

(1) If d = 1, then c(x, y) = −√a1(x)a2(y), and moreover,

Lf(|x− y|) =
1
2
(√

a1(x) +
√
a2(y)

)2
f ′′(|x− y|)

+
(x− y)(b1(x) − b2(y))

|x− y| f ′(|x − y|).
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Next, suppose that ak = σ2
k (k = 1, 2) is nondegenerate and write

c(x, y) = σ1(x)H
∗(x, y)σ2(y).

(2) If f ′′(r) < 0 for all r > 0, then H(x, y) = U(γ)−1
[
U(γ)U(γ)∗

]1/2
, where

γ=1 − |x−y|f ′′(|x−y|)
f ′(|x− y|) , U(γ) = σ1(x)(I−γūū∗)σ2(y).

(3) If f(r) = r, then H(x, y) is a solution to the equation

U(1)H =
(
U(1)U(1)∗

)1/2
.

In particular, if ak(x) = ϕk(x)σ2 for some positive function ϕk (k = 1, 2), where
σ is independent of x and detσ > 0, then

(4) H(x, y) = I − 2σ−1ūū∗σ−1/|σ−1ū|2 if ρ(x, y) = |x− y|. Moreover,

Lf(|x− y|) =
1

2|x− y|
{(√

ϕ1(x) −
√
ϕ2(y)

)2[Traceσ2 − |σū|2]
+ 2

〈
x− y, b1(x) − b2(y)

〉}
.

(5) H is the same as in the last assertion if ρ(x, y) = |x − y| is replaced by
ρ(x, y) = f(|σ−1(x− y)|). Furthermore,

Lρ(x, y) =
1
2
(√

ϕ1(x) +
√
ϕ2(y)

)2
f ′′(|σ−1(x− y)|)

+
{

(d− 1)
(√

ϕ1(x) −
√
ϕ2(y)

)2
+ 2

〈
σ−1(x− y), σ−1(b1(x) − b2(y))

〉}
× f ′(|σ−1(x− y)|)

2|σ−1(x− y)| .

2.3 Optimality with respect to closed functions

As an extension of the optimal couplings with respect to distances, we can
consider the optimal couplings with respect to a more general, nonnegative,
closed (= lower semicontinuous) function ϕ.

Definition 2.31. Given a metric space (E, ρ,E ), let ϕ be a nonnegative, closed
function on (E, ρ,E ). A coupling is called a ϕ-optimal (Markovian) coupling if
in the definitions given in the last section, the distance function ρ is replaced by
ϕ.

Here are some typical examples of ϕ.
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Example 2.32. (1) ϕ is a distance of the form f ◦ ρ for some f having the
properties f(0) = 0, f ′ > 0, and f ′′ � 0.

(2) ϕ is the discrete distance: ϕ(x, y) = 1 iff x �= y; otherwise, ϕ(x, y) = 0.

(3) Let E be endowed with a measurable semiorder “≺” and set F = {(x, y) :
x ≺ y}. Then F is a closed set. Take ϕ = IF c .

Before moving further, let us recall the definition of stochastic compara-
bility.

Definition 2.33. Let M be the set of bounded monotone functions f :
x ≺ y =⇒ f(x) � f(y).

(1) We write µ1 ≺ µ2 if µ1(f) � µ2(f) for all f ∈ M .

(2) Let P1 and P2 be transition probabilities. We write P1 ≺ P2 if P1(f)(x1) �
P2(f)(x2) for all x1 ≺ x2 and f ∈ M .

(3) Let P1(t) and P2(t) be transition semigroups. We write P1(t) ≺ P2(t) if
P1(t)(f)(x1) � P2(t)(f)(x2) for all t � 0, x1 ≺ x2, and f ∈ M .

Here is a famous result about stochastic comparability.

Theorem 2.34 (V. Strassen, 1965). For a Polish space, µ1 ≺ µ2 iff there exists
a coupling measure µ̄ such that µ̄(F c) = 0.

Usually, in practice, it is not easy to compare two measures directly. For
this reason, one introduces stochastic comparability for processes. First, one
constructs two processes with stationary distributions µ1 and µ2. Then the
stochastic comparability of the two measures can be reduced to that of the
processes. The advantage for the latter comparison comes from the intuition
of the stochastic dynamics. One can even see the answer from the coefficients
of the operators. See Examples 2.44–2.46 below.

A general result for ϕ-optimal coupling is the following.

Theorem 2.35 (S.Y. Zhang, 2000a). Let (E, ρ,E ) be Polish and ϕ � 0 be
a closed function.

(1) Given Pk(xk, dyk), k = 1, 2, there exists a transition probability P (x1, x2;
dy1, dy2) such that Pϕ(x1, x2) = inf

P̃ (x1,x2) P̃ (x1,x2)ϕ(x1, x2), where for

fixed (x1, x2), P̃
(x1,x2) varies over all couplings of P1(x1, dy1) and P2(x2,

dy2).
(2) Given operators Ωk of regular jump processes, k = 1, 2, there exists a

coupling operator Ω of jump process such that Ωϕ = infΩ̃ Ω̃ϕ, where Ω̃
varies over all coupling operators of Ω1 and Ω2.

According to Theorem 2.35 (1), Strassen’s theorem can be restated as fol-
lows: the IF c -optimal Markovian coupling satisfies µ̄(F c) = 0. This shows
that Theorem 2.35 (1) is an extension of Strassen’s theorem. Even though the
proof of Theorem 2.35 is quite technical, the main root is still clear. Consider
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first finite state spaces. Then the conclusion follows from an existence theo-
rem of linear programming regarding the marginality as a constraint. Next,
pass to the general Polish space by using a tightness argument (a generalized
Prohorov theorem) plus an approximation of ϕ by bounded Lipschitz func-
tions.

Concerning stochastic comparability, we have the following result.

Theorem 2.36 (Chen (1992a, Chapter 5), Zhang (2000b)). For jump pro-
cesses on a Polish space, under a mild assumption, P1(t) ≺ P2(t) iff

Ω1IB(x1) � Ω2IB(x2),

for all x1 ≺ x2 and B with IB ∈ M .

Here we mention an additional result, which provides us the optimal solu-
tions within the class of order-preserving couplings.

Theorem 2.37 (T. Lindvall, 1999). Again, let ∆ denote the diagonals.

(1) Let µ1 ≺ µ2. Then

inf
µ̃(F c)=0

µ̃(∆c) =
1
2
‖µ1 − µ2‖Var.

(2) Let P1 and P2 be transition probabilities that satisfy P1 ≺ P2. Then

inf
P̃ (x1,x2;F

c)=0
P̃ (x1, x2; ∆

c) =
1
2
‖P1(x1, ·)− P2(x2, ·)‖Var

for all x1 ≺ x2.

In fact, the left-hand sides of the formulas in Theorem 2.37 can be replaced,
respectively, by the IF c -optimal coupling given in Theorem 2.35 (1).

For order-preserving Markovian coupling for diffusions, refer to F.Y. Wang
and M.P. Xu (1997).

Open Problem 2.38. Let ϕ ∈ C2(R2d \ ∆). Prove the existence of ϕ-optimal
Markovian couplings for diffusions under some reasonable hypotheses.

Open Problem 2.39. Construct ϕ-optimal Markovian couplings.

2.4 Applications of coupling methods

It should be helpful for readers, especially newcomers, to see some applications
of couplings. Of course, the applications discussed below cannot be complete,
and additional applications will be presented in Chapters 3, 5, and 9. One
may refer to T.M. Liggett (1985), T. Lindvall (1992), and H. Thorrison (2000)
for much more information. The coupling method is now a powerful tool in
statistics, called “copulas” (cf. R.B. Nelssen (1999)). It is also an active
research topic in PDE and related fields, named “optimal transportation” (cf.
S.T. Rachev and L. Ruschendorf (1998), L. Ambrosio et al. (2003), C. Villani
(2003)).
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Spectral gap; exponential L2-convergence

We introduce two general results, due to Chen and F.Y. Wang (1993b) [see also
Chen (1994a)], on the estimation of the first nontrivial eigenvalue (spectral
gap) by couplings.

Definition 2.40. Let L be an operator of a Markov process (Xt)t�0. We say
that a function f is in the weak domain of L, denoted by Dw(L), if f satisfies
the forward Kolmogorov equation

E
xf(Xt) = f(x) +

∫ t

0

E
xLf(Xs)ds,

or equivalently, if

f(Xt) −
∫ t

0

Lf(Xs)ds

is a P
x-martingale with respect to the natural flow of σ-algebras {Ft}t�0, where

Ft = σ{Xs : s � t}.

Definition 2.41. We say that g is an eigenfuction of L corresponding to λ in
the weak sense if g satisfies the eigenequation Lg = −λg pointwise.

Note that the eigenfunction defined above may not belong to L2(π), where
π is the stationary distribution of (Xt)t�0. In the reversible case, all of the
eigenvalues are nonnegative and all of the eigenfunctions are real.

The next two results remain true in the irreversible case (where λ and g
are often complex), provided λ is replaced by |λ|.
Theorem 2.42. Let (E, ρ) be a metric space and let {Xt}t�0 be a reversible
Markov process with operator L. Denote by g the eigenfunction corresponding to
λ �= 0 in the weak sense. Next, let (Xt, Yt) be a coupled process, starting from

(x, y), with coupling operator L̃, and let γ : E × E → [0,∞) satisfy γ(x, y) = 0
iff x = y. Suppose that

(1) g ∈ Dw(L),
(2) γ ∈ Dw(L̃),
(3) L̃γ(x, y) � −αγ(x, y) for all x �= y and some constant α � 0,

(4) g is Lipschitz with respect to γ in the sense that

cg,γ := sup
y �=x

γ(y, x)−1|g(y)− g(x)| <∞.

Then we have λ � α.

Proof. Without loss of generality, assume that α > 0. Otherwise, the con-
clusion is trivial. By conditions (2), (3) and Lemma A.6, we have

Ẽ
x,yγ(Xt, Yt) � γ(x, y)e−αt, t � 0.
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Next, by condition (1) and the definition of g,

g(Xt) −
∫ t

0

Lg(Xs)ds = g(Xt) + λ

∫ t

0

g(Xs)ds

is a P
x-martingale with respect to the natural flow of σ-algebras {Ft}t�0. In

particular,

g(x) = E
x

[
g(Xt) + λ

∫ t

0

g(Xs)ds
]
.

Because of the coupling property,

E
x

[
g(Xt) + λ

∫ t

0

g(Xs)ds
]

= Ẽ
x,y

[
g(Xt) + λ

∫ t

0

g(Xs)ds
]
.

Thus, we obtain

g(x) − g(y) = Ẽ
x,y

[
g(Xt) − g(Yt) + λ

∫ t

0

[g(Xs) − g(Ys)]ds
]
.

Therefore

|g(x) − g(y)| � Ẽ
x,y
∣∣g(Xt) − g(Yt)

∣∣+ λẼ
x,y

∫ t

0

|g(Xs) − g(Ys)|ds

� cg,γẼ
x,yγ(Xt, Yt) + λcg,γẼ

x,y

∫ t∧T

0

γ(Xs, Ys)ds

� cg,γγ(x, y)e−αt + λcg,γγ(x, y)
∫ t

0

e−αsds.

Noting that g is not a constant, since λ �= 0, we have cg,γ �= 0. Dividing both
sides by γ(x, y) and choosing a sequence (xn, yn) such that

|g(yn) − g(xn)|/γ(yn, xn) → cg,γ ,

we obtain

1 � e−αt + λ

∫ t

0

e−αsds = e−αt + λ
(
1 − e−αt

)
/α

for all t. This implies that λ � α as required. �
One may compare this probabilistic proof with the analytic one sketched

in Section 1.2.
When γ is a distance, Ẽx,yγ(Xt, Yt) is nothing but the Wasserstein metric

W = W1 with respect to γ of the distributions at time t. The above proof
shows that W1 can be used to study the Poincaré inequality (i.e., λ1). Noting
that W2 is stronger than W1 for a fixed underframe distance ρ, it is natural
to study the stronger logarithmic Sobolev inequality in terms of W2 with
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respect to the Euclidean distance, for instance. To deal with the inequalities
themselves, it is helpful but not necessary to go to the dynamics, since they
are mainly concerned with measures. Next, it was discovered in the 1990s that
in many cases, for two given probability densities, the optimal coupling for W2

exists uniquely, and the mass of the coupling measure is concentrated on the
set {(x, T (x)) : x ∈ R

d}. Moreover, the optimal transport T can be expressed
by T = ∇Ψ for some convex function Ψ that solves a nonlinear Monge–
Ampère equation. It turns out that this transportation solution provides
a new way to prove a class of logarithmic Sobolev (or even more general)
inequalities in Rd. This explains roughly the interaction between probability
distances (couplings) and PDE. Considerable progress has been made recently
in this field, as shown in the last two books mentioned in the first paragraph
of this section.

Condition (3) in Theorem 2.42 is essential. The other conditions can often
be relaxed or avoided by using a localizing procedure. Define the coupling
time T = inf{t � 0 : Xt = Yt}. The next, weaker, result is useful. It has a
different meaning, as will be explained in Section 5.6. Indeed, the condition
“supx �=y Ẽx,yT <∞” used in the next theorem is closely related to the strong
ergodicity of the process rather than λ1 > 0.

Theorem 2.43. Let {Xt}t�0, L, λ, and g be the same as in the last theorem.
Suppose that

(1) g ∈ Dw(L),
(2) supx �=y |g(x) − g(y)| <∞.

Then for every coupling P̃x,y, we have λ �
(
supx �=y Ẽx,yT

)−1
.

Proof. Set f(x, y) = g(x) − g(y). By the martingale formulation as in the
last proof, we have

f(x, y) = Ẽ
x,yf

(
Xt∧T , Yt∧T

)− Ẽ
x,y

∫ t∧T

0

L̃f
(
Xs, Ys

)
ds

= Ẽ
x,yf

(
Xt∧T , Yt∧T

)
+ λẼ

x,y

∫ t∧T

0

f
(
Xs, Xs

)
ds.

Hence

|g(x) − g(y)| � Ẽ
x,y
∣∣g(Xt∧T

)− g
(
Yt∧T

)∣∣+ λẼ
x,y

∫ t∧T

0

∣∣g(Xs

)− g
(
Ys
)∣∣ds.

Assume supx �=y Ẽx,yT < ∞, and so P̃x,y[T < ∞] = 1. Letting t ↑ ∞, we
obtain

|g(x) − g(y)| � λẼ
x,y

∫ T

0

∣∣g(Xs

)− g
(
Ys
)∣∣ds.
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Choose xn and yn such that

lim
n→∞ |g(xn)− g(yn)| = sup

x, y
|g(x) − g(y)|.

Without loss of generality, assume that supx, y |g(x) − g(y)| = 1. Then

1 � λ lim
n→∞

Ẽ
xn,yn(T ).

Therefore 1 � λ supx �=y Ẽx,yT. �

For the remainder of this section, we emphasize the main ideas by using
some simple examples. In particular, from now on, the metric is taken to be
ρ(x, y) = |x − y|. That is, f(r) = r. In view of Theorem 2.30, this metric
may not be optimal, since f ′′ = 0. Thus, in practice, additional work is often
needed to figure out an effective metric ρ. The details will be discussed in the
next chapter. Additional discrete examples are included in Appendix B.

To conclude this subsection, let us consider the Ornstein–Uhlenbeck pro-
cess in Rd. By Theorem 2.30 (4), we have Lρ(x, y) � −ρ(x, y), and so

E
x,y
ρ(Xt, Yt) � ρ(x, y)e−t. (2.5)

By using Theorem 2.42 with the help of a localizing procedure, this gives us
λ1 � 1, which is indeed exact!

Ergodicity

Coupling methods are often used to study the ergodicity of Markov processes.
For instance, for an Ornstein–Uhlenbeck process, from (2.5), it follows that

W (P (t, x, ·), π) � C(x)e−t, t � 0, (2.6)

where π is the stationary distribution of the process. The estimate (2.6)
simply means that the process is exponentially ergodic with respect to W .

Recall that T = inf{t � 0 : Xt = Yt}. Starting from time T , we can
adopt the coupling of marching soldiers so that the two components will move
together. Then we have

‖P (t, x, ·) − P (t, y, ·)‖Var � 2 Ẽ
x,yI[Xt �=Yt] = 2 P̃

x,y[T > t]. (2.7)

Thus, if P̃x,y[T > t] → 0 as t → ∞, then the existence of a stationary distri-
bution plus (2.7) gives us the ergodicity with respect to the total variation.
See T. Lindvall (1992) for details and references on this topic. Actually, for
Brownian motion, as pointed out in Chen and S.F. Li (1989), coupling by re-
flection provides a sharp estimate for the total variation. We will come back
to this topic in Chapter 5.
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Gradient estimate

Recall that for every suitable function f , we have

f(x) − f(y) = Ẽ
x,y
[
f
(
Xt∧T

)− f
(
Yt∧T

)]− Ẽ
x,y

∫ t∧T

0

[
Lf
(
Xs

)− Lf
(
Ys
)]

ds.

Thus, if f is L-harmonic, i.e., Lf = 0, then we have

f(x) − f(y) = Ẽ
x,y
[
f
(
Xt∧T

)− f
(
Yt∧T

)]
.

Hence
|f(x) − f(y)| � 2 ‖f‖∞ P̃

x,y[T > t].

Letting t→∞, we obtain

|f(x) − f(y)| � 2 ‖f‖∞ P̃
x,y[T = ∞].

Now, if f is bounded and P̃x,y[T = ∞] = 0, then f = constant. Otherwise, if
P̃
x,y[T = ∞] � constant· ρ(x, y), then we get

‖∇f‖∞ � constant · ‖f‖∞,
which is the gradient estimate we are looking for [cf. M. Cranston (1991; 1992)
and F.Y. Wang (1994a; 1994b)]. For Brownian motion in Rd, the optimal
coupling gives us P̃x,y[T <∞] = 1, and so f = constant. We have thus proved
a well-known result: every bounded harmonic function should be constant.

Comparison results

The stochastic order occupies a crucial position in the study of probability
theory, since the usual order relation is a fundamental structure in mathe-
matics.

The coupling method provides a natural way to study the order-preserving
property (i.e., stochastic comparability). Refer to Chen (1992a, Chapter 5)
for a study on jump processes. Here is an example for diffusions.

Example 2.44. Consider two diffusions in R with

a1(x) = a2(x) = a(x), b1(x) � b2(x). (2.8)

Then we have P1(t) ≺ P2(t).

The conclusion was proved in N. Ikeda and S. Watanabe (1988, Section
6.1), using stochastic differential equations. The same proof with a slight
modification works if we adopt the coupling of marching soldiers.

A criterion for order preservation for multidimensional diffusion processes
was presented in Chen and F.Y. Wang (1993a), from which we see that con-
dition (2.8) is not only sufficient but also necessary. A related topic, the
preservation of positive correlations for diffusions, was also solved in the same
paper, as mentioned at the beginning of this chapter.

To illustrate an application of the study, let us introduce a simple example.
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Example 2.45. Let µλ be the Poisson measure on Z+ with parameter λ:

µλ(k) =
λk

k!
e−λ, k � 0.

Then we have µλ ≺ µλ
′
whenever λ � λ′.

In some publications, one proves such a result by constructing a coupling
measure µ̃ such that µ̃{(x, y) : x ≺ y} = 1. Of course, such a proof is lengthy.
So we now introduce a very short proof based on the coupling argument.

Consider a birth–death process with rate

a(k) ≡ 1, bλ(k) =
µλ(k + 1)
µλ(k)

=
λ

k + 1
↑ as λ ↑ .

Denote by Pλ(t) the corresponding process. It should be clear that

Pλ(t) ≺ Pλ
′
(t) whenever λ � λ′

[cf. Chen (1992a, Theorem 5.26; Theorem 5.41 in the 2nd edition)]. Then, by
the ergodic theorem,

µλ(f) = lim
t→∞Pλ(t)f � lim

t→∞Pλ
′
(t)f = µλ

′
(f)

for all f ∈ M . Clearly, the technique using stochastic processes [goes back
to R. Holley (1974)] provides an intrinsic insight into order preservation for
probability measures.

We now return to the FKG inequality mentioned at the beginning of this
chapter. Clearly, the inequality is meaningful in the higher-dimensional space
Rd with respect to the ordinary partial ordering. The inequality for a Markov
semigroup P (t) becomes

P (t)(fg) � P (t)fP (t)g, t � 0, f, g ∈ M .

The study of the FKG inequality in terms of semigroups is exactly the same
as above. Choose a Markov process having the given measure as a stationary
distribution. Then, study the inequality for the dynamics. Finally, passing to
the limit as t→∞, we return to (2.1).

An aspect of the applications of coupling methods is to compare a rather
complicated process with a simpler one. To provide an impression, we intro-
duce an example that was used by Chen and Y.G. Lu (1990) in the study of
large deviations for Markov chains.

Example 2.46. Consider a single birth Q-matrix Q = (qij), which means that

qi,i+1 > 0 and qij = 0 for all j > i+ 1,

and a birth–death Q-matrix Q = (q̄ij) with q̄i,i−1 =
∑
j<i qij . If q̄i,i+1 � qi,i+1

for all i � 0. Then P (t) ≺ P (t).
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The conclusion can be easily deduced by the following coupling:

(i1, i2) → (i1 − k, i2 − 1) at rate qi1,i1−k ∧ qi2,i2−k
→ (i1 − k, i2) at rate (qi1,i1−k − qi2,i2−k)+

→ (i1, i2 − 1) at rate (qi2,i2−k − qi1,i1−k)+

→ (i1 + 1, i2 + 1) at rate qi1,i1+1 ∧ q̄i2,i2+1

→ (i1 + 1, i2) at rate (qi1,i1+1 − q̄i2,i2+1)+

→ (i1, i2 + 1) at rate (q̄i2,i2+1 − qi1,i1+1)+,

where we have used the convention qij = 0 if j < 0. Refer to Chen (1992a,
Theorem 8.24) for details. This example illustrates the flexibility in the ap-
plication of couplings.

The details of this chapter, except for diffusions, are included in Chapter
5 of the second edition of Chen (1992a).

Finally, we mention that the coupling methods are also powerful for time-
inhomogeneous Markov processes, not touched on in this book. In fact, the
fundamental theorem 2.14 is valid for Markov jump processes valued in Polish
spaces [cf. J.L. Zheng (1993)]. For estimation of convergence rate, refer to
A.I. Zeifman (1995), B.L. Granovsky and A.I. Zeifman (1997).




