
To my parents

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.4 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Bitanzahl pro Pixel: Wie Original Bit Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Untergruppen bilden unter: 100 % Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Nein PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Nein DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Nein EPS-Info von DSC beibehalten: Nein OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.4 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

Foreword

How can one exchange information effectively when the medium of commu-
nication introduces errors? This question has been investigated extensively
starting with the seminal works of Shannon (1948) and Hamming (1950),
and has led to the rich theory of “error-correcting codes”. This theory has
traditionally gone hand in hand with the algorithmic theory of “decoding”
that tackles the problem of recovering from the errors efficiently. This thesis
presents some spectacular new results in the area of decoding algorithms for
error-correcting codes. Specifically, it shows how the notion of “list-decoding”
can be applied to recover from far more errors, for a wide variety of error-
correcting codes, than achievable before.

A brief bit of background: error-correcting codes are combinatorial struc-
tures that show how to represent (or “encode”) information so that it is re-
silient to a moderate number of errors. Specifically, an error-correcting code
takes a short binary string, called the message, and shows how to transform
it into a longer binary string, called the codeword, so that if a small number
of bits of the codeword are flipped, the resulting string does not look like any
other codeword. The maximum number of errors that the code is guaranteed
to detect, denoted d, is a central parameter in its design. A basic property of
such a code is that if the number of errors that occur is known to be smaller
than d/2, the message is determined uniquely. This poses a computational
problem, called the decoding problem: compute the message from a corrupted
codeword, when the number of errors is less than d/2. While naive decod-
ing algorithms run in time exponential in d, sophisticated algorithms with
polynomial running time have been found for a variety of codes, enabling
widespread usage of error-correcting codes.

The principal concern of this thesis is the question: “What happens when
the number of errors that occur is more than d/2?” This question is impor-
tant for practical purposes, so that one can extract more out of any given
communication channel. Furthermore, the central nature of error-correcting
codes in the theory of computer science makes this question an important
one in this domain as well. It is well known that if the number of errors
exceed d/2, then the message may potentially not be recoverable uniquely.
However, it is conceivable that one can pin down a small list of candidate
messages that include the intended message. This possibility motivated Elias

VIII Foreword

(1957) and Wozencraft (1958) to define the list-decoding problem: “Given a
corrupted codeword and an error parameter e, compute a list of all codewords
that differ from the corrupted word in most e places.”

Even though the list-decoding problem had been in existence for several
decades, it did not meet with algorithmic success till 1997. In the last ten years
or so, however, this area has seen some remarkable advances, and these results
represent the original contributions of this thesis. List-decoding algorithms
are presented for a wide variety of codes considered in the literature including
“Reed-Solomon codes”, “algebraic-geometry codes”, “concatenated codes”,
and “graph-theoretic codes”. In addition to describing new results, the thesis
also serves as a valuable source of reference on list-decoding. It introduces the
topic gently, re-examining the definition, explaining why it is interesting and
then describing the central combinatorial and algorithmic problems in this
domain. It includes a nice survey of prior combinatorial work most of which
is scattered in the literature. After covering the new algorithmic results, the
thesis includes an excellent survey of the many applications of list-decoding in
theoretical computer science including “hardness amplification”, “extracting
randomness”, and “pseudorandomness”.

The style of the exposition is crisp and the enormous amount of informa-
tion is presented in a clear, structured form. This thesis will be valuable to
readers interested in mathematical aspects of computer science or communi-
cation.

August 2004 Madhu Sudan
Professor of Computer Science

MIT, Cambridge, MA, USA.

Preface

Error-correcting codes are combinatorial objects designed to cope with the
problem of reliable transmission of information on a noisy channel. A funda-
mental algorithmic challenge in coding theory and practice is to efficiently
decode the original transmitted message even when a few symbols of the
received word are in error. The naive search algorithm runs in exponential
time, and several classical polynomial time decoding algorithms are known
for specific code families. Traditionally, however, these algorithms have been
constrained to output a unique codeword. Thus they faced a “combinatorial
barrier” and could only correct up to d/2 errors, where d is the minimum
distance of the code.

An alternate notion of decoding called list decoding, proposed indepen-
dently by Elias and Wozencraft in the late 1950s, allows the decoder to output
a list of all codewords that differ from the received word in a certain number
of positions. Even when constrained to output a relatively small number of
answers, list decoding permits recovery from errors well beyond the d/2 bar-
rier, and opens up the possibility of meaningful error correction from large
amounts of noise. However, for nearly four decades after its conception, this
potential of list decoding was largely untapped due to the lack of efficient
algorithms to list decode beyond d/2 errors for useful families of codes.

This book presents a detailed investigation of list decoding, and proves
its potential, feasibility, and importance as a combinatorial and algorithmic
concept. The results discussed in the book are divided into three parts: the
first one on combinatorial results, the second on polynomial time list decoding
algorithms, and the third on applications. We describe each of the parts in
further detail below.

Part I deals with the combinatorics of list decoding and attempts to
sharpen our understanding of the potential and limits of list decoding, and its
relation to more classical coding-theoretic parameters like the rate and mini-
mum distance. A combinatorial bound called the Johnson bound asserts that
codes with large minimum distance have a large list decoding radius, and this
raises algorithmic questions on list decoding such codes from a large number
of errors for central codes that are known to have good distance properties.
This is not the only approach to obtaining good list decodable codes, and in
fact directly optimizing the list decoding radius leads to better trade-offs as

X Preface

a function of the rate of the code (as can be shown by applications of the
probabilistic method). Part I can be summed up with the statement: good
codes with excellent combinatorial list decodability properties exist. This sets
the stage for the algorithmic results of Part II by highlighting what one can
and cannot hope to do with list decoding, and poses the challenge of tapping
the potential of list decoding with efficient algorithms.

Part II comprises the crux of the book, namely its algorithmic results,
which were lacking in the early works on list decoding. The algorithmic re-
sults attempt to “match” the combinatorial bounds with explicit code con-
structions and efficient decoding algorithms. Our algorithmic results include:

– Efficient list decoding algorithms for classically studied codes such as Reed-
Solomon codes and algebraic-geometric codes. In particular, building upon
an earlier algorithm by Sudan, we present the first polynomial time algo-
rithm to decode Reed-Solomon codes beyond d/2 errors for every value of
the rate.

– A new soft list decoding algorithm for Reed-Solomon and algebraic-
geometric codes, and novel decoding algorithms for concatenated codes
based on it.

– New code constructions using concatenation and/or expander graphs that
have good (and sometimes near-optimal) rates and are efficiently list de-
codable from extremely large amounts of noise.

– Error-correcting codes with good (and sometimes near-optimal rates) for
list decoding from erasures.

Part II can be summed up with the statement: there exist “explicit” con-
structions of “good” codes together with efficient list decoding algorithms.

In Part III, we discuss some applications of the results and techniques from
earlier chapters to domains both within and outside of coding theory. Using
an expander-based construction in the same spirit as our construction for
list decoding, we get a significant improvement over a prior result for unique
decoding. Specifically, we construct linear time encodable and decodable codes
that match the trade-off between rate and error-correction radius achieved by
the best known constructions with polynomial time decoding (and in fact the
trade-off is almost the best possible over large alphabets). This constitutes a
vast improvement compared with previous constructions of linear time codes
that could only correct a tiny fraction of errors with positive rates. The notion
of list decoding turns out to be central to certain contexts in theoretical
computer science outside of coding theory, for example in complexity theory,
cryptography, and algorithms. For these applications unique decoding does
not suffice, and moreover, for several of them one needs efficient list decoding
algorithms.

A detailed chapter by chapter description of the contents can be found in
Section 2.3.

Preface XI

Acknowledgments

We know too much for one man to know much.
J. Robert Oppenheimer

This monograph is a revised version of my doctoral dissertation, written
under the supervision of Madhu Sudan and submitted to MIT in August 2001.
I am grateful to MIT for nominating my Ph.D. thesis for the ACM Doctoral
Dissertation Award competition, and to ACM and the awards committee for
awarding the honor to my dissertation.

My first and foremost acknowledgment is to my advisor Madhu Sudan.
When I made a decision to go to MIT for grad school in the spring of 1997, I
was not aware that Madhu Sudan would be joining its faculty that Fall, so it
was quite serendipitous that I got him as my advisor. While I found MIT to be
every bit the wonderful place I had anticipated it to be and more, Madhu was
the most important reason my academic experience at MIT was so enjoyable
and fulfilling. For the wonderful collaboration which led to several of the key
chapters of my thesis, for all his patient advice, help and support on matters
technical and otherwise, and for all the things I learned from him during my
stay at MIT and continue to do so, I will be forever grateful to Madhu.

I am most grateful to Madhu Sudan, Johan H̊astad, Piotr Indyk, Amit
Sahai, and David Zuckerman for their collaboration which led to several of
the results discussed in this monograph. Collectively, this is as much, if not
more, their book as it is mine. I also wish to thank the several other people
with whom I have had useful discussions on coding theory and related top-
ics. These include Noga Alon, Sanjeev Arora, Sasha Barg, Moses Charikar,
Yevgeniy Dodis, Peter Elias, Sanjeev Khanna, Subhash Khot, Ralf Koetter,
Ravi Kumar, Hendrik Lenstra, Daniele Micciancio, Jaikumar Radhakrish-
nan, Amin Shokrollahi, D. Sivakumar, Dan Spielman, Luca Trevisan, Salil
Vadhan, and Alex Vardy, though undoubtedly I have left out several others.

A special thanks is due to the members of my thesis reading committee
at MIT: Peter Elias, Dan Spielman, and Madhu Sudan. Technically, it was
only appropriate that I had these three people on my committee: Peter first
defined the notion of list decoding; Madhu discovered the first non-trivial
efficient list decoding algorithm; and Dan constructed the first linear-time
codes (the subject of Chapter 11 of this book). I regret that I will not be
able to present a personal copy of the book to Peter, who sadly left us a few
months after I submitted my thesis to MIT.

It is with really fond memories that I acknowledge the stimulating working
atmosphere and the company of a great group of friends and colleagues that
I found in MIT’s theory group. The good time I had at MIT owes a lot to the
wonderful student body I had the privilege of being a part of. I would like
to thank Salil, Yevgeniy, Eric, Amit, Raj, Anna, Sofya, Adam K., Adam S.,
Maria, Matthias, Feldman, Abhi, Rocco, Daniele, Alantha, Ryan, Prahladh,

XII Preface

and many others, for numerous conversations on all sorts of topics, and for
making my life at MIT LCS so much fun. I was lucky that Luca Trevisan was
at MIT the year I started; from him I learned a lot, and with him (and Danny
Lewin and Madhu) I shared my first research experience in graduate school.
In my last year at MIT I benefited immensely from the time I spent working
and hanging out with Piotr Indyk, for which I sincerely thank him. I relish
very much our continuing collaboration on expander codes. Lars Engebretsen,
the other member of our espresso trio, also contributed greatly to making my
final year at MIT so memorable.

My sincere thanks to the theory group staff, and in particular Joanne
Talbot and Be Blackburn, for their good cheer and all their administrative
and other help.

It is a pleasure to acknowledge my current academic home, University of
Washington CSE, for its warm and congenial atmosphere, with special thanks
to my theory colleagues Paul Beame, Anna Karlin and Richard Ladner for
their support and company.

A huge thanks to all my friends whom I met at various junctures of my life.
True friends are those who take pride in your achievements, and I am grateful
that I have several who meet this definition and who are an inseparable part
of my life.

I owe a lot to two professors from college: C. Pandu Rangan for encourag-
ing me in every possible way and getting me started on research well before
I started grad school; and S. A. Choudum whose wonderful Graph Theory
course sparked my interest in algorithmic graph theory and eventually theo-
retical computer science.

My most important acknowledgment is to my close and loving family: my
parents and my sister Shantha, who have filled my life with joy and who mean
the world to me. Many thanks to Vaishnavi, my most fortunate discovery, for
her cheer and providing useful distractions during the course of this revision.

Words cannot express my thanks to my parents for all that they have
gone through and done for me. So, of all the sentences in this book none was
easier to write than this one: To my parents, this book is dedicated with love.

Seattle, Washington Venkatesan Guruswami
August 2004

I gratefully acknowledge the fellowships and grants that supported my re-
search at MIT. My research was supported in part by funding from NSF
CCR 9875511, NSF CCR 9912342, and NTT Award MIT 2001-04, and in
part by an IBM Graduate Fellowship.

	Foreword
	Preface

