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2.1 Introduction

In this chapter, we demonstrate the integration of microscopic gain modeling
into the laser design tool LaserMOD, which is derived from the Minilase II
simulator developed at the University of Illinois [1]. Multidimensional carrier
transport, interaction with the optical field via stimulated and spontaneous
emission, as well as the optical field are computed self-consistently in our full-
scale laser simulations. Giving additional details with respect to our previous
work [2], we demonstrate the effectiveness of this approach by investigating
the temperature sensitivity of a broad-ridge Fabry–Perot laser structure with
InGaAsP multi-quantum wells for 1.55 µm emission wavelength.

Monochromatic light sources are key components in optical telecommu-
nication systems. Predominantly, this need has been filled by semiconductor
lasers due to their narrow linewidth. However, increasingly stringent require-
ments for bandwidth, tunability, power dissipation, temperature stability,
and noise are being placed on these devices to meet network demands for
higher capacity and lower bit error rates. As in the semiconductor industry,
where electronic design automation assists in designing multimillion-gate in-
tegrated circuits, it is becoming common practice to employ simulation tools
for designing and optimizing telecommunication networks and components.
As a consequence of predictive modeling, the time to market as well as de-
velopment cost of telecommunication infrastructure can be reduced, as fewer
cycles between design and experimental verification are necessary.

Different levels of model abstraction are used to describe the behavior of
devices, depending on whether they are being simulated alone or with other
components in an optical system. At the lowest level, simulations treat the
fundamental device physics rigorously, whereas behavioral modeling, which
allows for an increased number of elements to be treated, is applied at the
system or network level. This chapter will focus on the former approach.

To predict the performance of a new design, a successful commercial laser
simulator must account for the many complex physical processes that con-
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tribute to the device operation. Mainly, the optical field and its interactions
with the carrier populations must be described self-consistently, as they are
strongly coupled via radiative recombination.

Classic approaches for solving the carrier and energy transport equations,
such as drift-diffusion, heat flow, and energy balance equations, have been
well established by the silicon device simulation industry [3–10]. Historically,
the drift-diffusion model constitutes the first approach developed for semicon-
ductor device simulation [3]. Within a momentum expansion of Boltzmann’s
transport equations, the charge conservation represents only the lowest order
contribution. The hydrodynamic and energy balance models include differ-
ential equations describing the conservation of momentum and energy [5, 6].
From this system of equations, the drift-diffusion equations can be obtained
by assuming constant and equal temperatures for electrons, holes, and the
crystal lattice. The thermodynamic model applies principles of irreversible
thermodynamics and linear transport theory to derive a system of equations
describing carrier concentrations as well as carrier and lattice temperatures
[9, 11]. It can be shown that the thermodynamic and the hydrodynamic ap-
proaches result in equivalent equations for the thermal transport [12, 13].

However, aside from the simulation of electronic transport within a clas-
sic framework, lasers also require quantum mechanical methods to treat light
emission and amplification. These theoretical modeling techniques are far less
mature. Specifically, bound quantum well states that give rise to lasing transi-
tions must be modeled quantum mechanically; yet they must also be coupled
to the classically modeled propagating states that describe the electronic
transport. Progress has been made in this area by employing rate equations
to describe carrier capture and scattering between classic propagating states
and bound quantum well states [1, 14].

Optical gain/absorption and spontaneous emission or photoluminescence
couple transport and optics in optoelectronic devices, as they correlate the
complex refractive index with radiative recombination and generation of
carriers. In lasers, strong coupling occurs due to stimulated emission. Method-
ologies for treating the optical aspect of the coupled problem are based on
different proven approaches of solving Maxwell’s equations. Gain/absorption
and photoluminescence are determined by the energetic position and oscilla-
tor strength of optical transitions. The optical transitions in a semiconductor
quantum well depend on the detailed bandstructure, which has to be cal-
culated for the given geometry and material composition of quantum well
and barrier. k · p-perturbation theory has been widely adopted to compute
the electron and hole energy dispersion, the optical transition matrix ele-
ments, the subband levels, and the confinement wavefunctions based on the
knowledge of the bulk bandstructure [15–22].

In free-carrier or oscillator model approaches, interactions between the
carriers are neglected and analytic expressions for the gain can be obtained
based on Fermi’s Golden Rule or by deriving equations of motion from the
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corresponding system Hamiltonian of a noninteracting electron gas or two-
level system, respectively. Carrier collision effects are introduced phenomeno-
logically in terms of a lineshape function that has a width determined by an
effective decay rate [23, 24]. These kinds of models are often employed in laser
simulation tools, as their simplicity allows us to avoid the excessive compu-
tational effort imposed by the full treatment of carrier interactions, which
requires making the Hamiltonian diagonal with respect to the quasi-particle
interactions.

However, it has been shown that accurate modeling of gain and absorp-
tion spectra requires the accounting of many-body interactions, leading to
effects such as Coulomb enhancement, excitonic correlation, and band gap
renormalization. In Chapt. 1, “Gain and Absorption: Many-Body Effects”
by S. W. Koch et al., a discussion of many-body effects and the underlying
theory can be found. In Sect. 3.1 of Chapt.1 and Fig. 2 within that section,
the free-carrier gain model is compared with the full many-body calculation
and experimental gain spectra. It can be seen that, for a series of measure-
ments, such as the density-dependent set of gain spectra shown in Fig. 2 of
Chapt. 1, satisfying agreement between theory and experiment can only be
achieved by taking into account many-body effects. For low carrier densities
and temperatures, the absorption of semiconductors around the bandedge
is dominated by a pronounced exciton resonance. These electron–hole corre-
lations persist even for higher densities and temperatures and influence the
spectra beyond the effects due to band gap renormalizations alone. Further-
more, dephasing by carrier–carrier and carrier–phonon scattering can lead to
a broadening energy of the spectra. It is clear that reliable prediction of the
density and temperature dependence of such spectral characteristics as the
energetic position, broadening, and oscillator strength of optical transitions
requires that all significant interactions are taken into account (see, e.g., [25–
27]). In the many-body gain model employed here, real and imaginary parts
of eigenenergy renormalizations describe band gap and excitonic shifts as well
as collision broadening. These effects are not treated phenomenologically, but
within the framework of a quantum kinetic theory that rigorously treats the
Coulomb interaction in system Hamiltonian for electrons and holes [25, 26].

In the phenomenological treatment, a gain model would require the user to
specify energetic shift and broadening parameters. This prohibits the predic-
tion of absolute magnitude and shape of the gain over a range of temperatures
and densities for a specific material system. Although several experimental
behaviors of laser devices can be described by the phenomenological effec-
tive decay rate treatment, it cannot reproduce certain experimental features
in the gain spectra that are important for advanced laser structures. It has
been shown that the accurate description of gain and absorption spectra,
in the neighborhood of the transparency carrier density and over a variety
of carrier densities and temperatures, requires the full treatment of carrier
interactions. Section 3.3 of Chapt. 1 discusses the dephasing-time approach
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and its limitations. Approximate results are compared to gain spectra ob-
tained employing the full many-body calculation including scattering terms
and to experimental findings. Without the predictive knowledge, calibration
of gain parameters might imply additional iterations between simulation and
experimental verification during the laser design process, increasing effort in
cost and time.

A completely microscopic treatment, alternatively, does not require any
experimentally measured fitting parameters such as lineshape broadenings or
spectral shifts. It can quantitatively predict the absorption, gain, and photo-
luminescence spectra of ideal structures using only basic bandstructure para-
meters, which are independent of carrier density, temperature, and the design
of the quantum well. Real samples are usually affected by a certain amount of
disorder. In semiconductor quantum wells, crystal inhomogeneities, such as
local well width fluctuations or local fluctuations of the material composition,
lead to an inhomogeneous broadening of spectra in addition to the homoge-
neous broadening due to electron–electron and electron–phonon scattering.
Moreover, magnitude of fluctuations, as well as average material composition
and sample geometry, can vary across the wafer. The results of a simple low-
excitation photoluminescence measurement performed directly on the wafer
for the nonideal sample may be compared with predictions of the microscopic
theory for the ideal structure. This allows for the determination of the inho-
mogeneous broadening, as well as possible deviations between nominal and
actual structural parameters, which are all independent of carrier density and
temperature. This method has recently received attention for application as
an on-wafer testing tool [28, 29]. Once the amount of disorder has been char-
acterized, the theory is completely parameter free and can predict the optical
properties for the device under high excitation operating conditions.

In a rigorous laser simulation, the overall complexity of treating the cou-
pled transport and optoelectronic problem leads to significant computational
effort. In practice, a number of approximations have to be made in order
to produce a more tractable simulation. Complexity is reduced with respect
to the full microscopic description, at the expense of some predictability, by
relying on careful calibration of model parameters introduced through a phe-
nomenological treatment. A good phenomenological model requires only a
few parameters that need calibration, while preserving the basic functional
dependencies given by the microscopic theory. This concept is very common
in semiconductor device and laser simulation where many processes involved
in the carrier transport have to be described. However, it is important to
identify the most critical processes, where enhancements in the level of ac-
curacy can improve the quality of the result of the overall simulation with
acceptable increase of computational effort.

The microscopic many-body theory of the gain employed by our simula-
tor allows us to re-examine the underlying approximation of noninteracting
particles leading to the simpler free-carrier gain model with phenomenolog-



2 Fabry–Perot Lasers: Temperature and Many-Body Effects 31

ical broadening parameter as well as the trade-off between computational
effort and predictability. The rigorous microscopic many-body theory of the
semiconductor, which is based on the semiconductor Bloch equations, allows
for the accurate modeling of the spectral characteristics of the material gain.
With such a model, the energetic position of the gain peak, the broadening
due to quasi-particle collisions, and therefore, the absolute magnitude of the
gain can be predicted based solely on fundamental bulk material parameters.
The properties of the gain are found to be the most critical contributions to
the overall slope efficiency, threshold current, and emission wavelength of the
laser. By comparing computations with experimental results, we will show,
that the use of the advanced gain model can improve the overall predictability
of the simulator.

We note that significant computational effort is associated with the quan-
tum many-body gain calculation. In order to avoid the gain calculation dur-
ing full-scale laser simulations, which can be numerous in design optimization
cycles, the gain and related quantities, such as refractive index change and
photoluminescence, are precomputed and stored as a data base. For different
common material systems associated with specific telecommunication laser
emission wavelength, the creation of libraries, which are parameterized by
material composition and quantum well geometry, might be attractive. Dur-
ing a full-scale laser simulation the gain, refractive index, and photolumines-
cence data can be retrieved from the precomputed spectra for the current
operating condition, to perform self-consistent computations of optical field,
carrier transport, and their interactions to obtain steady-state, transient, or
frequency responses for a particular laser geometry. Taking advantage of this
methodology, computation times for the full-scale laser simulation using the
many-body gain model are comparable with or even faster than those using
a run-time gain calculation based on the free-carrier approach.

In Sect. 2.2 we describe the theoretical background of the transport, opti-
cal, and optoelectronic modeling applied in our simulator. The temperature
sensitivity of an InGaAsP multi-quantum well laser is analyzed in Sect. 2.3
using the many-body gain theory in comparison to the free-carrier gain model.
Our findings are summarized in Sect. 2.4.

2.2 Theory

2.2.1 Transport

A methodology for the carrier transport has been developed and established
for silicon device simulation in multiple dimensions, which we adapt for ma-
terial systems common to semiconductor lasers, to describe electronic trans-
port through bulk regions, in which active layers may be embedded [10, 11].
The injection current into the active quantum well region determines the



32 B. Grote et al.

Table 2.1. Nomenclature.

Symbol Definition

B Einstein coefficient
CAuger

e/h
electron/hole Auger recombination coefficient

c vacuum speed of light
cL crystal lattice heat capacity
EAuger,act

e/h
Auger recombination activation energy

Fe/h electron/hole Fermi level
fe/h electron/hole distribution functions
f
2D/3D

e/h
quantum well electron/hole distribution function for
propagating/bound states

G(ω) gain spectrum
Gthermal lumped thermal conductivity
g
3D/2D

e/h
density of states for quantum well propagating/bound states

H total heat generation rate
HJoule Joule heat source
Hrec recombination heat source
Htrans heat source due to transient modulation of carrier concentrations
HP eltier+T homson sum of Peltier and Thomson heat sources
Je/h electron/hole current
kB Boltzmann constant
k0 wavenumber for Helmholtz equation
kfca

e/h
free-carrier absorption coefficients for electrons/holes

Li,j Lorentzian broadening around transition frequency ωi,j

q elementary charge
N±

D/A
ionized donors/acceptors

ne/h, n
3D
e/h, n

2D
e/h, n

2D,i
e/h

electron/hole concentrations, total propagating (3D) and bound (2D)
quantum well densities, individual subband (i) contributions for
bound states

ni intrinsic carrier density
nt

e/h electron/hole trapped carrier density
nph phonon density
neff,ν effective index as given by eigenvalue ν of the Helmholtz equation
Pe/h electron/hole thermoelectric power
Rdark, RAuger, RSRH total nonradiative, Auger and Shockley–Read–Hall recombination
Rstim, Rspon,bound/bulk stimulated and spontaneous recombination for bound/bulk states
R

e/h
capture, R

e/h

capture,cc/ph
electron/hole quantum well net capture rate,
contribution due to carrier–carrier/carrier–phonon scattering

s
capture/escape,cc/ph

e/h
electron/hole capture/escape coefficient
for carrier–carrier/carrier–phonon scattering

Sν,ω photon occupation of mode (ν, ω)
Se/h electron/hole energy flux
T, TC temperature, contact temperature
t time
U(ω) spontaneous emission spectrum
Z(ω) photon density of states
α0 background absorptive loss (carrier independent)
ε static dielectric permittivity
Φ electric potential
γ0, γinh homogeneous, inhomogeneous broadening
κL/e/h crystal lattice/electron gas/hole gas heat conductivity
τSRH

e/h Shockley–Read–Hall electron/hole lifetime
τphoton

ν,ω , τmirror, τscatter total photon losses, mirror losses, scatter losses
ωLO longitudinal optical phonon frequency
ψ

e/h
i quantum well confinement wavefunction of subband i

ζν νth Helmholtz eigenmode
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carrier densities within bound quantum well states and, therefore, the de-
gree of inversion. For carrier transport through bulk semiconductor regions,
the drift-diffusion system of equations is applied. The electric potential φ is
determined by Poisson’s equation,

∇ · ε∇φ = q(ne − nh −N+
D +N−

A ), (2.1)

where the charges are given by the densities of electrons ne, holes nh, ion-
ized donors N+

D , and acceptors N−
A (q is the elementary charge and ε is the

static dielectric permittivity of the respective material). A list of symbols
used in this chapter and their definition can by found in Table 2.1. For quan-
tum wells, we distinguish between carriers in propagating (n3D

e/h) and bound
states (n2D

e/h). Although all states are considered propagating in bulk regions
(n2D
e/h = 0), the confinement potential leads to bound states localized within

the quantum well. Within an envelope function approximation, the spatial
distribution of carriers in the confined direction of the quantum well is de-
scribed by wavefunctions, which are obtained by solving the Schroedinger
equation for the potential given by the solution of Poisson’s equation and the
band gap offsets. With wavefunctions ψe/hi for subband i, the spatial distrib-
ution of bound electrons and holes (indicated by indices e/h) in the direction
perpendicular to the quantum well plane is given by:

n2D
e/h(r) =

∑
i

|ψe/hi (y)|2n2D,i
e/h (r‖). (2.2)

Here, y denotes the growth direction and coordinates perpendicular to the
y-axis and parallel to the quantum well plane are indicated by ‖. Light prop-
agation within the Fabry–Perot cavity is assumed to be along the z-axis. The
carrier density n2D,i

e/h in subband i is related to the distribution function f2D
e/h

via the density of states g2D,i
e/h ,

n2D,i
e/h =

∫ ∞

Ei

g2D,i
e/h (E)f2D,i

e/h (E), (2.3)

which results from our eight band k · p calculation. The total charge due
to electrons is given by the sum over bound and propagating contributions,
ne/h = n3D

e/h + n2D
e/h.

Figure 2.1 illustrates our transport model applied to quantum well regions.
Capture due to carrier–carrier and carrier–phonon scattering couples the clas-
sic propagating bulk and quantum well continuum states to the quantum con-
fined bound states. The corresponding rates enter the continuity equations
for carriers in bound and continuum states [1, 30]. Carriers entering the quan-
tum well in continuum states can transit through or get captured into bound
states as a result of scattering events involving other carriers or phonons. For
sufficiently fast inter-subband scattering leading to thermalization between
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Fig. 2.1. Schematic illustration of the transport model applied to quantum well
regions including drift-diffusion currents in bulk regions (A), transport across in-
terfaces (B), carrier capture from continuum into bound states (C), radiative and
nonradiative recombination from bound states (E), and nonradiative recombination
from continuum states or for bulk carriers (D) (from [2]).

the subbands, the occupation of bound states can be described by a single
Fermi level. This reduces the set of rate equations in the quantum wells to
a four-level system defined by effective rates and density of states, which are
the sum over individual subband contributions f2D,i

e/h = f2D
e/h, g

2D
e/h =

∑
i g

2D,i
e/h .

The total bound carrier concentration is described by a continuity equation:

∂n2D
e/h

∂t
= ±1

q
∇‖ · Je/h ‖ −Rdark −Rstim −Rspon,bound +R

e/h
capture. (2.4)

Via the capture rate R
e/h
capture, the bound carriers couple to the continuum

concentrations, where it enters the continuity equation as a loss:

∂n3D
e/h

∂t
= ±1

q
∇ · Je/h −Rdark −Rspon,bulk −R

e/h
capture. (2.5)
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Capture into and escape from bound states is modeled by Master equation
type rates for in- and out-scattering due to carrier–carrier and carrier–phonon
interaction. The net capture rate Re/hcapture = R

e/h
capture,cc+R

e/h
capture,ph is given

by:

R
e/h
capture,cc =

∫ ∞

E0
e/h

dE

∫ ∞

E0
e/h

dE′g3D
e/h(E) g2D

e/h(E
′) ×

× (
scc,capturee/h (E,E′) f3D

e/h(E) (1 − f2D
e/h(E

′))

− scc,escapee/h (E,E′) (1 − f3D
e/h(E)) f2D

e/h(E
′)
)
, (2.6)

describing carrier–carrier scattering, and:

R
e/h
capture,ph =

∫ ∞

E0
e/h

dE

∫ ∞

E0
e/h

dE′g3D
e/h(E) g2D

e/h(E
′) ×

× (
sph,capturee/h (E,E′) (nph + 1) f3D

e/h(E) (1 − f2D
e/h(E

′))

− sph,escapee/h (E,E′)nph (1 − f3D
e/h(E)) f2D

e/h(E
′)
)
, (2.7)

modeling scattering of carriers with longitudinal optical phonons. In general,
the scattering coefficients scc/ph,capture/escapee/h would have to be assumed to be
dependent on the occupation of the involved states to emulate the dynamics
of the quantum Boltzmann equation used for the microscopic description of
the scattering process. Following [1], the scattering coefficients are given by
constant rates normalized by the final density of states. In (2.7), absorption or
emission of longitudinal optical phonons allows for interaction of energetically
nonresonant states by transfer of a phonon energy. The phonon occupation
is assumed to be [1]:

nph =
1

exp(�ωLO

kBT
) − 1

, (2.8)

with longitudinal optical phonon energy �ωLO, Boltzmann constant kB , and
temperature T . We assume energy conservation within the electron gas under
elastic carrier–carrier scattering described by (2.6).

The net recombination rate Rdark = RSRH + RAuger balances recombi-
nation and generation due to nonradiative processes, such as Auger recom-
bination:

RAuger = (CAugerh nh + CAugere ne)(nenh − n2
i ), (2.9)

and Shockley–Read–Hall recombination:

RSRH =
nenh − n2

i

τSRHh (ne + nte) + τSRHe (nh + nth)
. (2.10)

Here, ni is the intrinsic carrier density, nte/h are the respective trapped car-
rier densities, τSRHe/h are the lifetimes of electrons and holes for trap-assisted
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recombination, and CAugere/h in (2.9) are the coefficients for the electron and
hole Auger process. The temperature dependence of the Auger recombination
can be modeled by [31, 32]:

CAugere/h (T ) = CAugere/h (300 K) exp
(−EAuger,act

e/h (
1

kBT
− 1

kB300 K
)
)
, (2.11)

with activation energies EAuger,acte/h . Nonradiative processes, as well as sponta-
neous emission into modes other than the lasing modes, decrease the carrier
densities without contributing to the laser output power.

Aside from nonradiative recombination, stimulated and spontaneous emis-
sion lead to a decrease of the carrier population within bound quantum well
states. The spontaneous emission is given by:

Rspon,bound =
∫
dωZ(ω)U(ω), (2.12)

where ω is the angular frequency, Z(ω) is the spectral density of photon
states, and U is the photoluminescence spectrum. The recombination due to
stimulated emission,

Rstim =
∑
ν,ω

Sν,ω|ζν |2 c

neff,ν
G(ω), (2.13)

is the sum over light emission into all Fabry–Perot modes denoted by ω
and eigenmodes ζν of the plane perpendicular to the light propagation. G
is the gain spectrum as given by the interband transitions of the quantum
well. Eigenmodes and effective refractive indices neff,ν are determined by
the solution of a Helmholtz eigenvalue problem. c is the speed of light. The
photon occupation number Sν,ω obeys a rate equation (see Sect. 2.2.2). In
bulk regions and for continuum states, a simplified model is applied to account
for recombination due to spontaneous emission:

Rspon,bulk = B(nenh − n2
i ), (2.14)

where B is the spontaneous recombination coefficient.
The current densities Je/h are calculated within the framework of the

drift-diffusion theory. For Fermi statistics, the diffusivity is related to the
carrier mobility by a generalized Einstein relation. Transport across mater-
ial interfaces constituting a bandedge discontinuity is described in terms of
thermionic emission. Within the quantum well plane, indicated by ‖, contin-
uum and bound carriers can drift leading to injection losses due to lateral
leakage currents, see (2.4). For bulk regions, (2.5) reduces to the well-known
continuity equations for electrons and holes, as all states are considered prop-
agating.

Due to carrier–phonon scattering, part of the electronic energy is trans-
ferred to the crystal lattice resulting in an increase of the lattice temperature.
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Instead of deriving quantum mechanical equations of motion for the phonon
population interacting with electrons and holes, classic thermal transport
equations, which describe the average energy of the respective subsystems
of electrons, holes, and host lattice, are typically employed in device simula-
tion drastically reducing the problem complexity [5–11, 33]. In semiconductor
laser diodes, self-heating under continuous-wave (CW) operation is known to
affect the characteristics significantly and often limits the performance, as
recombination and transport processes explicitly or implicitly depend on the
temperature. In order to model these effects, a lattice heat flow equation has
to be solved to determine the temperature profile within the device [9, 34]:

(
cL +

3
2
kB(ne + nh)

)∂T
∂t

= ∇ · (κL∇T − Se − Sh
)

+H. (2.15)

Here, cL is the heat capacity of the lattice and κL is the lattice thermal
conductivity. The energy fluxes Se/h are given by:

Se/h = ∓Pe/hTJe/h − κe/h∇T, (2.16)

with thermoelectric powers Pe/h and thermal conductivity mediated by elec-
trons and holes κe/h. Including contributions due to temperature gradients,
the current densities are given by:

Je/h = ne/hµe/h
(∇Fe/h ± qPe/h∇T

)
, (2.17)

where µe/h are the mobilities and Fe/h are the Fermi levels of electrons and
holes, respectively. For the derivation of (2.15), the electron and hole temper-
ature were assumed to be equal to the lattice temperature. The heat capacity
and conductivities of the electron and hole gas add to the thermal properties
of the lattice, as can be seen from the heat capacity term on the left-hand side
of (2.15) as well as the heat flux term on the right-hand side. Heat generation
H = HJoule +Hrec +Htrans in (2.15) is due to Joule heat:

HJoule = −1
q

(Je · ∇Fe + Jh · ∇Fh) , (2.18)

recombination heat expressed by:

Hrec = (Fe − Fh)Rdark, (2.19)

and an additional heat production rate originating from the transient mod-
ulation of the carrier concentrations:

Htrans = −T ∂Fe
∂T

∂ne
∂t

+ T
∂Fh
∂T

∂nh
∂t

. (2.20)

The sum of Peltier and Thomson heat:

HPeltier+Thomson = −Je · T∇Pe − Jh · T∇Ph, (2.21)
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is included in the convective part of the energy fluxes (see 2.16 and 2.15).
The recombination heat source accounts for the energy of the order of the
band gap dissipated to the lattice by nonradiative recombination. Note that
radiative processes transfer this energy to the light field and, therefore, should
not be included here.

Two different thermal contact models are common in physical device sim-
ulation. By assuming an isothermal contact with given temperature TC , a
Dirichlet boundary condition is imposed:

T = TC . (2.22)

The second model is of Cauchy type. It associates a finite thermal conduc-
tance Gthermal with the contact to determine the heat flux through the con-
tact area [35]:

−κLn · ∇T =
Gthermal

A
(T − TC), (2.23)

where n is the surface normal vector at the contact and A is the contact
surface area.

2.2.2 Optics

The light propagation within a waveguide structure is determined by the
solution of Maxwell’s equations. A set of approximations has been devel-
oped that reduces the computational effort with respect to the full solution
for specific cavity structures. For Fabry–Perot lasers, the lateral modes can
be described by a Helmholtz equation, whereas the resonator modes deter-
mine the spectrum of the axial direction. Photon rate equations describe
the light intensity within the individual eigenmodes. Modal gain and sponta-
neous emission compensate losses due to different scattering and absorption
mechanisms.

The waveguide properties of the semiconductor lasers are expressed by a
Helmholtz eigenvalue equation describing stationary solutions of Maxwell’s
equations: (∇2

x,y + k2
0(n

2
b − n2

eff,ν)
)
ζν(x, y) = 0. (2.24)

Here, nb is the background refractive index, and k0 is equal to ω/c with the
angular frequency ω. The eigenvalues neff,ν determine the propagation along
the optical z axis of the Fabry–Perot cavity:

ζν(r) = ζν(x, y) exp(ineff,νk0z). (2.25)

The mode profile is updated by solving (2.24) during the simulation to reflect
index changes in the active layer. The light intensity within the different
modes is determined by a set of photon rate equations:

∂

∂t
Sν,ω = (Gν,ω − 1

τphotonν,ω

)Sν,ω + Uν,ω. (2.26)
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Via the modal gain,

Gν,ω =
∫
dV |ζν |2 c

neff,ν
G, (2.27)

and the spontaneous emission,

Uν,ω =
∫
dV |ζν |2U, (2.28)

electronic transport and optical properties are coupled. The losses,

1

τphotonν,ω

=
1

τmirror
+

1
τscatter

+
c

neff,ν
αb, (2.29)

entering (2.26) are the sum of losses due to light leaving the cavity through
the facets (τmirror), light scattered out of the waveguide (τscatter), and ab-
sorptive losses (αb). For narrow ridge waveguides, scatter losses can become
considerable due to surface imperfections. Substantial losses due to interva-
lence band absorption in InGaAsP materials have been reported [32]. The
absorptive losses αb include free-carrier absorption mechanisms such as in-
tervalence band absorption, which are modeled as being proportional to the
carrier densities:

αb =
∫
dV |ζν |2

(
kfcae ne + kfcah nh + α0

)
, (2.30)

with free-carrier absorption coefficients kfcae/h (α0 accounts for carrier-inde-
pendent background absorptive losses). Usually, barrier and other layer ma-
terials in semiconductor quantum well lasers are designed to be transparent at
the laser wavelength given by the effective quantum well band gap. However,
although band-to-band absorption may vanish, absorption spectra usually ex-
hibit an Urbach tail due to phonon-assisted absorption and disorder-induced
localized states below the band gap, contributing to background losses.

2.2.3 Gain

By coupling the electronic and optical subsystems, the spontaneous and, es-
pecially, the stimulated emission play a crucial role in the laser simulation.
The gain computation for semiconductor quantum well lasers involves deter-
mining the bandstructure via methods such as k · p calculation and comput-
ing the subband spectrum to obtain optical matrix elements and density of
states. Within the framework of a free-carrier approach, a noninteracting elec-
tron gas is assumed, allowing for the derivation of analytical expressions for
gain and spontaneous emission. Broadening mechanisms are introduced via a
phenomenological linewidth broadening function. In contrast, the many-body
theory microscopically accounts for the effects of carrier–carrier interaction,
including excitonic correlations as well as carrier–phonon scattering. The pre-
dictive capabilities of this method in determining the material gain spectra
for a variety of materials has been proven in several publications [25, 27, 29].
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2.2.3.1 Free-Carrier Gain Model

Neglecting interactions of carriers with other quasi-particles of the semicon-
ductor, the gain G and spontaneous emission spectra U can be expressed
as:

G =
∫ ∞

0
dE
∑
i,j

〈ψei |ψhj 〉 (Bgred)i,j (f2D
e + f2D

h − 1) Li,j (2.31)

U =
∫ ∞

0
dE
∑
i,j

〈ψei |ψhj 〉(Bgred)i,j f2D
e fh2D Li,j . (2.32)

Here, 〈ψei |ψhj 〉 is the overlap integral for the optical transition involving sub-
bands i, j. The optical matrix element (Bgred)i,j is the product of Einstein co-
efficient and the reduced density of states, which results from our eight-band
k · p bandstructure calculation. The range of integration includes all relevant
transitions. The collision broadening term is modeled by a Lorentzian:

Li,j(E) =
γ0/2π

(�ωi,j − E)2 + (γ0/2)2
(2.33)

around the transition frequency ωi,j and with the full-width half-maximum
of γ0.

2.2.3.2 Many-Body Gain Theory

The microscopic calculation of gain/absorption, refractive index, and photo-
luminescence spectra is described in detail in Chapt. 1, [25, 36], and references
therein. It is based on solving the semiconductor Bloch equations, i.e., the
equations of motion for the reduced density matrix, which are derived from
the system Hamiltonian, including Coulomb interaction between carriers and
carrier–phonon interaction. Consequently, Coulomb-induced effects like band
gap renormalization, Coulomb enhancement of the absorption, and excitonic
resonances are taken into account self-consistently. The electron–electron and
electron–phonon scattering processes that lead to the dephasing of the polar-
izations and, therefore, spectral broadening and spectral shifts are calculated
in second Born approximation. The resulting scattering equations take the
form of generalized quantum-Boltzmann equations.

The diagonal elements of the reduced density matrix are the distribu-
tion functions, whereas the off-diagonal elements are the microscopic polar-
izations. The resulting polarizations are added up to the total macroscopic
optical polarization, from which the optical susceptibility can be obtained
through a simple Fourier transform. The real part of the susceptibility gives
the carrier-induced change of the refractive index, and the imaginary part
gives the gain/absorption. The photoluminescence spectra are derived from
the absorption/gain spectra using the Kubo–Martin–Schwinger relation [37].
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Spectra of gain, spontaneous emission, and carrier-induced change of the
refractive index are precalculated and stored for a sufficiently dense grid of
carrier density and temperature points. The full-scale laser simulation ac-
cesses this data base and interpolates for the required bound carrier density,
temperature, and wavelength. Derivatives with respect to internal variables
used in the Newton–Raphson method, which is applied to the solution of the
system of coupled differential equations, are evaluated numerically.

2.3 Temperature Sensitivity of InGaAsP Semiconductor
Multi-Quantum Well Lasers

Semiconductor lasers based on the InGaAsP-InP material system have gained
great attention because the band gap allows tuning into the 1.3 µm−1.6 µm
range of emission wavelength suitable for optical fibers. Their performance is
known to be strongly temperature dependent [38]. However, from an applica-
tion point of view, it is desirable to achieve high-temperature stability of laser
diodes. The necessity of cost-intensive cooling can be avoided, while gaining
tolerance with respect to thermal interaction and, therefore, increasing flexi-
bility in terms of packaging and integration. In this context, the performance
of InGaAsP lasers at elevated temperatures is of interest, especially with
regard to threshold current and slope efficiency.

Different physical processes have been discussed with respect to their role
in determining the temperature sensitivity of these lasers: Auger recombi-
nation [39, 40], intervalence band absorption [41], carrier leakage out of the
active region [42], lateral current spreading [43], barrier absorption and spon-
taneous recombination [44], as well as gain reduction [45]. The self-consistent
modeling of all of these mechanisms is required for a theoretical investiga-
tion of the temperature sensitivity. In the past, most theoretical studies have
been performed based on simple gain models, such as the free-carrier model
or the oscillator model, which describe collision effects phenomenologically in
terms of a gain broadening parameter. We will show that temperature and
carrier-density-induced collision broadening of the gain spectrum is a dom-
inant factor influencing the temperature sensitivity [2]. Carrier–carrier and
carrier–phonon scattering-induced gain broadening can only be accounted for
correctly by employing a theory that takes these many-body interactions into
account self-consistently. We will point out shortcomings in phenomenologi-
cal models for the gain broadening and identify the need for enhancements.
Oversimplified models for the gain might lead to misinterpretations concern-
ing the relative importance of physical processes being involved, as adjust-
ment of carrier transport parameters can have a similar impact on the laser
characteristics as modifications of gain parameters.
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Fig. 2.2. Cross section of the ridge waveguide Fabry–Perot laser structure studied
in our simulations.

2.3.1 Laser Structure

We study a multi-quantum well (MQW) ridge waveguide laser diode with
a Fabry–Perot cavity, as described in detail in [11, 32]. Figure 2.2 depicts a
cross section of the device. In the active region, six compressively strained
InxGa1−xAsyP1−y quantum wells with nominal composition x = 0.76 and
y = 0.79 and a thickness of 6.4 nm are embedded in 5-nm-thick barriers made
of In0.71Ga0.29As0.55P0.45. The multi-quantum well region is sandwiched be-
tween two undoped In0.171Ga0.829As0.374P0.626 separate confinement layers
(SCLs). The cladding layers are made of InP. On the p-side of the structure
the first 0.14 µm are undoped to avoid diffusion of acceptors into the active
layers. The acceptor concentration is 4×1017cm−3 within the p-InP cladding
layer. In the n-type cladding layer, the donor concentration is 8 × 1017cm−3.
The p-type cladding layer is etched down to the separate confinement to leave
a 57 µm-wide ridge forming the lateral mode confinement. The cleaved facets
have a reflectivity of R = 0.28 and the cavity length is 269 µm. Figure 2.3
shows conduction and valence band within the regions surrounding the active
layer for a vertical cut along the symmetry plane.

2.3.2 Sample Characterization

Due to the predictive capabilities of the many-body theory, comparison of
measured and calculated photoluminescence spectra allows for the charac-
terization of the sample. A methodology has been described that makes it
possible to use this procedure for on-wafer testing [28, 29]. Static disorder
in the quantum wells leads to an inhomogeneous broadening of optical reso-
nances due to local fluctuations of the confinement potential. By applying
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a Gaussian broadening convolution to the computed spectra, the sample
quality can be assessed by fitting the experimental findings. Furthermore,
comparison of the spectral position of the photoluminescence spectrum can
indicate deviations of the sample geometry and material composition from
the nominal specification. Temperature- and density-dependent experiments
allow us to distinguish between the homogeneous collision broadening and
the disorder-induced inhomogeneous broadening, because in contrast to the
particle collisions, the influence of static disorder does not exhibit any depen-
dence on temperature or carrier density.
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Fig. 2.4. Comparison of measured photoluminescence with calculations based on
the many-body gain theory for specified inhomogeneous broadening γinh for density
N = 8.5×1011cm−2 and temperature T = 300 K.
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In Fig. 2.4, experimental photoluminescence is reproduced by computa-
tions based on the many-body gain theory. In order to achieve agreement, a
blue shift of 23 meV with respect to the measurement had to be assumed.
This indicates a slight deviation of the material composition from the nomi-
nal values. A 3% reduction of the Indium or Arsenic concentration would lead
to such a shift. Assuming the nominal concentrations are correct, a deviation
of the well width by 1 nm from the nominal value would also explain the
shift. Such a deviation seems very unlikely because the growth process can
be controlled to a good degree in this regard. Therefore, we proceed assuming
x = 0.745 and y = 0.775. The nominal material composition, as specified in
[11, 32], is based on an analysis of the photoluminescence and strain using
a simpler theory and bowing parameters for the bulk material band gap dif-
ferent from those used here, which explains the deviations in the resulting
material composition [46].

For determining the inhomogeneous broadening, a series of density-
dependent photoluminescence spectra would be desirable to distinguish car-
rier-collision-induced homogeneous broadening from disorder-induced inho-
mogeneous broadening. However, the carrier density dependence of the line-
shape helps to determine the inhomogeneous broadening to be approximately
22 meV using only one experimental photoluminescence spectrum at low car-
rier density. Note that this sample characterization should not be regarded
solely as a parameter calibration step, as in return, it allows for the iden-
tification of deviations from the nominal geometry and composition, and it
helps to assess the quality of the growth process.

2.3.3 Gain Spectra

Figure 2.5 shows gain spectra for different temperatures and carrier densi-
ties obtained using a free-carrier model [left column, Fig. 2.5(a) and (b)] in
comparison with the results of the microscopic many-body theory [right col-
umn, Fig. 2.5(c) and (d)] [48]. The upper row [Fig. 2.5(a) and (c)] depicts
gain spectra for increasing carrier density, while the lower row [Fig. 2.5(b)
and (d)] shows gain spectra for increasing temperature. For further illustra-
tion, Fig. 2.6 depicts the peak gain obtained using the free-carrier model in
comparison with computations based on the many-body theory as a function
of the carrier density for different temperatures. The gain spectra obtained
using the two models exhibit significant differences in amplitude and overall
spectral shape as a consequence of interactions, which are neglected in the
simpler free-carrier approach but included in the many-body theory.

In the absorptive regime, the attractive part of the Coulomb interaction
leads to formation of excitons leading to a distinct resonance below the band-
edge [Fig. 2.5(c)], which is missing in the free-carrier model spectra. Above
the bandedge, Coulomb enhancement effects influence the spectral shape of
the absorption due to excitonic continuum states. For higher density, the ex-
citonic resonance disappears. However, excitonic correlations persist leading
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to a red-shift of the gain/absorption with respect to the material band gap
in addition to carrier-induced band gap renormalizations. By adjusting the
optical band gap, an error of the order of an excitonic binding energy can be
corrected in the simpler free-carrier model for the gain regime. However, it is
still unable to predict the position accurately and requires experimental data
to calibrate the spectrum. Although band gap renormalizations are a con-
sequence of microscopically including the Coulomb interaction in the many-
body theory, the free-carrier approach accounts for the decrease of transition
energy with increasing carrier density by applying a phenomenological band
gap reduction, which is based on the local density approximation for the car-
rier Coulomb self-energies [47]. The resulting energetic position of the lowest
subband transition is indicated by arrows in Fig. 2.5 for the lowest and the
highest carrier density. In spite of the density-induced band gap reduction,
both models predict a blue-shift of the gain peak for increasing density due to
higher subband contributions overcompensating band gap renormalizations.
This blue-shift is stronger in the spectra computed based on the many-body
theory than in the results of the free-carrier approach.

In a Fabry–Perot cavity of common resonator length of several hundred
micron, a quasi-continuum of longitudinal modes is available. Spectral shifts
might lead to inaccuracies in predicting the laser frequency, but they have
limited impact on the output characteristics, as a resonator mode close to the
gain peak can always be found. Although spectral details have minor influence
on the characteristics of a Fabry–Perot laser, it becomes more significant in
cavities with a strong optical confinement such as in vertical-cavity surface-
emitting lasers (VCSELs) An error on the order of an excitonic binding energy
can shift the spectral region of maximum gain into the reflection band of the
cavity. Furthermore, in such structures, spectral details around the trans-
parency point can be important. In our example, the macroscopic results,
such as light-current characteristics, depend on the gain peak, but they are
insensitive to the rest of these spectral details. The position of the gain max-
imum determines the lasing modes and, therefore, the emission wavelength.
The threshold current density and the slope efficiency are affected by the
magnitude of the gain and its density and temperature dependence. Carrier–
phonon and carrier–carrier scattering induce broadening, and subsequently
reduce the peak amplitude of the gain. As these interactions are included
in the microscopic theory within the Markovian limit, the temperature- and
density-dependent broadening and, therefore, the total magnitude of the gain
can be predicted as a function of the injection current.

Due to carrier–carrier scattering-induced broadening, the increase of gain
with increasing density shows a stronger saturation behavior than the gain
spectra obtained by neglecting these effects in the free-carrier approach, as
can be seen from Fig. 2.5(a) and (c) and Fig. 2.6. Lower differential gain and
stronger saturation behavior of the peak gain for increasing carrier concentra-
tion can be observed for the many-body gain compared with the free-carrier
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model. In the free-carrier model, a linewidth broadening parameter has to
be specified to phenomenologically account for carrier–carrier and carrier–
phonon interactions [see (2.33)], which prohibits the model from predicting
the absolute gain amplitude and requires calibration using experimental data.
We use a linewidth broadening of 26 meV for the gain spectra shown in Fig.
2.5. Comparing the gain amplitude of the free-carrier model with the many-
body gain spectra (see Fig. 2.6), the broadening parameter would have to
be increased to reduce the gain peak and differential gain to the correct
values as given by the many-body gain. However, for increased broadening,
the deviation of the free-carrier gain from the many-body gain around the
transparency density would increase.

Naturally, the complex details of the carrier–carrier and carrier–phonon
scattering processes cannot be included in one number. Therefore, the line-
width broadening can be adjusted to reproduce the gain amplitude of exper-
iments only in a narrow window of carrier densities. The effective decay time
approach fails to describe the behavior over a wider range of densities or tem-
peratures, as discussed in Chap. 1. Improving the model for more complex
lineshapes or introducing a density and temperature dependence would add
fit parameters. Although experimental results can be reproduced, additional
effort in model calibration has to be invested.

For a constant linewidth broadening parameter, we observe a weaker tem-
perature dependence of the free-carrier gain [Fig. 2.5(b)] compared with the
results obtained by the many-body theory [Fig. 2.5(d)]. Although a quanti-
tative change of the gain amplitude is observed for the free-carrier model,
the gain computed based on the many-body theory is almost completely sup-
pressed by increasing the temperature from 300 K to 400 K for constant
carrier density. The temperature dependence of the free-carrier gain is im-
plicitly determined by the temperature dependence of the carrier distribution
functions [see (2.31)]. In addition to the inversion factor, the many-body gain
shows the influence of the increased phonon scattering for higher tempera-
tures. A red-shift of the gain with increasing temperature is predicted by
both models and is caused by band gap narrowing. The energetic position
of the lowest subband transition is indicated by arrows in Fig. 2.5(b) for the
lowest and highest temperature.

2.3.4 Light-Current Characteristics and Model Calibration

In Figs. 2.7 and 2.8, light-current curves obtained by the free-carrier model
and the many-body model (lines) are compared with measured data (denoted
by symbols) for the structure described in Sect. 2.3.1. The laser structure
and experimental data have been taken from [32]. The experiments were per-
formed under pulsed conditions to avoid self-heating. Therefore, a uniform
temperature distribution, as given by the stage temperature, can be assumed.
Both models can reproduce the experimental findings after model calibration.
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With known gain spectrum calculated using the many-body theory, the cali-
bration of remaining transport model parameters is greatly simplified due to
a significant reduction of the parameter space. Aside from the gain, the spon-
taneous recombination is completely determined, as well as refractive index
changes within the active layer. The use of simpler gain models requires si-
multaneous adjustments of transport and gain model parameters to account
for density and temperature dependence of experimental findings.
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Fig. 2.7. Light-current characteristics for increasing temperature using the many-
body gain model in comparison with experimental data. (a): Prediction based on
default parameters of the simulator. (b): Calibrated result.

The uncalibrated simulation results obtained for each model, using de-
fault parameters from the material library of our simulator, show that the
prediction based on the many-body theory is much closer to the experimental
findings, concerning threshold current and slope efficiency, than the predic-
tion based on the free-carrier approach [denoted by “default parameters” in
Fig. 2.8(a)]. The free-carrier model predicts a lower threshold current and a
much smaller shift of the threshold as a function of temperature. The slope
efficiency is higher for the free-carrier approach than the microscopic many-
body calculation, which agrees well with the experimental data. The weaker
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temperature sensitivity of the free-carrier model-based prediction is based
on the weaker temperature dependence of the gain due to neglecting the
electron–phonon interaction, as observed in Fig. 2.5. Furthermore, as a con-
sequence of not accounting for carrier–carrier and carrier–phonon collision
effects, the total amplitude of the gain as well as the differential gain is
higher for the free-carrier model compared with the many-body gain theory
(see Fig. 2.5), leading to lower threshold of the light-current characteristic
and influencing the slope efficiency.

Besides the gain, nonradiative recombination affects the threshold cur-
rent density and slope efficiency. Auger recombination, Shockley–Read–Hall
recombination, and spontaneous emission into nonlasing modes decrease the
carrier densities in the active layers without contributing to light ampli-
fication. Waveguide and background absorptive losses, intervalence band
absorption, and lateral leakage are other processes affecting the device be-
havior. The Auger recombination, in particular, has been pointed out as
one of the dominating processes [32, 39]. Within the nonradiative recom-
bination mechanisms, it has the strongest density dependence, being cubic,
whereas other recombination mechanisms such as spontaneous recombination
and Shockley–Read–Hall processes have a weaker, quadratic and linear den-
sity dependence, respectively [see (2.9), (2.14), (2.10)]. As a decrease of gain
with increasing temperature has to be compensated by an increase of carrier
density within the active layers, the threshold injection current increases with
temperature. The efficiency of the injection is affected by the dark recombi-
nation, which acts to reduce the carrier density. Due to the nonlinearity with
respect to the carrier density dependence, the Auger recombination tends
to strongly amplify the effects of the temperature-dependent gain reduction,
leading to further reduction of slope efficiency and increase of threshold cur-
rents. This mechanism scales with the Auger coefficients. The same argument
applies to a lesser degree to other carrier-dependent processes involved in the
coupled problem of carrier transport and radiative interaction, as an increase
in temperature will indirectly increase the carrier density in the quantum
wells. Note that the strong decrease of the differential gain with increasing
carrier density observed for the many-body gain tends to nonlinearly increase
the carrier densities required to compensate a temperature-induced reduction
of the gain, thus enhancing the temperature sensitivity.

As the gain is completely determined by the microscopic calculation, only
transport parameters have to be adjusted to fit the measurement. Due to
the prediction overestimating the temperature dependence in Fig. 2.7(a),
we reduce the Auger coefficients to CAugere = 1 × 10−31cm6s−1, CAuger

h =
5 × 10−31cm6s−1 and compensate with a decrease of the carrier lifetime in
the Shockley–Read–Hall recombination within the quantum wells: τSRHe =
5×10−9s, τSRH

h = 5×10−8s. We slightly reduce the carrier-dependent loss and
increase carrier-independent contributions. Based on the photoluminescence
comparison, an inhomogeneous broadening of 22 meV is used. A good match
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of the experimental curves can be obtained using one set of transport model
parameters for all temperatures (see Table 2.2).

Table 2.2. Material and Model Parameters Used for the Active Layers. Default
Parameters of the Simulator, Parameters Calibrated Using the Many-body Gain
Model, and Parameters Published in [32] are Listed.

Parameter Default Calibration [32]

τSRH
e /s 2.44e-8 5.e-9 2.e-8

τSRH
h /s 2.88e-6 5.e-8 2.e-8

B/(cm3s−1) 2.26e-10 1.2e-10 1.2e-10
CAuger

e /(cm6s−1) 4.43e-31 1.0e-31 0.0
CAuger

h /(cm6s−1) 3.95e-30 5.0e-31 1.6e-28
EAuger,act

e /meV 0.0 0.0 60
EAuger,act

h /meV 0.0 0.0 0.0
α0/(cm−1) 0.0 16.0 0.0
kfca

e /cm2 1.e-18 1.0e-18 1.0e-18
kfca

h /cm2 2.e-17 1.8e-17 8.2e-17
γ0/meV (only free-carrier gain) 26 120/190/265 41
γinh/meV (only many-body gain) 0.0 22.0 –

Based on our advanced treatment of the gain, we find that the influence of
the Auger recombination on the temperature dependence of InGaAsP quan-
tum well lasers is secondary. Our Auger parameters used in our calibrated
simulations are about one to two orders of magnitude lower than parame-
ters published in the literature for InGaAsP [11]. The large spread of values
in the literature indicates that the Auger process in quantum wells deserves
further scientific investigation. Experimentally, Auger coefficients are often
determined as the coefficient of the cubic term in a polynomial fit of a density-
dependent measurement. Other processes could contribute to the measured
coefficient leading to an overestimation of the Auger recombination. Theo-
retical Auger parameters found in [49, 50] for unstrained InGaAsP quantum
wells are in good qualitative agreement with our findings. The influence of 1%
strain present in our quantum well structure should be negligible compared
with the general uncertainty associated with Auger recombination for this
material system. It has been suggested that strain could be used to reduce
the Auger recombination in InGaAsP quantum wells [40, 51]. Note that para-
meters for quantum well Auger recombination can deviate significantly from
coefficients known for bulk material. Moreover, for narrow quantum wells,
thresholdless and quasi-threshold Auger processes with weak temperature de-
pendence dominate over threshold Auger processes present in the bulk limit,
which are characterized by a higher activation energy [50]. Our simulations
indicate that the gain reduction, due to carrier–phonon and carrier–carrier
scattering-induced dephasing, primarily determines the temperature sensi-
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tivity of this material system for the temperature range reasonable for laser
applications investigated here. For even higher temperatures, it can be ex-
pected that the cubic density dependence of the Auger process will increase
its relative importance due to the implicit increase of density with tempera-
ture. Furthermore, vertical carrier leakage out of the active region becomes
more important [32, 52].

The role of nonradiative recombination and gain in this context has been
discussed in the literature [39, 40, 45]. In particular, the influence of the re-
duction of differential gain with increasing temperature has been discussed
in experimental investigations of the temperature sensitivity [40, 45]. The
decrease of differential gain with temperature is consistent with our findings,
as, in order to sustain lasing operation, the effects of the increased tem-
perature will be compensated by an increase of carrier density, implying a
collision-induced decrease in differential gain, as can be seen from the sat-
uration behavior of the gain spectra as a function of carrier density in Fig.
2.5(c).

Pointing out the significance of the gain in determining the temperature
sensitivity, Piprek et al. required higher Auger parameters than used here
to reproduce their experimental data for constant gain broadening [32]. Fol-
lowing their calibration procedure, we obtain a good fit to the experimental
findings using the free-carrier gain approach with constant broadening para-
meter in connection with increased Auger recombination for similar model
parameters, as is shown in Fig. 2.8(a) (denoted by “published calibrated para-
meters”). We use Auger parameters of CAugere = 0, CAugerh = 1.1×10−28 and
EAuger,acth = 80 meV. Comparison of this fit with the result computed using
our lower default parameters demonstrates the influence of the Auger recom-
bination on the temperature sensitivity. Our low default Auger parameters
(CAugere = 4.43 × 10−31cm6s−1, CAuger

h = 3.95 × 10−30cm6s−1) explain the
weak temperature dependence of the results obtained in the uncalibrated pre-
diction using the free-carrier gain model. Moreover, temperature independent
Auger coefficients were used [EAuger,acte/h = 0 in (2.11)]. The temperature sen-
sitivity observed in the light-current characteristic for the low default Auger
parameters is more directly related to the weak dependence observed in the
gain spectra in Fig. 2.5, because the amplification effect described above is
reduced with respect to the parameter set with high Auger recombination.

As our advanced model indicates the domination of collision broadening
in determining the temperature sensitivity, we keep the calibrated trans-
port model used within the computations based on the many-body theory
and only switch to the free-carrier gain model. In order to obtain the fit
in Fig. 2.8, we use the linewidth broadening parameter to fit the curves
individually for each temperature, while keeping all other parameters un-
changed. The linewidth broadening can be understood as a simplified model
for dephasing due to quasi-particle scattering. However, it fails to describe
the temperature and density dependence of these processes. Using increased
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Fig. 2.8. Light-current characteristics for increasing temperature using the free-
carrier gain model in comparison with experimental data. (a): Prediction based
on default parameters and calibration based on Auger recombination parameters
from [32]. (b): Calibration based on parameters obtained using the many-body gain
model.

linewidth broadening parameters with increasing temperature, the threshold
current can be adjusted to match the experimental data as shown in Fig.
2.8. The slope efficiency of the fitted simulation results tends to be slightly
higher in the simulation compared with the experiment, especially for higher
temperatures. As the simple broadening model cannot capture the complex
dynamics of carrier–carrier scattering, the density dependence is not taken
into account correctly. As the density will increase to compensate for the
effects of the increased temperature, the more linear differential gain of the
free-carrier model will cause stronger discrepancies with respect to the carrier-
collision-induced decrease of differential gain. Furthermore, the broadening is
uniformly applied to the full range of subband transitions instead of having
an energy dependence according to the spectrally resolved carrier densities.
As a significant reduction of gain requires a strong increase of the uniform
broadening, unphysically high fit parameters are obtained (120/190/265 meV
for 313/333/353 K), which should not be interpreted in terms of a directly
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associated scattering mechanism. Introducing proper dependencies with re-
spect to density, temperature, and energy, the linewidth broadening model
could be improved. However, new model parameters would be increasing the
effort for calibration. In spite of the shortcomings of the linewidth broaden-
ing model, we have demonstrated that it provides an alternative method to
the increase of Auger recombination for reproducing the experimental data
using a free-carrier approach, which is in agreement with our findings from
the advanced treatment of the gain.

Without detailed knowledge of the gain spectrum of a given material, am-
biguities between different processes determining the temperature and den-
sity dependence of the light output characteristics can exist. A good fit can
be obtained by calibrating transport parameters only, indicating a correct de-
scription of the underlying physics. Auger recombination has been regarded
as the dominant mechanism determining the temperature sensitivity of In-
GaAsP lasers in the past. As our investigation indicates, this conclusion was
based on the use of oversimplified gain models leading to an overestimation
of the Auger recombination. In order to avoid these ambiguities, a calibration
procedure should attempt to calibrate the gain spectrum first. Density- and
temperature-dependent photoluminescence measurements could help in de-
termining broadening parameters describing density and temperature depen-
dence of the gain. Using gain and photoluminescence spectra based on the
microscopic many-body theory, this step is already completed. Additional
benefit is provided by sample characterization. After the gain and sponta-
neous emission are calibrated, the remaining transport parameters can be
adjusted by performing full-scale laser simulations.

2.3.5 Self-Heating

In Fig. 2.9, light-current characteristics (a) and the corresponding maximum
lattice temperature within the device (b) are shown for calculations involving
the heat flow equation (2.15) in comparison with results based on a uniform
temperature distribution. The many-body gain model was used for these
computations. Different boundary conditions can be imposed at the metal
contacts. At the top contact on the p-type side of the device, a reflective
boundary is assumed leading to vanishing heat flux. A lumped thermal re-
sistor that describes the heat conductance of the substrate and the heat sink
is associated with the bottom electrode. For ideal cooling of the laser, cor-
responding to vanishing lumped thermal resistance in our example, the tem-
perature at the thermal contact is forced to the external stage temperature
described by imposing a Dirichlet boundary condition. The more realistic
boundary condition (2.23) with finite thermal conductance associated with
the contact accounts for the thermal properties of regions that are not in-
cluded in the simulation domain, such as substrate, mounting, or packaging
[35].
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Fig. 2.9. Light-current characteristics for increasing temperature using the many-
body gain model for different boundary conditions for the heat flow equation: Uni-
form temperature distribution with T = 313 K, Dirichlet boundary condition forc-
ing T = 313 K at the contacts, lumped thermal conductance associated with the
bottom contact with given thermal conductance Gthermal.

For the Dirichlet boundary condition, we observe negligible effect on the
light-current characteristic. As can be seen from Fig. 2.9(b), the maximum
temperature increases by only 2 K with respect to the stage temperature
of TC = 313 K. By applying a finite thermal conductance, the local tem-
perature at the thermal contact, and therefore within the device, is allowed
to rise. Higher temperatures are reached within the device as shown in Fig.
2.9(b) for decreasing thermal conductance Gthermal associated with the bot-
tom electrode, describing less-efficient cooling of the laser. As a consequence,
an increase in threshold current and a decrease in slope efficiency with re-
spect to the isothermal case can be observed. Furthermore, the light-current
curves show the characteristic thermal roll-off. For thermal conductivities
Gthermal < 15 mW/K, lasing is completely suppressed at stage temperature
TC = 313 K due to self-heating effects. As our findings from Sect. 2.3.4 indi-
cate, the temperature-induced reduction of the gain is the primary cause of
these thermal effects. As can be seen from Fig. 2.10, the maximum tempera-
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ture occurs in the p-type ridge and decreases across the active layers toward
the heat sink at the bottom contact. The heat is generated dominantly due
to Joule heat around the quantum wells and the p-type layers as well as
recombination heat around the active region. The lattice heat equation was
deactivated in the oxide regions (see Fig. 2.2), thus keeping the temperature
equal to the ambient temperature in those regions.

Fig. 2.10. Temperature profile of the half-domain ridge-waveguide laser structure
as obtained by solving the heat flow equation.

Figure 2.11 shows a comparison of the effects of self-heating obtained using
the many-body gain compared with the free-carrier gain model. For the many-
body gain, strong self-heating effects can be observed in the light-current
characteristic caused by quasi-particle interaction-induced gain broadening.
Calculations based on the free-carrier model with the same parameter set-
tings, in particular, the low Auger parameters obtained by our calibration
procedure, show very weak influence of the temperature increase (indicated
by “Free-Carrier Gain A” in Fig. 2.11). In contrast to the temperature and
carrier density dependence of the collision broadening included in the many-
body theory, the gain broadening of the free-carrier model is constant. Weaker
effects of the self-heating-induced temperature increase are observed com-
pared with the computations using the advanced gain model. This result
was expected from the weak temperature sensitivity observed for the uni-
form temperature simulations for our low default Auger parameters [see Fig.
2.8(a)]. Moreover, our calibrated Auger coefficients are even lower (see Table
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2.2). Although it is possible to adjust the constant gain broadening for the
isothermal case, the self-heating simulation demonstrates the shortcoming of
a missing temperature and carrier density dependence of the broadening be-
cause the temperature varies spatially and with the bias conditions. Using
the higher Auger parameters from [32] for this structure, the influence of
self-heating leads to considerable increase of threshold and decrease of slope
efficiency with respect to the uniform temperature case, as the strong carrier
density dependence of the Auger recombination tends to amplify the effects
of the temperature-induced gain reduction aside from its explicit exponential
temperature dependence (see Fig. 2.11(a) “Free-Carrier Gain B”).
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Fig. 2.11. Light-current characteristics for stage temperature T = 313 K using
the many-body gain compared with results obtained for the free-carrier model for
parameters calibrated based on the many-body calculations (Free-Carrier Gain A)
and for calibrated parameters taken from [32] (Free-Carrier Gain B).

Figure 2.11(b) depicts the maximum temperature within the device oc-
curring during the respective simulations. As can be seen from Fig. 2.10, the
maximum occurs in the vicinity of the active layer; thus, it roughly indicates
the local temperature influencing the optical transitions. For all of the three
model settings, similar temperatures occur in the device. Slightly higher tem-
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peratures are reached for the high Auger recombination parameter settings
(“Free-Carrier Model B”) compared with the lower Auger parameters ob-
tained by the calibration based on the many-body gain models (“Many-Body
Gain”, “Free-Carrier Gain A”) as the higher Auger recombination implies
higher contributions to the recombination heat source.
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Fig. 2.12. (a): Light-current characteristics for increasing stage temperature T
using the many-body gain model and including self-heating, (b): corresponding
maximum temperature within the device.

In self-heating simulations, modeling the correct temperature dependence
of the gain broadening cannot be avoided in order to obtain reliable results,
as can be seen from Fig. 2.11. The effective decay time approximation can
reproduce the gain spectra for a narrow window of carrier densities and
temperatures as discussed in Sect. 2.3.3 and in Chapt. 1. For isothermal
full-scale laser simulations, experimental light-current characteristics can be
reproduced once parameters are calibrated, as the increase of carrier den-
sity above the lasing threshold is weak and the temperature is kept constant.
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However, in self-heating simulations, the temperature varies spatially and as a
function of the injection current. Temperature-induced gain reductions imply
a compensating increase of the carrier concentrations. The increased range of
variation in carrier density and temperature cannot be covered by the con-
stant linewidth broadening. Therefore, the self-heating results obtained using
the free-carrier model differ strongly from the advanced many-body compu-
tations (see Fig. 2.11), in spite of the agreement between the light-current
characteristics computed using the respective models with the same parame-
ters for isothermal conditions (see Figs. 2.7(b), 2.8(b) and 2.8(a) “published
calibrated parameters”).

In Fig. 2.12, simulation results are shown for increasing stage temperature.
The many-body gain model was used for these calculations. The thermal
conductance associated with the heat sink at the bottom electrode was set
to Gthermal = 45 mW/K. As can be seen by comparing these light-current
characteristics [Fig. 2.12(a)] with Fig. 2.7(b), temperature effects are stronger
under self-heating conditions. A uniform temperature distribution can be
prepared experimentally by pulsed operation, where the bias is applied only
for a short period of time during one duty cycle. In this mode of operation,
the heat generated within the device can be dissipated to the environment
efficiently, whereas during the short lasing period, the heat capacity of the
device prevents significant increase of the temperature [see left-hand side
of (2.15)]. This situation is desirable from an experimental point of view,
because it eliminates self-heating effects and eases analysis of the dominant
physical mechanisms influencing the performance of the device. However, in
most applications, diode lasers are operated under CW conditions. In this
mode of operation, a steady state between heating within the device due
to transport and recombination processes and external cooling will occur. A
significant increase of the temperature with respect to the stage temperature
will occur in the active layer, as can be seen from Fig. 2.12(b). The theoretical
description of such a situation requires the coupled solution of carrier and
thermal transport as well as radiative interaction with the light field.

2.4 Summary

We have demonstrated the integration of advanced gain modeling based on
a microscopic many-body theory into full-scale laser simulations. Our ap-
proach has been applied to the investigation of the temperature sensitivity
of InGaAsP quantum well lasers. It has been shown that the gain broaden-
ing due to carrier–carrier and carrier–phonon scattering-induced dephasing
dominantly determines the temperature sensitivity of these laser structures
rather than nonradiative recombination.

Our microscopic gain model allows for an accurate prediction of the gain
spectrum for a specific material system based solely on material parameters.
The energetic position and the collision broadening of the gain maximum have
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a significant impact on the optical properties of Fabry–Perot laser diodes, in
particular, emission wavelength, threshold current, and slope efficiency, as
discussed here. The detailed spectral behavior of the gain can be expected to
be of more importance for advanced structures like VCSELs, which exhibit
a strong optical confinement in the longitudinal direction.

The advanced many-body gain theory has been compared with the free-
carrier gain model, which is a common approach in commercial laser simula-
tors. The advantage of the predictive modeling of the gain by the microscopic
many-body theory with respect to simpler models carries over to the full-scale
laser simulation. Calibration effort can be reduced while improving the overall
predictive capabilities of the simulation. In order to improve the free-carrier
approach, density, temperature, and energy dependences would have to be
added to the gain broadening model to describe effects of carrier–carrier and
carrier–phonon scattering phenomenologically. We suggest a calibration pro-
cedure that determines the gain model parameters first by performing optical
experiments in order to avoid ambiguities between transport and gain models
in describing temperature and density dependence of the overall laser perfor-
mance. Using the microscopic many-body theory, this additional calibration
step can be avoided.

Acknowledgment

We thank J. Piprek for valuable discussions and for providing experimental
data. The Tucson effort is supported by a grant from the U.S. Air Force Office
for Scientific Research under grant number: AFOSR F49620-01-1-0380. The
Marburg research is supported by the Max Planck Research Prize.

References

1. M. Grupen and K. Hess: IEEE J. Quantum Electron. 34, 120 (1998)
2. B. Grote, E. K. Heller, R. Scarmozzino, J. Hader, J. V. Moloney, and S.

W. Koch: Integration of microscopic gain modeling into a commercial laser
simulation environment. In: Physics and Simulation of Optoelectronic Devices
XI Proc. SPIE, vol. 4986, ed by M. Osinski, H. Amano, and P. Blood, pp.
413-422 (2003)

3. W. Van Roosbroeck: Bell System Tech. J. 29, 560 (1950)
4. D. L. Scharfetter and H. K. Gummel: IEEE Trans. Electron Devices ED-16,

64 (1969)
5. K. Blotekjaer: IEEE Trans. Electron Devices ED-17, 38 (1970)
6. R. K. Cook and J. Frey: COMPEL 1, 65 (1982)
7. D. Chen, E. C. Kan, U. Ravaioli, C. W. Shu, and R. W. Dutton: IEEE Electron

Device Lette. EDL-13, 26 (1992)
8. D. Chen, Z. Yu, K. C. Wu, R. Goossens, and R. W. Dutton: Dual Energy

Transport Model with Coupled Lattice and Carrier Temperatures. In: Pro-
ceedings 5th SISDEP Conference Vienna, Austria, pp. 157-160 (1993)



60 B. Grote et al.

9. G. Wachutka: IEEE Trans. on Computer-Aided Design CAD-9, 1141 (1990)
10. S. Selberherr: Analysis and Simulation of Semiconductor Devices (Springer

Verlag, New York 1984)
11. J. Piprek: Semiconductor Optoelectronic Devices (Academic Press, San Diego

2003)
12. G. Wachutka: COMPEL 10, 311 (1991)
13. H. Brand: Thermoelektrizität und Hydrodynamik. Dissertation, Techni-

cal University Vienna, Austria (1994) (ohttp://www.iue.tuwien.ac.at/phd
/brand/diss.html)

14. M. A. Alam, M. S. Hybertsen, R. K. Smith, and G. A. Baraff: IEEE Trans.
Electron Devices 47, 1917 (2000)

15. J. Luttinger and W. Kohn: Phys. Rev. 97, 869 (1955)
16. G. L. Bir and G. E. Pikus, eds.: Symmetry and Strain-induced Effects in Semi-

conductors (Wiley, New York 1974)
17. C. Hermann and C. Weisbuch,: Phys. Rev. B 15, 823 (1977)
18. E. O. Kane: Energy band theory. In: Handbook on Semiconductors ed. by T.

S. Moss (North-Holland, New York 1982) PP. 193–217
19. S. L. Chuang: Phys. Rev. B 43, 9649 (1991)
20. P. von Allmen: Phys. Rev. B 46, 15382 (1992)
21. M. S. Hybertsen, G. A. Baraff, S. K. Sputz, D. A. Ackermann, G. E. Shtengel,

J. M. Vandenberg, and R. Lum: Modeling of optical spectra for characteriza-
tion of multi-quantum well InGaAsP-based lasers. In: Physics and Simulation
of Optoelectronic Devices IV Proc. SPIE, vol. 2693, ed. by W. W. Chow and
M. Osinski, pp. 430-441 (1996)

22. F. Oyafuso, P. von Allmen, M. Grupen, and K. Hess: Gain calculation in a
quantum well simulator using an eight band k · p model. In: Proc. 4th Int.
Workshop Computat. Electron. (Tempe, AZ 1995)

23. B. Zee: IEEE J. Quantum Electron. QE-14, 727 (1978)
24. M. Yamada and Y. Suematsu: J. Appl. Phys. 52, 2653 (1981)
25. W. W. Chow and S. W. Koch: Semiconductor-Laser Fundamentals: Physics of

the Gain Materials (Springer, Berlin 1999)
26. H. Haug and S. W. Koch: Quantum Theory of the Optical and Electronic

Properties of Semiconductors, 3rd edn (World Scientific, Singapore 1994)
27. J. Hader, J. V. Moloney, S. W. Koch, and W. W. Chow: IEEE J. Sel. Topics

in Quantum Electron. 9, 688 (2003)
28. J. Hader, A. R. Zakharian, J. V. Moloney, T. R. Nelson, W. J. Siskaninetz,

J. F. Ehret, K. Hantke, S. W. Koch, and M. Hofmann: Optics and Photonics
News 13 (12), 22 (2002)

29. J. Hader, A. R. Zakharian, J. V. Moloney, T. R. Nelson, W. J. Siskaninetz, J.
F. Ehret, K. Hantke, M. Hofmann, and S. W. Koch: IEEE Photon. Technol.
Lett., 14, 762 (2002)

30. M. Grupen, K. Hess, and G. H. Song: Simulation of transport over heterojunc-
tions. In: Proc. 4th Int. Conf. Simul. Semicon. Dev. Process., vol 4, pp. 303-311
(Zurich, Switzerland 1991)

31. S. Seki, W. W. Lui, and K. Yokoyama: Appl. Phys. Lett. 66, 3093 (1995)
32. J. Piprek, P. Abraham, and J. E. Bowers: IEEE Journal of Quantum Electron.

36, 366 (2000)
33. Z. Yu, D. Chen, L. So, and R. W. Dutton: PISCES-2ET and Its Application

Subsystems, Manual, Stanford University, Stanford, California (1994)



2 Fabry–Perot Lasers: Temperature and Many-Body Effects 61

34. R. Thalhammer: Internal Laser Probing Techniques for Power De-
vices: Analysis, Modeling, and Simulation. Dissertation, Technical Uni-
versity Munich, Germany (2000) (http://tumb1.biblio.tu-muenchen.de/
publ/diss/ei/2000/thalhammer.pdf)

35. T. Grasser and S. Selberherr: IEEE Trans. on Electron Devices 48, 1421
(2001)

36. J. Hader, S. W. Koch, and J. V. Moloney: Sol. Stat. Electron. 47, 513 (2003)
37. W. Chow, M. Kira, and S. W. Koch: Phys. Rev. B 60, 1947 (1999)
38. G. P. Agrawal and N. K. Dutta: Semiconductor Lasers (Van Nostrand Rein-

hold, New York 1993)
39. J. Braithwaite, M. Silver, V. A. Wilkinson, E. P. O’Reilly, and A. R. Adams:

Appl. Phys. Lett. 67, 3546 (1995)
40. Y. Zou, J. S. Osinski, P. Grodzinski, P. D. Dapkus, W. C. Rideout, W.

F. Sharfin, J. Schlafer, and F. D. Crawford: IEEE J. Quantum Electron. 29,
1565 (1993)

41. J. Piprek, D. Babic, and J. E. Bowers: J. Appl. Phys. 81, 3382 (1997)
42. L. J. P. Ketelsen and R. F. Kazarinov: IEEE J. Quantum Electron. 34, 811

(1995)
43. Y. Yoshida, H. Watanabe, K. Shibata, A. Takemoto, and H. Higuchi: IEEE J.

Quantum Electron. 34, 1257 (1998)
44. A. A. Bernussi, H. Temkin, D. L. Coblentz, and R. A. Logan: Appl. Phys.

Lett. 66, 67 (1995)
45. D. A. Ackerman, G. E. Shtengel, M. S. Hybertsen, P. A. Morgan, R. F. Kazari-

nov, T. Tanbun-Ek, and R. A. Logan, IEEE J. Select. Topics Quantum Elec-
tron. 1, 250 (1995)

46. J. Piprek, private communication
47. L. Hedin and B. Lundquist, J. Phys. C 4, 2064 (1971)
48. Gain / refractive index / photoluminescence tables courtesy of Nonlinear Con-

trol Strategies, 1001 East Rudasill Rd., Tucson, AZ 85718
49. New Semiconductor Materials. Characteristics and Proper-

ties, Ioffe Physico-Technical Institute, St. Petersburg, Russia,
(http://www.ioffe.ru/SVA/NSM/Semicond/)

50. A. S. Polkovnikov and G. G. Zegrya: Phys. Rev. B 58 (7), 4039 (1998)
51. O. Gilard, F. Lozes-Dupuy, G. Vassilieff, S. Bonnefont, P. Arguel, J. Barrau,

and P. Le Jeune: J. Appl. Phys. 86(11), 6425 (1999)
52. J. Piprek, J. K. White, and A. J. Spring Thorpe: IEEE J. Quantum. Electron.

38, 1253 (2002)


