
CHAPTER 2: STANDARD PRICING RESULTS
UNDER DETERMINISTIC AND STOCHASTIC

INTEREST RATES

Along with providing the way uncertainty is formalized in the considered
economy, we establish in this chapter the assumptions that will be adopted
throughout Part I of this book and the general principles governing asset
pricing (§1), then the relationship between the spot and the forward prices of
a risky asset (§2), and lastly that between the spot and the futures prices
(§3). Any dividend (or coupon, or convenience yield) will always be
assumed both continuous and deterministic.

2.1. GENERAL SETTING AND MAIN ASSUMPTIONS

In this framework, individuals can trade continuously on a frictionless
and arbitrage free financial market until time xE, the horizon of the economy.
A locally riskless asset and a number n of pure default-free discount bonds
sufficient to complete the market are traded. The latter pay one dollar each at
their respective maturities, respectively Tj, j = 1,..., n, with Tj_i < Tj < xE.
The following sets of assumptions provide the necessary details.

Assumption 1: Dynamics of the primitive assets.

- At each date t, the price P(t,Tj) of a discount bond whose maturity is Tj ,
j = 1,..., n, is given by :

p(t,Tj)=exp[-{Tjf(t,s)ds] (1)

where f(t,s) is the instantaneous forward rate (thereafter the forward rate)
prevailing at time t for date s, with t < s < xE.

- The instantaneous spot rate (thereafter the spot rate) is r(t) = f(t,t).
Agents are allowed to trade on a money market account yielding this
continuous bounded spot rate. Let B(t) denote its value at time t, with
B(0)=l.Then:
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= exp[£(u)du] (2)

- To give our model some additional structure, we assume, following
Heath, Jarrow and Morton (1992), that the forward rate is the solution to the
following stochastic differential equation:

df(t,s) = |Li(t,s)dt + E(t,s) dZ(t) (3)

where |i(.), the drift term, and E(t,s), the K-dimensional vector of diffusion
parameters (volatilities), are assumed to satisfy the usual conditions1 such

that (3) has a unique solution, and " " denotes a transpose. Z(t) is a K-
dimensional Brownian motion defined on the complete filtered space
(QjFJFtlteto.iyiPX where Q is the state space, F is the a-algebra representing
measurable events, and P is the actual (historical) probability. The forward
rate is adapted to the augmented filtration generated by this Brownian
motion. This filtration is denoted by F = {Ft}t rOx, and is assumed to satisfy

the usual conditions 2. The initial value of the forward rate, f(O,s), is
observable and given by the initial yield curve prevailing on the market.

- Since the latter is arbitrage free, the drift term |Li(t, s) in equation (3) is a
specific function of the forward rates volatility E(t, s) that involves the
market prices of risk associated with the K sources of uncertainty. This is the
so-called « drift condition ». If markets are complete, Proposition 3, on p.
86, of HJM (1992) establishes that this relationship between the drift and the
volatility is unique. More precisely, it states that there exists a unique vector
of market prices of risk (|)(t)such that:

î(t,s) = -|]oj(t,s)[(|)j(t)-|
8oj(t,u)du]

for all SG [0,xE] and t e [0,s], where Gj(t,s) is the j t h element of 2(t,s) and

§. (t) is the j t h element of 0(t).

Assumption 2: Absence of frictions and of arbitrage opportunities.

- The assumption of absence of arbitrage opportunities in a frictionless
financial market leads to the First Theorem of asset pricing theory. Since
Harrison and Kreps (1979), this assumption is in effect known to be
tantamount to assuming the existence of a probability measure, defined with
respect to a given numeraire and equivalent to P, such that the prices of all
risky assets, deflated by this numeraire, are martingales3.



Chapter 2: Standard pricing results 25

- Now, applying Ito's lemma to (1) given (3) yields the stochastic
differential equation satisfied by the discount bonds:

j = l,...,n. (4)

where Ep(t,Tj) is the K-dimensional vector of the volatilities associated with
the relative price changes of the discount bond maturing at Tj, P(t,Tj). This
vector is functionally related to the vector X(.) of the forward rates
volatilities. The drift |Lip(t,Tj) plays no particular role here, but could easily
be computed as the sum of the riskless rate plus a risk premium that depends
on the bond maturity date Tj. Note that, since the market is complete, we
have n > K.

- The absence of arbitrage implies the existence of a martingale measure
Q, associated with the locally riskless asset (more precisely the money
market account B(t)) as the numeraire, and such that its Radon-Nikodym
derivative with respect to the historical probability is equal to:

dQ

dP

where (|)(s) is the vector of market prices of risk. The latter is a
predictable, Ft-adapted, process satisfying Novikov's condition

expfiflcKsfds <oo, where the expectation Ep is taken under the

true measure P. The probability Q is generally, but somewhat misleadingly,
called the "risk-neutral" measure.

Now, the Second Theorem of asset pricing theory relates the uniqueness
of the martingale measure Q to the completeness of the financial market. A
market is complete if any risky asset can be replicated by a portfolio of
existing (traded) assets, so that its price is unique. This requires that there
exist, in addition to the riskless asset, as many risky assets traded on the
market as there are fundamental sources of risk in the economy (the
dimension of the Brownian motion, for instance, as here). A portfolio of
existing assets, whose composition changes (in general) continuously over
time, can then replicate any contingent claim. Therefore, the latter can be
fairly priced. It also means that any risk can be perfectly hedged by the
appropriate combination of existing assets.
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When markets are complete, there exists only one martingale measure
associated with a given numeraire. Thus, in our setting, Q is unique. When
markets are incomplete, however, such a result breaks down and for each
numeraire there exists more than one martingale measure. Consequently,
there is possibly an infinite number of prices for each contingent claim. We
will indicate in the sequel which results require completeness and which do
not.

- Under Q, the price of a pure discount bond follows the dynamic
process:

^ 5 ! ( ) ' Z ( t ) j = l,...,n. (5)

where Z(t) is a K-dimensional Brownian motion under Q. Using Girsanov's
theorem, it is related to the Brownian motion Z by:

Integrating (5) then yields:

p(t,Tj) = p(0,Tj)exp

- Consider any traded asset with payoff S(T) at time T and no
intermediate cash flow. Its price today is S(t). T is assumed to be smaller
than Tj so that all the discount bonds are "long-lived" assets. By

construction, we have:

S(t)

B(t)
= EQ S(T)

B(T)
(7)

where EQ[.|FtJ denotes the conditional expectation under Q based upon all

information available at time t.

- While the locally riskless money market account B(t) is by far the most
extensively used numeraire, another one is frequently used when interest
rates are stochastic. Recall that the sole objective of choosing a particular
numeraire is to ease the mathematical burden of computing conditional
expectations. Instead of choosing Q and its associated numeraire B(t), it is
convenient to adopt the measure QT and its associated numeraire P(t,T), the
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value of the zero-coupon bond of maturity T. This measure, first used
formally by Jamshidian (1987, 1989), is known as the "T-forward-neutral"
probability. Under QT, the price of any non-dividend-paying asset deflated
by P(t,T) is a martingale:

P(t,T)
• = E Q T

P(T,T)
(8)

which can be rewritten:

- ^ - = EQT[s(TlFt] (9)
P(t,T) A

Formally, QT is defined as:

dQ1

dQ

_ P(t,T)B(0) _ P(t,T)

P(O,T)B(t) P(O,T)B(t)
(10)

where B(t) = exp \ r(s)ds is a stochastic process, as is P(t,T). Obviously,

if interest rates are deterministic, the Radon-Nikodym derivative dQT/dQ is
always equal to one in absence of arbitrage opportunities and the "T-
forward-neutral" and "risk-neutral" measures are identical.

Assumption 3: Admissible strategies.

Our final set of assumptions concerns the economic agents' behavior.
Each individual who can freely trade on the continuously open financial
market adopts a portfolio strategy that consists in choosing the appropriate
number of units of the locally riskless asset (the value of the money market
account) and of each and every discount bond. Such strategies are assumed
to be admissible4, and in particular self-financing.

2.2. FORWARD PRICES

- Let G(t,T) be the price of the maturity-T forward contract written on
one particular asset, say S(t). For the moment, this asset does not pay out
dividends. When negotiated at t, the value of the forward contract is zero, so
that:



28 Parti

0 = EQ

Rearranging terms yields:

G(t,T)EQ

G(t,T)-S(T)

B(T)
(11)

1

B(T)

From the definition of Q, we have:

= EQ S(T)

1

B(T)
Ft - E Q P(T,T)

B(T)
Ft

_ P(t,T)

" B(t)

B(T)

andEc

(12)

S(T)

B(T)

S(t)

'B(t)

Substituting into (12) yields the cash-and-carry relationship without
dividends:

G(t,T) =
s(t)

P(t,T)
(13)

This result can be derived alternatively, and even more rapidly, using the
zero-coupon bond price P(t,T) as the numeraire. Under the QT-forward
neutral probability, we have:

and thus:

O = E Q T

G(t,T) = Ec

G(t,T)-S(T)
P(T,T)

S(T)

(14)

P(T,T)
_ s(t)

P(t,T)
(15)

Remark that it is easy to go from (11) to (14), given the relationship
between the two measures. Indeed, Bayes formula states that:

Ft]
where dQT

It follows that:

EQIY(T|FJ - " ' dQ

G(t,T)-S(T) P(T,T)

= Y(t)

G(t,T)-S(T)

P(T,T)

P(T,T) B(T)P(0,T)

P(T,T)

B(T)P(0,T)
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Simplifying some terms yields:

G(t,T)-S(T)

P(T,T)

F Q G(t,T)-S(T)
B(T)

E Q
P(T,T)

B(T)
F.

F

Since

P(T,T)

B(T)
P(t,T)
B(t)

we have:

G(t,T)-S(T)

P(T,T)
_ B(t) }

P(t,T)

G(t,T)-S(T)

B(T)

Given that (14) holds, (11) must hold too.

We stress here that the cash-and-carry formula (13) or (15) is valid
irrespective of whether the market is complete or not. Absence of frictions
and arbitrage opportunities is enough. What is only required for (13) to hold
is that agents are allowed to trade the asset underlying the forward contract
and a discount bond maturing at time T.

- The preceding findings must be amended when the underlying asset
pays out dividends. Assume a continuous dividend rate process ds (t). S(t) is

the ex-dividend asset price. This price being the current value of the claim to
the asset at date T plus all dividends up to T, it follows that, under the risk-
neutral measure Q, we must have:

B(t)

S(T)e
|Tds(s)ds

B(T)
(16)

Now, it is still true that:
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0 =EQ G(t,T)-S(T)

B(T)
= EQ G(t,T)

= G(t,T)Ec

= G(t,T)Ec

B(T)

P(T,T)

B(T)

S(T)

- E c S(T)

B(T)

B(T)

B(T)

B(t)

- E c

S(T)

S(T)

B(T)

B(T)

Therefore:

P(t,T)
S(T)

B(T)

The last term is no longer a martingale under Q in general, unless the
dividend process is deterministic. Assuming it is, we then have:

S(T)eJl

P(t,T) B(T)

and thus, using (16), we obtain the general cash-and-carry relationship:

-JT<U(s)ds

G(t,T) =
S(t)e

P(t,T)
(17)

- Equation (17) takes on a particular form when the underlying asset of
the forward contract is a spot exchange rate. In this case, it is immaterial
whether domestic and foreign interest rates are deterministic or stochastic, as
we will prove. Denoting by S(t) the exchange rate from the domestic
viewpoint, i.e. the number of domestic monetary units per foreign monetary
unit (say 1,21 US dollars exchanged for 1 Euro), and by Pf(t,T) the foreign
zero-coupon bond, the (T-t)-forward exchange rate is equal to:

0 ( ^ .
P(t,T)

(17')

To prove this, we make use of the principle of international valuation.
According to the latter, in absence of arbitrage opportunity, the present value
in domestic currency terms, Vt

d[.], of a future payoff denominated in foreign
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exchange rate S(T) must be equal to the present value in foreign currency

terms of that future payoff, Vt
f [xf (T)J , times the current spot exchange rate

S(t):

Vt
d[s(T)Xf(T)] = S(t)Vt

f[xf(T)]

Now, consider a future certain payoff of 1 foreign currency unit (Xf(T)
=1). We have:

G(t T) - V[S(T)l] £f i l ^ 2S(t) S(t)
P(t,T) " W P ( t , T ) " S W P ( t , T )

which is the desired result, since the present value of 1 foreign currency
unit received at T is obviously Pf(t,T).

Equation (17') implies that if the level of domestic interest rates is lower
(higher) than that of foreign rates, the forward exchange rate is smaller
(larger) than the spot rate, since then P(t,T) is larger (smaller) than Pf(t,T).

2.3. FUTURES PRICES

- Let H(t, T) be price of the futures contract of maturity T written on the
spot asset S(t). Assume that the contract is marked to market on a continuous
(rather than daily) time basis. We know that in absence of frictions and
arbitrage opportunities H(T, T) = S(T). For a moment, assume also that there
are no dividends paid out by the underlying asset.

To derive its current price H(t, T), consider the following general
strategy: invest initially an amount X(0) = H(0,T) in the riskless asset (in
lieu of investing S(0) in the underlying asset); trade at each date t (0 < t < T)
AH(t) units of the (infinitely divisible) contract and re-invest (algebraically)
all the margins continuously generated by the futures contracts at the riskless
rate. Then the margin account value at each time t, until maturity T, is equal
to:

X(t) = X(0)exp[ (r(s)dsl+ £expf" £r(s)dslAH(s)dH(s,T)

Applying Ito's lemma to X(t) yields:

dX(t) = r(t)x(t)dt + AH(t)dH(t,T)

Now consider a particular strategy on the futures contracts such that:
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AH(t) = exp £r(s)ds

The margin account dynamics will then be:

dX(t) = r(t)x(t)dt + expf j\(s)dsldH(t,T)

Applying Ito's lemma yields:

X(t) = H(t,T)exp[ jV(s)dsl

Consequently,

and X(0) is the price at time 0 of this payoff. Since X(0) = H(0,T), we have:

H(O,T)=EC

and for any date t (< T):

exp | r(s)ds

t,T) = EQ[s(T)|Ft]

= EQ[S(T)|FO]

(18)

Because of the continuous marking-to-market mechanism, the value of
the futures contract is always zero. Therefore, it may seem rather intuitive
that its price is a Q-martingale.

- When interest rates are deterministic, we have:

"S(T)
H(t, T) = EQ [s(T)|Ft ] = B(T)E

B(T)

and, since then P(t,T) = B(t)/B(T) in absence of arbitrage, we get:

(19)

Under such interest rates, the forward and futures prices are equal and
given by the cash-and-carry relationship. Without dividends, the latter is
given by formula (13). With deterministic dividends, the relevant expression
is (17).
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- Under stochastic interest rates, comparing equations (15) and (18)
makes it clear why current forward and futures prices differ: both are the
expected value of the underlying asset at date T, S(T), but computed under
two different measures: QT for the forward and Q for the futures.

To establish the relationship between the two prices, let us compute the
drift of the forward price process, |LLG, under the risk-neutral probability Q.
Applying Ito's lemma to the cash-and-carry relation (13), we obtain the
drift:

\iG = jis - jip (t, T) + Xp (t, T)(EP (t, T) - Xs) '

= Xp(t,TXxp(t,T)-Xs)
1

= -Xp(t,T)XG(t,T)1

where the second equality comes from the fact that, under Q, the drifts of
the stock price and the bond price processes are equal to the riskless rate r(t),
and the third equality uses again Ito's lemma applied to (13) for the diffusion
parameters.

Therefore, under Q, the drift of G(t,T) is nothing but the covariance
between the forward price relative changes and its underlying bond price
relative changes.

We then can use the following well-known theorem. Consider a positive
Ito process X(t), satisfying Novikov's condition

- J ox(s)2dsFt
2

such that, under the measure Q:

Then

[Proof: Let Y(t) = X(T)exp(- JT|LLX(s)dsj. By Ito's lemma,

Y(t) X(t) x

Therefore, since Novikov's condition is satisfied, Y(t) is a Q-martingale,
and we have:

= E°[Y(T)|Ft]
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Hence:

X(t)exp(-£m (- f jix(s)ds|Ft

which yields the result.]

Consequently, since G(T,T) = S(T), we can write:

G(t,T) = ] S(T)exp cov
dG(u,T) dP(u,T)V "
G(u,T) ' P(u,T) J

(20)

In the particular case where all variances and covariances are
deterministic, we then have, using result (18):

G(t,T) =H(t,T)exp
fdG(u,T) dP(u/T)V

cov , du
^G(u,T) P(u,T)J

(21)

The forward price thus is larger or smaller than its futures counterpart
depending on the sign of the covariance between the forward price changes
and the relevant zero-coupon price changes. Obviously, if interest rates are
deterministic, this covariance vanishes and we recover G(t,T) = H(t,T). Note
for completeness, however, that this assumption is not necessary for the
latter equality to hold: it is in fact sufficient that the forward price of the
underlying asset and the bond price are statistically independent under Q.

Endnotes

1 See Heath et al. (1992).
The filtration contains all the events whose probability with respect to P is null. See for

instance Karatzas and Shreve (1991).
3 This equivalence result holds only for simple strategies, i.e. strategies that need a portfolio
reallocation only a finite number of times. See Harrison and Kreps (1979) and Harrison and
Pliska (1981) for details.
4 To save space, we do not specify the properties of admissible strategies. See Harrison and
Kreps (1979), Harrison and Pliska (1981), Cox and Huang (1989) and Heath et al. (1992).




