
Chapter 2

A Tightly Coupled VLIW/Reconfigurable Matrix
and its Modulo Scheduling Technique

Bingfeng Mei,1,2 Serge Vernalde,2 Diederik Verkest,1,2,3

and Rudy Lauwereins1,2

1 IMEC vzw, Kalpeldreef 75, Leuven, Belgium

2 Department of Electrical Engineering, Katholieke Universiteit Leuven, Belgium

3 Department of Electrical Engineering, Vrije Universiteit Brussel, Belgium

2.1 Introduction

Coarse-grained reconfigurable architectures have become increasingly im-
portant in recent years. Various architectures have been proposed [1–4]. These
architectures often comprise a matrix of functional units (FUs), which are ca-
pable of executing word- or subword-level operations instead of bit-level ones
found in common FPGAs. This coarse granularity greatly reduces the delay,
area, power and configuration time compared with FPGAs. However, these ad-
vantages are achieved at the expense of flexibility. Usually the reconfigurable
matrix alone is not able to execute entire applications. Most coarse-grained ar-
chitectures are coupled with processors, typically RISCs. The computational-
intensive kernels, typically loops, are mapped to the matrix, whereas the re-
maining code is executed by the processor. So far not much attention has been
paid to the integration of these two parts. The coupling between the processor
and the matrix is often loose, consisting essentially of two separate parts con-
nected by a communication channel. This results in programming difficulty and
communication overhead. In addition, the coarse-grained reconfigurable archi-
tecture consists of components which are similar to those used in processors.
This resource-sharing opportunity is not extensively exploited in traditional
coarse-grained architectures.

15

P. Lysaght and W. Rosenstiel (eds.),

New Algorithms, Architectures and Applications for Reconfigurable Computing, 15–28.

© 2005 Springer. Printed in the Netherlands.

16

To address these problems, in this chapter we present an architecture called
ADRES (Architecture for Dynamically Reconfigurable Embedded System),
which tightly couples a VLIW (very long instruction word) processor and a
coarse-grained reconfigurable matrix. The VLIW processor and the coarse-
grained reconfigurable matrix are integrated into one single architecture but
with two virtual functional views. This level of integration has many advan-
tages compared with other coarse-grained architectures, including improved
performance, a simplified programming model, reduced communication costs
and substantial resource sharing.

Any new architecture can hardly be successful without good design method-
ology. Therefore, we developed a compiler for ADRES. The central technology
is a novel modulo scheduling technique, which is able to map kernel loops
to the reconfigurable matrix by solving placement, routing and scheduling
simultaneously in a modulo constrained space. Combined with traditional ILP
(instruction-level parallelism) compilation techniques, our compiler can map
an entire application to the ADRES architecture efficiently and automatically.

This chapter is organized as follows: section 2.2 discusses the architectural
aspects of ADRES; section 2.3 describes the modulo scheduling algorithm in
details; section 2.4 presents the experimental results and section 2.5 concludes
the chapter.

2.2 ADRES Architecture

2.2.1 Architecture Description

The ADRES architecture (Fig 2.1) consists of many basic components, in-
cluding mainly FUs and register files(RFs), which are connected in a certain
topology. The FUs are capable of executing word-level operations selected by a
control signal. The RFs can store intermediate data. The whole ADRES matrix
has two functional views, the VLIW processor and the reconfigurable matrix.
These two functional views share some physical resources because their exe-
cutions will never overlap with each other thanks to the processor/co-processor
model. For the VLIW processor, several FUs are allocated and connected to-
gether through one multi-port register file, which is typical for VLIW archi-
tecture. Some of these FUs are connected to the memory hierarchy, depending
on available ports. Thus the data access to the memory is done through the
load/store operations available on those FUs.

For the reconfigurable matrix part, apart from the FUs and RF shared with
the VLIW processor, there are a number of reconfigurable cells (RC) which
basically comprise FUs and RFs too (Fig. 2.2). The FUs can be heterogeneous
supporting different operation sets. To remove the control flow inside loops,

A Tightly Coupled VLIW 17

Register File

FU FU FU FU FU FU

Reconfigurable Matrix View

VLIW View

Program Fetch
Instruction Dispatch
Instruction Decode

RC RC RC RC RC RC

RC RC RC RC RC RC

RC RC RC RC RC RC

RC RC RC RC RC RC

RC RC RC RC RC RC

Figure 2.1. ADRES core

the FUs support predicated operations. The distributed RFs are small with less
ports. The multiplexors are used to direct data from different sources. The
configuration RAM stores a few configurations locally, which can be loaded on
cycle-by-cycle basis. The configurations can also be loaded from the memory
hierarchy at the cost of extra delay if the local configuration RAM is not big

FU

mux mux mux

reg reg reg

pred src1 src2

dst1pred_dst1 pred_dst2

Conf.
RAM RF

From other RCs

To other RCs

Figure 2.2. Example of a Reconfigurable Cell

18

enough. Like instructions in ISPs, the configurations control the behaviour of the
basic components by selecting operations and multiplexors. The reconfigurable
matrix is used to accelerate the dataflow-like kernels in a highly parallel way.
The access to the memory of the matrix is also performed through the VLIW
processor FUs.

In fact, ADRES is a template of architectures instead of a fixed architec-
ture. An XML-based architecture description language is used to define the
communication topology, supported operation set, resource allocation and tim-
ing of the target architecture [5]. Even the actual organization of the RC is
not fixed. FUs and RFs can be put together in several ways. For example,
two FUs can share one RF. The architecture shown in Fig. 2.1 and Fig. 2.2
is just one possible instance of the template. The specified architecture will
be translated to an internal architecture representation to facilitate compilation
techniques.

2.2.2 Improved Performance with the VLIW Processor

Many coarse-grained architectures consist of a reconfigurable matrix and
a relatively slow RISC processor, e.g. TinyRisc in MorphoSys [1] and ARM
in PACT XPP [3]. These RISC processors execute the unaccelerated part of
the application, which only represents a small portion of execution time. How-
ever, such a system architecture has problems due to the huge performance gap
between the RISC and the matrix. According to Amdahl’s law [6], the perfor-
mance gain that can be obtained by improving some portion of an application
can be calculated according to equation 2.1. Suppose the kernels, represent-
ing 90% of execution time, are mapped to the reconfigurable matrix to obtain
an acceleration of 30 times over the RISC processor, the overall speedup is
merely 7.69. Obviously a high kernel speedup is not translated to a high over-
all speedup. Speeding up the unaccelerated part, which is often irregular and
control-intensive code, is important for the overall performance. Though it is
hard to exploit higher parallelism from it on the reconfigurable matrix, it is still
possible to discover instruction-level parallelism (ILP) using a VLIW proces-
sor, where 2–4 times speedup over the RISC is reasonable. If we recalculate the
speedup with the assumption of 3 times acceleration for the unaccelerated code,
the overall acceleration is now 15.8, much better than the previous scenario.
This simple calculation proves that using VLIW in ADRES can improve the
overall speedup dramatically in certain circumstances.

Speedupoverall = 1

(1 − Fractionenhanced) + Fractionenhanced
Speedupenhanced

(2.1)

A Tightly Coupled VLIW 19

2.2.3 Simplified Programming Model and Reduced
Communication Cost

A simplified programming model and reduced communication cost are two
important advantages of the ADRES architecture. These are achieved by making
the VLIW processor and the reconfigurable matrix share access to the memory
and the register file.

In other reconfigurable architectures, the processor and the matrix are es-
sentially separated. The communication is often through explicit data copying.
Though some techniques are adopted to reduce the data copying, e.g., wider
data bus and DMA controller, the overhead is still considerable in terms of
performance and energy. From the programming point of view, the separated
processor and reconfigurable matrix require significant code rewriting. Starting
from a software implementation, we have to identify the data structures used for
communication and replace them with communication primitives. Data analysis
should be done to make sure as few as possible data are actually copied. In ad-
dition, the kernels and the remaining code have to be cleanly separated in such a
way that no shared access to any data structure remains. These transformations
are often complex and error-prone.

In ADRES, the data communication is performed through the shared RF and
memory. This feature is very helpful to map high-level language code such as C
without major changes. When a high-level language is compiled to a processor,
the local variables are allocated in the RF, while the static variables and arrays are
allocated in the memory space. When the control of the program is transferred
between the VLIW processor and the reconfigurable matrix, those variables
used for communication can stay in the RF or the memory as they were. The
copying is unnecessary because both the VLIW and the reconfigurable matrix
share access to the RF and memory hierarchy. The code doesn’t require any
rewriting and can be handled by the compiler automatically.

2.2.4 Resource Sharing

Since the basic components such as the FUs and RFs of the reconfigurable
matrix and those of the VLIW processor are basically the same, it is natural to
think that resources might be shared to have substantial cost-saving. In other
coarse-grained architectures, the resources cannot be effectively shared because
the processor and the matrix are two separate parts. For example, the FU in the
TinyRisc of MorphoSys cannot work cooperatively with the reconfigurable cells
in the matrix. In ADRES, since the VLIW processor and the reconfigurable ma-
trix are indeed two virtual functional views of the same physical entity, many
resources are shared among these two parts. Due to its processor/co-processor

20

model, only the VLIW processor or the reconfigurable matrix is active at any
time. This fact makes resource sharing possible. Resource sharing of the pow-
erful FUs and the multi-port RF of the VLIW by the matrix can greatly improve
the performance and schedulability of kernels mapped on the matrix.

2.3 Modulo Scheduling

The objective of modulo scheduling is to engineer a schedule for one itera-
tion of the loop such that this same schedule is repeated at regular intervals with
respect to intra- and inter-iteration dependency and resource constraints. This
interval is termed the initiation interval (II), essentially reflecting the perfor-
mance of the scheduled loop. Various effective heuristics have been developed
to solve this problem for both unified and clustered VLIWs [9, 11–13]. How-
ever, they cannot be applied to a coarse-grained reconfigurable architecture
because the nature of the problem becomes more difficult, as illustrated next.

2.3.1 Problem Illustrated

To illustrate the problem, consider a simple dependency graph, representing
a loop body, in Fig. 2.3a and a 2 × 2 matrix in Fig. 2.3b. The scheduled loop is
depicted in Fig. 2.4a, where the 2 × 2 matrix is flattened to 1 × 4 for convenience
of drawing. Nevertheless, the topology remains the same.

Fig 2.4a is a space-time representation of the scheduling space. From
Fig. 2.4a, we see that modulo scheduling on coarse-grained architectures is a
combination of 3 sub-problems: placement, routing and scheduling. Placement
determines on which FU of a 2D matrix to place one operation. Scheduling, in
its literal meaning, determines in which cycle to execute that operation. Routing
connects the placed and scheduled operations according to their data depen-
dencies. If we view time as an axis of 3D space, the modulo scheduling can
be simplified to a placement and routing problem in a modulo-constrained 3D
space, where the routing resources are asymmetric because any data can only

n1

n2 n3

n4

a) b)

fu1 fu2

fu3 fu4

mapping

Figure 2.3. a) A simple dataflow graph; b) A 2 × 2 reconfigurable matrix

A Tightly Coupled VLIW 21

n1

n2 n3

n4

n1

n2 n3

n4

n1

n2 n3

n4

Iteration 1

Iteration 2

Iteration 3

II

II

t = 0

t = 1

t = 2

t = 3

t = 4

n3

fu1 fu3 fu4 fu2

a)

b)

fu1

fu3

fu2

fu4

steady state

n1

n2 n4

Figure 2.4. a) Modulo scheduling example; b) Configuration for 2 × 2 matrix

be routed from smaller time to bigger time, as shown in Fig. 2.4a. Moreover,
all resources are modulo-constrained because the execution of consecutive it-
erations which are in distinct stages is overlapped. The number of stages in one
iteration is termed stage count (SC). In this example, II = 1 and SC = 3. The
schedule on the 2 × 2 matrix is shown in Fig. 2.4b. FU1 to FU4 are configured
to execute n2, n4, n1 and n3 respectively. In this example, there is only one
configuration. In general, the number of configurations that need to be loaded
cyclically is equal to II.

By overlapping different iterations of a loop, we are able to exploit a higher
degree of ILP. In this simple example, the instruction per cycle (IPC) is 4.
As a comparison, it takes 3 cycles to execute one iteration in a non-pipelined
schedule due to the data dependencies, corresponding to an IPC of 1.33, no
matter how many FUs in the matrix.

2.3.2 Modulo Routing Resource Graph

We develop a graph representation, namely modulo routing resource graph
(MRRG), to model the ADRES architecture internally for the modulo schedul-
ing algorithm. MRRG combines features of the modulo reservation ta-
ble(MRT) [7] for software pipelining and the routing resource graph [8] used

22

in FPGA P&R, and only exposes the necessary information to the modulo
scheduling algorithm. An MRRG is a directed graph G = {V, E, I I } which
is constructed by composing sub-graphs representing the different resources
of the ADRES architecture. Because the MRRG is a time-space represen-
tation of the architecture, every subgraph is replicated each cycle along the
time axis. Hence each node v in the set of nodes V is a tuple (r, t) where
r refers to the port of resource and t refers to the time stamp. The edge set
E = {(vm, vn)|t(vm) <= t(vn)} corresponds to switches that connect these
nodes. The restriction t(vm) <= t(vn) models the asymmetric nature of the
MRRG. Finally, II refers to the initiation interval. MRRG has two important
properties. First, it is a modulo graph. If scheduling an operation involves the
use of node (r, t j), then all the nodes {(r, tk)|t j mod I I = tk mod I I } are used
too. Second, it is an asymmetric graph. It is impossible to find a route from node
vi to v j , where t(vi) > t(v j). As we will see in section 2.3.3, this asymmetric
property imposes big constraints on the scheduling algorithm. During schedul-
ing we start with a minimal II and iteratively increase the II until we find a valid
schedule (see section 2.3.3). The MRRG is constructed from the architecture
specification and the II to try. Each component of the ADRES architecture is
converted to a subgraph in MRRG.

Fig. 2.5 shows some examples. Fig. 2.5a is a 2D view of a MRRG sub-
graph corresponding to a FU, which means in the real MRRG graph with time
dimension, all the subgraphs have to be replicated each cycle along the time

FU
pred src1 src2

pred
_dst1

pred
_dst2 dst

source

pred src1 src2

sink

pred_dst1pred_dst2 dst

RF
in

out1 out2

cycle n+1

in

out1 out2

in

out1 out2

internal
(cap)

internal
(cap)cycle n

(a)

(b)

Figure 2.5. MRRG representation of ADRES architecture parts

A Tightly Coupled VLIW 23

axis. For FUs, all the input and output ports have corresponding nodes in the
MRRG graph. Virtual edges are created between src1 and dst, src2 and dst,
etc. to model the fact that a FU can be used as routing resource to directly
connect src1 or src2 to dst, acting just like a multiplexor or demultiplexor.
In addition, two types of artificial nodes are created, namely source and sink.
When a commutative operation, e.g., add, is scheduled on this FU, the source or
sink node are used as routing terminals instead of the nodes representing ports.
Thus the router can freely choose which port to use. This technique improves
the flexibility of the routing algorithm and leads to higher routability. Fig. 2.5b
shows a space-time MRRG subgraph for a register file with one write port and
two read ports. The idea is partly from [10]. Similar to the FU, the subgraph
has nodes corresponding to each input and output port, which are replicated
over each cycle. Additionally, an internal node is created to represent the ca-
pacity of the register file. All internal nodes along the time axis are connected
one by one. The input nodes are connected to the internal node of next cycle,
whereas the output nodes are connected to the internal node of this cycle. In
this way, the routing capability of the register file is effectively modelled via its
write-store-read functionality. Moreover, a cap property is associated with the
internal node which is equal to the capacity of the register file. Therefore, the
register allocation problem is implicitly solved by our scheduling algorithm.
Other types of components such as bus and multiplexor can be modelled in a
similar way. This abstraction, all routing resources, whether physical or virtual,
are modelled in a universal way using nodes and edges. This unified abstract
view of the architecture exposes only necessary information to the scheduler
and greatly reduces the complexity of the scheduling algorithm.

2.3.3 Modulo Scheduling Algorithm

By using MRRG, the three sub-problems (placement, routing and schedul-
ing) are reduced to two sub-problems (placement and routing), and modulo
constraints are enforced automatically. However, it is still more complex than
traditional FPGA P&R problems due to the modulo and asymmetric nature
of the P&R space and scarcity of available routing resources. In FPGA P&R
algorithms, we can comfortably run the placement algorithm first by mini-
mizing a good cost function that measures the quality of placement. After
minimal cost is reached, the routing algorithm connects placed nodes. The
coupling between these two sub-problems is very loose. In our case, we can
hardly separate placement and routing as two independent problems. It is very
hard to find a placement algorithm and a cost function which can foresee the
routability during the routing phase. Therefore, we propose a novel approach to
solve these two sub-problems in one framework. The algorithm is described in
Fig. 2.6.

24

SortOps();
II := MII(DDG);

while not scheduled do
 InitMrrg(II);
 InitTemperature();
 InitPlaceAndRoute(); (1)

while not scheduled do
for each op in sorted operation list

 RipUpOp();

for i := 1 to random_pos_to_try do
 pos := GenRandomPos();
 success := PlaceAndRouteOp(pos); (3)

if success then
 new_cost := ComputeCost(op); (4)
 accepted := EvaluateNewPos(); (5)

if accepted then
 break;

else
 continue;

endif
endfor

if not accepted then
 RestoreOp();

else
 CommitOp();

if get a valid schedule then
 return scheduled;

endfor

if StopCriteria() then (6)
 break;

 UpdateOverusePenalty(); (7)
 UpdateTemperature(); (8)

endwhile
 II++;
endwhile

(2)

Figure 2.6. Modulo scheduling algorithm for coarse-grained reconfigurable architecture

First all operations are ordered by the technique described in [11]. Priority
is given to operations on the critical path and an operation is placed as close as
possible to both its predecessors and successors, which effectively reduces the
routing length between operations. Like other modulo scheduling algorithms,
the outermost loop tries successively larger II, starting with an initial value
equal to the minimal II (MII), until the loop has been scheduled. The MII is
computed using the algorithm in [9].

A Tightly Coupled VLIW 25

For each II, our algorithm first generates an initial schedule which respects
dependency constraints, but may overuse resources (1). For example, more than
one operation may be scheduled on one FU in the same cycle. In the inner loop
(2), the algorithm iteratively reduces resource overuse and tries to come up with
a legal schedule. At every iteration, an operation is ripped up from the existing
schedule, and is placed randomly (3). The connected nets are re-routed accord-
ingly. Next, a cost function is computed to evaluate the new placement and rout-
ing (4). The cost is computed by accumulating the cost of all used MRRG nodes
incurred by the new placement and routing of the operation. The cost function
of each MRRG node is shown in eq. 2.2. It is constructed by taking into account
the penalty of overused resources. In eq. 2.2, there is a basic cost (base cost) as-
sociated with each MRRG node. The occ represents the occupancy of that node.
The cap refers to the capacity of that node. Most MRRG nodes have a capacity of
1, whereas a few types of nodes such as the internal node of a register file have a
capacity larger than one. The penalty factor associated with overused resources
is increased at the end of each iteration (7). Through a higher and higher overuse
penalty, the placer and router will try to find alternatives to avoid congestion.
However, the penalty is increased gradually to avoid abrupt increases in the
overused cost that may trap solutions into local minima. This idea is borrowed
from the Pathfinder algorithm [8], which is used in FPGA P&R problems.

cost = base cost × occ + (occ − cap) × penalty (2.2)

In order to escape from local minima, we use a simulated annealing strategy
to decide whether each move is accepted or not (5). In this strategy, if the
new cost is lower than the old one, the new P&R of this operation will be
accepted. On the other hand, even if the new cost is higher, there is still a
chance that the move may be accepted, depending on the “temperature”. At the
beginning, the temperature is very high so that almost every move is accepted.
The temperature is decreased at the end of the each iteration (8). Therefore, the
operation is increasingly difficult to move around. In the end, if the termination
criteria is met without finding a valid schedule (6), the schedule algorithm starts
with the next II.

2.4 Experimental Results

In the experiments, an architecture resembling the topology of MorphoSys
[1] is instantiated from the ADRES template. In this configuration, a total of
64 FUs are divided into four tiles, each of which consists of 4 × 4 FUs. Each
FU is not only connected to the 4 nearest neighbor FUs, but also to all FUs
within the same row or column in this tile. In addition, there are row buses
and column buses across the matrix. The first row of FUs is also used by the

26

Table 2.1. Scheduling results of kernels

No. of Live-in Live-out Sched.
Loop ops vars vars II IPC density

idct1 93 4 0 3 31 48.4%
idct2 168 4 0 4 42 65.6%
adpcm-d 55 9 2 4 13.8 21.5%
mat mul 20 12 0 1 20 31.3%
fir cpl 23 9 0 1 23 35.9%

VLIW processor, and are connected to a multi-port register file. Only the FUs
in the first row are capable of executing memory operations, i.e., load/store
operations.

The testbench consists of 4 programs, which are derived from C reference
code of TI’s DSP benchmarks and MediaBench [14]. The idct is a 8 × 8 inverse
discrete cosine transformation, which consists two loops. The adpcm-d refers to
an ADPCM decoder. The mat mul computes matrix multiplication. The fir cpl
is a complex FIR filter. They are typical multimedia and digital signal processing
applications with abundant inherent parallelism.

The schedule results are shown in Table 2.1. The second column refers to the
total number of operations within the loop body. The II is initiation interval.
The live-in and live-out variables are allocated in the VLIW register file. The
instructions-per-cycle (IPC) reflects how many operations are executed in one
cycle on average. Scheduling density is equal to IPC/No. of FUs. It reflects the
actual utilization of all FUs for computation. The results show the IPC is pretty
high, ranging from 13.8 to 42. The FU utilization is ranged from 21.5% to 65.6%.
For kernels such as adpcm-d, the results are constrained by achievable minimal
II (MII). The Table 2.2 shows comparisons with the VLIW processor. The tested
VLIW processor has the same configuration as the first row of the tested ADRES
architecture. The compilation and simulation results for VLIW architectures
are obtained from IMPACT, where aggressive optimizations are enabled. The
results for the ADRES architecture are obtained from a developed co-simulator,
which is capable of simulating the mixed VLIW and reconfigurable matrix

Table 2.2. Comparisons with VLIW architecture

Total ops Total cycles Total ops Total cycles
App. (ADRES) (ADRES) (VLIW) (VLIW) Speed-up

idct 211676 6097 181853 38794 6.4
adpcm d 8150329 594676 5760116 1895055 3.2
mat mul 20010518 1001308 13876972 2811011 2.8
fir cpl 69126 3010 91774 18111 6.0

A Tightly Coupled VLIW 27

code. Although these testbenches are small applications, the results already
reflect the impact of integrating the VLIW processor and the reconfigurable
matrix. The speed-up over the VLIW is from 2.8 to 6.4, showing pretty good
performance.

2.5 Conclusions and Future Work

Coarse-grained reconfigurable architectures have been gaining importance
recently. Here we have proposed a new architecture called ADRES, where a
VLIW processor and a reconfigurable matrix are tightly coupled in a single ar-
chitecture. This level of integration brings a lot of benefits, including increased
performance, simplified programming model, reduced communication cost and
substantial resource sharing. We also describe a novel modulo scheduling al-
gorithm, which is the key technology in the ADRES compiler. The scheduling
algorithm is capable of mapping a loop to the reconfigurable matrix to expolit
high parallelism. The experiment results show great performance advantage
over the VLIW processor with comparable design efforts.

However, we have not implemented the ADRES architecture at the circuit
level yet. Therefore, many detailed design problems have not been taken into
account and concrete figures such as area and power are not available. Hence, to
implement the ADRES design is in the scope of our future work. On the other
hand, we believe the compiler is even more important than the architecture. We
will keep developing the compiler to refine the ADRES architecture from the
compiler point of view.

References

[1] H. Singh, et al. MorphoSys: an integrated reconfigurable system for data-parallel and computation-
intensive applications. IEEE Trans. on Computers, 49(5):465–481, 2000

[2] C. Ebeling and D. Cronquist and P. Franklin. RaPiD—Reconfigurable Pipelined Datapath. Proc. of
International Workshop on Field Programmable Logic and Applications (FPL), 1996

[3] PACT XPP Technologies. http://www.pactcorp.com
[4] T. Miyamori and K. Olukotun. REMARC: Reconfigurable Multimedia Array Coprocessor. International

Symposium on Field Programmable Gate Arrays (FPGA), 1998
[5] B. Mei et al. DRESC: A Retargetable Compiler for Coarse-Grained Reconfigurable Architectures.

International Conference on Field Programmable Technology, 2002
[6] D. A. Patterson and J. L. Hennessy. Computer Architecture: A Quantitative Approach. Morgan Kaufmann

Publishers, Inc., 1996
[7] M. S. Lam. Software pipelining: an effecive scheduling technique for VLIW machines. Proc. ACM

SIGPLAN ’88 Conference on Programming Language Design and Implementation, 1988
[8] C. Ebeling et al. Placement and Routing Tools for the Triptych FPGA. IEEE Trans. on VLSI, 3(12):473–

482, 1995
[9] B. Ramakrishna Rau. Iterative Modulo Scheduling. Hewlett-Packard Lab: HPL-94–115, 1995

[10] S. Roos. Scheduling for ReMove and other partially connected architectures. Laboratory of Computer
Enginnering, Delft University of Technology, 2001

[11] J. Llosa et al. Lifetime-Sensitive Modulo Scheduling in a Production Environment. IEEE Trans. on
Computers, 50(3):234–249, 2001

28

[12] C. Akturan and M. F. Jacome. CALiBeR: A Software Pipelining Algorithm for Clustered Embedded
VLIW Processors. Proc. ICCAD, 2001

[13] M. M. Fernandes et al. Distributed Modulo Scheduling. Proc. High Performance Computer Architecture
(HPCA), 1999

[14] C. Lee et al. MediaBench: A Tool for Evaluating and Synthesizing Multimedia and Communicatons
Systems. International Symposium on Microarchitecture, 1997

