
2

VMs for Portability: BCPL

2.1 Introduction

BCPL is a high-level language for systems programming that is intended to be
as portable as possible. It is now a relatively old language but it contains most
syntactic constructs found in contemporary languages. Indeed, C was designed
as a BCPL derivative (C can be considered as a mixture of BCPL and Algol68
plus some sui generis features). BCPL is not conventionally typed. It has one
basic data type, the machine word. It is possible to extract bytes from words
but this is a derived operation. All entities in BCPL are considered either to
be machine words or to require a machine word or a number of machine words.
BCPL supports addresses and assumes that they can fit into a single word.
Similarly, it supports vectors (one-dimensional arrays) which are sequences
of words (multi-dimensional arrays must be explicitly programmed in terms
of vectors of pointers to vectors). Routines (procedures and functions) can
be defined in BCPL and are represented as pointers to their entry points.
Equally, labels are addresses of sequences of instructions.

BCPL stands for “Basic CPL”, a subset of the CPL language. CPL was
an ambitious lexically scoped, imperative procedural programming language
designed by Strachey and others in the mid-1960s as a joint effort involving
Cambridge and London Universities. CPL contained all of the most advanced
language constructs of the day, including polymorphism. There is a story that
the compiler was too large to run on even the biggest machines available in
the University of London! Even though it strictly prefigures the structured
programming movement, BCPL contains structured control constructs (com-
mands) including two-branch conditionals, switch commands, structured loops
with structured exits. It also supports statement formulæ similar to those in
FORTRAN and the original BASIC. Recursive routines can be defined. BCPL
does support a goto command. Separate compilation is supported in part by
the provision of a “global vector”, a vector of words that contains point-
ers to externally defined routines. BCPL is lexically scoped. It implements
call-by-value semantics for routine parameters. It also permits higher-order



12 2 VMs for Portability: BCPL

programming by permitting routine names to be assigned to variables (and,
hence, passed into and out of routines).

BCPL was intended to be portable. Portability is achieved by bootstrap-
ping the runtime system a number of times so that it eventually implements
the compiler’s output language. This language is called OCODE . OCODE is
similar to a high-level assembly language but is tailored exactly to the in-
termediate representation of BCPL constructs. OCODE was also defined in
such a way that it could be translated into the machine language of most
processors. Associated with OCODE is an OCODE machine that, once im-
plemented, executes OCODE, hence compiled BCPL. The implementation of
an abstract machine for OCODE is relatively straigthforward.

In the book on BCPL [45], Richards and Whitby-Strevens define a second
low-level intermediate language called Intcode. Intcode is an extremely simple
language that can be used to bootstrap OCODE. More recently, Richards has
defined a new low-level bootstrap code called Cintcode. The idea is that a
fundamental system is first written for Intcode/Cintcode. This is then used
to bootstrap the OCODE evaluator. The definition of the Intcode and Cint-
code machines is given in the BCPL documentation. The BCPL system was
distributed in OCODE form (more recent versions distribute executables for
standard architectures like the PC under Linux). At the time the book was
published, an Intcode version of the system was required to bootstrap a new
implementation.

The virtual machines described below are intended, therefore, as an aid to
portability. The definitions of the machines used to implement OCODE and
Intcode/Cintcode instructions include definitions of the storage structures and
layout required by the virtual machine, as well as the instruction formats and
state transitions.

The organisation of this chapter is as follows. We will focus first on BCPL
and its intermediate languages OCODE and Intcode/Cintcode (Cintcode is
part of the current BCPL release and access to the documentation is rela-
tively easy). We will begin with a description of the OCODE machine. This
description will start with a description of the machine’s organisation and then
we move on to a description of the instruction set. The relationship between
OCODE instructions and BCPL’s semantics will also be considered. Then,
we will examine Cintcode and its abstract machine. Finally, we explain how
BCPL can be ported to a completely new architecture.

2.2 BCPL the Language

In this section, the BCPL language is briefly described.
BCPL is what we would now see as a relatively straightforward procedural

language. As such, it is based around the concept of the procedure. BCPL
provides three types of procedural abstraction:

• Routines that update the state and return no value;



2.2 BCPL the Language 13

• Routines that can update the state and return a single value;
• Routines that just compute a value.

The first category refers to procedures proper, while the second corresponds
to the usual concept of function in procedural languages. The third category
corresponds to the single-line functions in FORTRAN and in many BASIC
dialects. Each category permits the programmer to pass parameters, which
are called by value.

BCPL also supports a variety of function that is akin to the so-called “for-
mula function” of FORTRAN and BASIC. This can be considered a variety
of macro or open procedure because it declares no local variables.

BCPL supports a variety of state-modifying constructs. As an imperative
language, it should be obvious that it contains an assignment statement. As-
signment in BCPL can be simple or multiple, so the following are both legal:

x := 0;
x, y := 1, 2;

It is worth noting that terminating semicolons are optional. They are
mandatory if more than one command is to appear on the same line as in:

x := 0; y := 2

Newline, in BCPL, can also be used to terminate a statement. This is
a nice feature, one found in only a few other languages (Eiffel and Imp, a
language used in the 1970s at Edinburgh University).

Aside from this syntactic feature, the multiple assignment gives a clue that
the underlying semantics of BCPL are based on a stack.

In addition, it contains a number of branching constructs:

• IF . . . DO.1 This is a simple test. If the test is true, the code following the
DO is executed. If the test is false, the entire statement is a no-operation.

• UNLESS . . . DO. This is syntactic sugar for IF NOT . . . DO. That is, the
code following the DO is executed if the test fails.

• TEST . . . THEN . . . ELSE. This corresponds to the usual if then else in
most programming languages.

• SWITCHON. This is directly analogous to the case statement in Pascal and
its descendants and to the switch statement in C and its derivatives. Cases
are marked using the CASE keyword. Cases run into each other unless
explicitly broken. There is also a an optional default case denoted by a
keyword. Each case is implicitly a block.

In general, the syntax word do can be interchanged with then. In the above
list, we have followed the conventions of BCPL style.

BCPL contains a number of iterative statements. The iterative statements
are accompanied by structured ways to exit loops.
1 Keywords must be in uppercase, so the convention is followed here.



14 2 VMs for Portability: BCPL

BCPL has a goto, as befits its age.
BCPL statements can be made to return values. This is done using the

pair of commands VALOF and RESULTIS. The VALOF command introduces a
block from which a value is returned using the RESULTIS command; there can
be more than one RESULTIS command in a VALOF block. The combination of
VALOF and RESULTIS is used to return values from functions. The following
is a BCPL procedure:

LET Add.Global (x) BE
$(
globl := globl + x;

$)

The following is a BCPL functional routine:

LET Global.Added.Val (x) =
$(
VALOF $(
RESULTIS(x+globl);

$)
$)

From this small example, it can be seen that the body of a procedure
is marked by the BE keyword, while functional routines are signalled by the
equals sign and the use of VALOF and RESULTIS (BCPL is case-sensitive).

BCPL is not conventionally typed. It has only one data type, the machine
word, whose size can change from machine to machine. The language also
contains operators that access the bytes within a machine word. Storage is
allocated by the BCPL compiler in units of one machine word. The language
contains an operator that returns the address of a word and an operator that,
given an address, returns the contents of the word at that address (derefer-
encing).

BCPL supports structured types to a limited extent. It permits the defi-
nition of vectors (single-dimension arrays of words). It also has a table type.
Tables are vectors of words that are indexed by symbolic constants, not by
numerical values. In addition, it is possible to take the address of a routine
(procedure or function); such addresses are the entry points of the routines
(as in C). The passing of routine addresses is the method by which BCPL
supports higher-order routines (much as C does).

It also permits the definition of symbolic constants. Each constant is one
machine word in length.

BCPL introduces entities using the LET syntax derived from ISWIM. For
example, the following introduces a new variable that is initialised to zero:

LET x := 0 IN

The following introduces a constant:



2.3 VM Operations 15

LET x = 0 IN

Multiple definitions are separated by the AND keyword (logical conjunc-
tion is represented by the “&” symbol) as in:

LET x := 0
AND y = 0
IN

Routines are also introduced by the LET construct.
Variables and constants can be introduced at the head of any block.
In order to support separate compilation and to ease the handling of the

runtime library, a global vector is supported. This is a globally accessible vector
of words, in which the first few dozen entries are initialised by the runtime
system (they are initialised to library routine entry points and to globally
useful values). The programmer can also assign to the global vector at higher
locations (care must be taken not to assign to locations used by the system).
These are the primary semantic constructs of BCPL. Given this summary, we
can now make some observations about the support required by the virtual
machine (the OCODE machine).

2.3 VM Operations

The summary of BCPL above was intended to expose the major constructs.
The identification of major constructs is important for the design of a virtual
machine which must respect the semantics of the language as well as providing
the storage structures required to support the language.

At this stage, it should be clear that a BCPL machine should provide sup-
port for the primitive operations needed for the manipulation of data of all
primitive types. The virtual machine support for them will be in the form of
instructions that the machine will directly implement. In BCPL, this implies
that the virtual machine must support operations on the word type: arithmetic
operations, comparisons and addressing. Byte-based operations can either be
provided by runtime library operations or by instructions in the virtual ma-
chine; BCPL employs the latter for the reason that it is faster and reduces
the size of the library. In addition, BCPL supports vectors on the stack; they
must also be addressed when designing an appropriate virtual machine.

The values manipulated by these operations must be stored somewhere: a
storage area, particularly for temporary and non-global values must be pro-
vided. Operations are required for manipulating this storage area. Operations
are also required to load values from other locations and to store them as
results. More than one load operation might be required (in a more richly
typed language, this might be a necessity) and more than one store operation
might be required. It is necessary to look at the cases to determine what is
required.



16 2 VMs for Portability: BCPL

BCPL employs static scoping. The compiler can be relied upon to ver-
ify that variables, etc., are not required. Static scoping requires a stack-like
mechanism for the storage of variables. The virtual machine is, therefore, built
around a stack. Operations are required to allocate and free regions of stack
at routine entry and exit; the return of results can also be implemented by
means of stack allocation and addressing. The compiler generates instructions
that allocate and free the right amount of stack space; it also generates in-
structions to handle returned values and the adjustment of the stack when
routines return. Evaluation of expressions can be performed on the stack, so
we now are in a position to define the instructions for data manipulation.

With expressions out of the way, the following families of construct must
be handled by the compiler and OCODE instructions generated to implement
them:

• Control constructs, in particular, conditionals, iteration, jumps;
• Assignment;
• Routine call and return;
• Parameter passing and value return from routines and valof.

Note that we assume that sequencing is handled implicitly by the compiler.
Control structure is handled, basically, by means of labels and jumps.

There are clear translations between most of the control structures and label-
jump combinations. The problem cases are FOR and SWITCHON. The former
is problematic because it requires counters to be maintained and updated in
the right order; the latter because the best implementation requires a jump
table.

Assignment is a relatively straightforward matter (essentially, push a value
onto the stack and pop it off to some address or other). Multiple assignment is
also easy with a stack machine. The values are pushed onto the stack in some
order (say left to right) and popped in the reverse order. Thus, the command:

p,q := 1, 2

has the intention of assigning 1 to p and 2 to q. This can be done by pushing
1, then 2 onto the stack and assigning them in reverse order. An interesting
example of multiple assignment is:

p,q := q, p

Swap! It can be handled in exactly the manner just described.
Finally, we have routine calls and VALOF. There are many ways to im-

plement routine calls. For software virtual machines, relatively high-level in-
structions can be used (although low-level instructions can also be employed).
The OCODE machine provides special instructions for handling routine entry
and exit, as will be seen.

BCPL is a call-by-value language, so the runtime stack can be directly
employed to hold parameter values that are to be passed into the routine.



2.4 The OCODE Machine 17

The VALOF ... RESULTIS combination can be handled in a variety of ways.
One is to perform a source-to-source transformation. Another is to use the
stack at runtime by introducing a new scope level. Variables local to the
VALOF can be allocated on the runtime stack with the stack then being used
for local values until the RESULTIS is encountered. An implementation for
RESULTIS would be to collapse the stack to the point where the VALOF was
encountered and then push the value to be returned onto the stack.

2.4 The OCODE Machine

In this section, the organisation of the OCODE machine is presented. BCPL
is a procedural programming language that supports recursion. It requires a
globally accessible vector of words to support separate compilation. It also re-
quires a pool of space to represent global variables. The language also permits
the use of (one-dimensional) vectors and tables (essentially vectors of words
whose elements are indexed by symbolic identifiers, much like tables in assem-
bly language). As a consequence, the OCODE machine must reserve space for
a stack to support lexical scope and for recursion. The OCODE machine also
needs space to hold the global vector and also needs a space to hold program
instructions.

globals stack code

G
P

P! (S - 2)
P! (S - 1)

S
Next free 

stack cell

Fig. 2.1. The OCODE machine organisation.

The OCODE machine has three memory regions:

• The Global vector;
• The Stack (this is a framed stack);
• Storage for program code and static data.



18 2 VMs for Portability: BCPL

The organisation of the OCODE machine is shown in Figure 2.1.
The global vector is used to store all variables declared global in the pro-

gram. The global vector is a vector of words containing global variables; it
also contains the entry points of routines declared in one module that are to
be made visible in another. It is pointed to by the G register. The current
stack frame is pointed to by the P register. The size of the current stack frame
is always known at compilation time, so it need not be represented in code by
a register.

There is also a special A register which is used to hold values returned by
functions (see below).

Static variables, tables and string constants are stored in the program area.
They are referenced by labels which are usually represented by the letter L
followed by one or more digits.

The stack holds all dynamic (local) variables.
All variables are of the same size. That is, all variables are allocated the

same amount of space in the store. For most modern machines they are 32-
or 64-bits in length.

2.5 OCODE Instructions and their Implementation

In OCODE, instructions are represented as integers. Here, we will use only
the mnemonic names in the interests of readability. It is important to note
that the mnemonic form for instructions and labels must be converted into
more fundamental representations when code is emitted by the compiler.

The size of the current stack frame is always known at compile time. When
specifying instructions, a variable, S, is used to denote an offset from the start
of the current stack frame. This is done only to show how much space is left
in the current stack frame by the individual instructions.

When defining abstract machine instructions, an array notation will be
employed. Thus, P is considered as a one-dimensional vector. S will still be a
constant denoting the size of the current stack frame. Similarly, G will also be
considered as an array.

The notation P[S-1] denotes the first free element on the stack.

2.5.1 Expression Instructions

The OCODE instructions that implement expressions do not alter the stack
frame size. In the case of unary instructions, the operand is replaced on the top
of the stack by the result of the instruction. In the case of binary operations,
the stack element immediately beneath the top one is replaced by the result.

The instructions are mostly quite clear. Rather than enter into unnecessary
detail, these instructions are summarised in Table 2.1 The table’s middle
column is a short English equivalent for the opcode.



2.5 OCODE Instructions and their Implementation 19

Only the first instruction deserves any real comment. It is an instruction
that considers the current top-of-stack element as a pointer into memory. It
replaces the top-of-stack element by the object that it points to. This is the
operation of dereferencing a pointer to yield an r-value.

Table 2.1. OCODE expression instructions.

Opcode Description Definition
RV r-value P[S-1] := cts([S-1])
ABS absolute value P[S-1] := abs(P[S-1])
NEG unary minus P[S-1] := -P[S-1]
NOT logical negation P[S-1] := ¬(P[S-1])
GETBYTE extract byte P[S-2] := P[S-2] gtb P[S-1]
MULT multiply P[S-2] := P[S-2] * P[S-1]
DIV divide P[S-2] := P[S-2] / P[S-1]
REM remainder P[S-2] := P[S-2] rem P[S-1]
PLUS add P[S-2] := P[S-2] + P[S-1]
MINUS subtract P[S-2] := P[S-2] - P[S-1]
EQ equal P[S-2] := P[S-2] = P[S-1]
NE not equal P[S-2] := P[S-2] �= P[S-1]
LS less than P[S-2] := P[S-2] < P[S-1]
GR greater than P[S-2] := P[S-2] > P[S-1]
LE ≤ P[S-2] := P[S-2] <= P[S-1]
GE ≥ P[S-2] := P[S-2] >= P[S-1]
LSHIFT left shift P[S-2] := P[S-2] << P[S-1]
RSHIFT right shift P[S-2] := P[S-2] >> P[S-1]
LOGAND logical and P[S-2] := P[S-2] and P[S-1]
LOGOR logical or P[S-2] := P[S-2] or P[S-1]
EQV bitwise equal P[S-2] := P[S-2] leq P[S-1]
NEQV xor P[S-2] := P[S-2] xor P[S-1]

Table 2.1 employs a notational convention that needs explanation:

• cts is the contents operation (dereferences its argument).
• abs is the absolute value of its argument.
• gtb is the getbyte operator.
• rem is integer remainder after division.
• and is logical and (conjunction).
• or is logical or (disjunction).
• leq is bitwise equivalence.
• xor is bitwise exclusive or (logical not-equivalence).
• e1 << e2 is left shift e1 by e2 bits.
• e1 >> e2 is right shift e1 by e2 bits.

Other than this, the “description” of each instruction is just an operation
on the OCODE stack. In this and the following cases, the code equivalent is



20 2 VMs for Portability: BCPL

included in the table; when defining virtual machines later in this book, this
method will be used to indicate both “descriptions” and implementations of
virtual machine instructions.

2.5.2 Load and Store Instructions

The load and store instructions, like those for expressions, should be fairly
clear. The code equivalents are included in the right-hand column of Table
2.2. Each instruction is described (middle column of the table).

Table 2.2. OCODE load and store instructions.

Opcode Description Definition
LPn load from P P[S] := P[n]; S := S+1
LGn load global P[S] := G[n]; S := S+1
LL Ln load label P[S] := Ln; S := S+1
LL Pn load address P[S] := P[n]; S := S+1
LL Gn load global addr P[S] := G[n]; S := S+1
LLL Ln load label addr P[S] := Ln; S := S+1
SPn store off P P[n] := P[S]; S := S-1
SGn store global G[n] := P[S]; S := S-1
SL Ln store at label Ln:= P[S]; S := S-1
LF Ln load function P[S] := entry point Ln;

S := S+1
LNn load constant P[S] := n; S := S+1
TRUE true P[S] := true; S := S+1
FALSE false P[S] := false; S := S+1
LSTR n C1 . . . Cn load string P[S] := "C1 . . . Cn"; S := S+1
STIND store index cts(P[S-1]) := P[S-2]; S := S-2
PUTBYTE put byte setbyte(P[S-2],P[S-1]) :=

P[S-3]; S := S-3

There is an instruction not included in Table 2.2 that appears in the
OCODE machine specification in [44]. It is the QUERY instruction. It is de-
fined as:

P[S] := ?; S := S+1

Unfortunately, [44] does not contain a description of it. The remaining in-
structions have an interpretation that is fairly clear and is included in the
table. It is hoped that the relatively brief description is adequate.

2.5.3 Instructions Relating to Routines

This class of instruction deals with routine entry (call) and return. When it
compiles a routine, the OCODE compiler generates code of the following form:



2.5 OCODE Instructions and their Implementation 21

ENTRY Li n C1 ... Cn
SAVE s
<body of routine>
ENDPROC

Here, Li is the label of the routine’s entry point. For debugging purposes,
the length of the routine’s identifier is recorded in the code (this is n in the
code fragment); the characters comprising the name are the elements denoted
C1 to Cn. The instructions in this category are shown in Table 2.3.

The SAVE instruction specifies the initial setting of the S register. The
value of this is the save space size (3) plus the number of formal parameters.
The save space is used to hold the previous value of P, the return address and
the routine entry address. The first argument to a routine is always at the
location denoted by 3 relative to the pointer P (some versions of BCPL have
a different save space size, so the standard account is followed above).

The end of each routine is denoted by ENDPROC. This is a no-op which
allows the code generator to keep track of nested procedure definitions.

The BCPL standard requires that arguments are allocated in consecutive
locations on the stack. There is no a priori limit to the number of arguments
that can be supplied. A typical call of the form:

E(E1, ..., En)

is compiled as follows (see Table 2.3). First, S is incremented to allocate space
for the save space in the new stack frame. The arguments E1 to En are com-
piled and then the code for E. Finally, either FNAP k or RTAP k instruction is
generated, the actual one depending upon whether a function or routine call
is being compiled. The value k is the distance between the old and new stack
frames (i.e., the number of words or bytes between the start of the newly
compiled stack frame and the start of the previous one on the stack).

Table 2.3. OCODE instructions for routines.

Opcode Meaning
ENTRY enter routine
SAVE save locals
ENDPROC end routine
FNAPk apply function
RNAPk apply procedure
RTRN return from procedure
FNRN return from function

Return from a routine is performed by the RTRN instruction. This restores
the previous value of P and resumes execution from the return address. If
the return is from a function, the FNRN instruction is planted just after the



22 2 VMs for Portability: BCPL

result has been evaluated (this is always placed on the top of the stack). The
FNRN instruction is identical to RTRN after it has stored the result in the A
register ready for the FNAP instruction to store it at the required location in
the previous stack frame.

2.5.4 Control Instructions

Control instructions are to be found in most virtual machines. Their function is
centred around the transfer of control from one point to another in the code.
Included in this set are instructions to create labels in code. The OCODE
control instructions are shown in Figure 2.4.

Table 2.4. OCODE control instructions.

Opcode Meaning
LAB Ln declare label
JUMP Ln unconditionally jump to label
JT Ln jump if top of stack is true
JF Ln jump if top of stack is false
GOTO E computed goto (see below)
RES Ln return
RSTACK k return
SWITCHON n Ld K1 L1 . . . Ln jump table for a SWITCHON.
FINISH terminate execution

The JUMP Ln instruction transfers control unconditionally to the label L.
The instructions JT and JF transfer control to their labels if the top of the
stack (implemented as P!(S-1)) is true or false, respectively. Instructions like
this are often found in the instruction sets of virtual machines. The conditional
jumps are used, inter alia, in the implementation of selection and iteration
commands.

Although they are particular to OCODE, the other instructions also rep-
resent typical operations in a virtual machine. The LAB instruction (really a
pseudo-operation) declares its operand as a label (thus associating the address
at which it occurs with the label).

The GOTO instruction is used to generate code for SWITCHON commands.
It takes the form GOTO E, where E is an expression. In the generated code,
the code for E is compiled and immediately followed by the GOTO instruction.
At runtime, the expression is evaluated, leaving an address on the top of the
stack. The GOTO instruction then transfers control to that address.

The RES and RSTACK instructions are used to compile RESULTIS com-
mands. If the argument to a RESULTIS is immediately returned as the result
of a function, the FNRN instruction is selected. In all other contexts, RESULTIS
e compiles to the code for e followed by the RES Ln instruction. The execu-
tion of this instruction places the result in the A register and then jumps to



2.5 OCODE Instructions and their Implementation 23

the label Ln. The label addresses an RSTACK k instruction, which takes the
result and stores it at location P!k and sets S to k+1.

The OCODE SWITCHON instruction performs a jump based on the value on
the top of the stack. It is used to implement switches (SWITCHON commands,
otherwise known as case statements). It has the form shown in Table 2.4, where
n is the number of cases to which to switch and Ld is the label of the default
case. The Ki are the case constants and the Li are the corresponding code
labels.

Finally, the FINISH instruction implements the BCPL FINISH command.
It compiles to stop(0) in code and causes execution to terminate.

2.5.5 Directives

It is intended that BCPL programs be compiled to OCODE (or native code)
and then executed in their entirety. The BCPL system is not intended to
be incremental or interactive. It is necessary, therefore, for the compiler to
provide information to the runtime system that relates to the image file that
it is to execute. This is the role of the directives.

The BCPL OCODE machine manages a globals area, a stack and a code
segment. The runtime system must be told how much space to allocate to
each. It must also be told where globals are to be located and where literal
pools start and end, so that modules can be linked. The system also needs
to know which symbols are exported from a module and where modules start
and end.

The BCPL global vector is a case in point. There is no a priori limit on
the size of the global vector. In addition, two modules can assign different
values to a particular cell in the global vector (with all the ordering problems
that are so familiar).

The OCODE generator also needs to be handed information in the form
of directives. The directives in the version of BCPL that is current at the time
of writing (Summer, 2004) are as shown in Table 2.5. The directives are used
in different parts of the system, so are briefly explained in the following few
paragraphs.

Table 2.5. OCODE directives.

Directive
STACK s
STORE
ITEMN n
DATALAB Ln
SECTION
NEEDS
GLOBAL n K1L1 . . . KnLn



24 2 VMs for Portability: BCPL

The STACK directive informs the code generator of the current size of the
stack. This is required because the size of the current stack frame can be
affected by some control structures, for example those that leave a block in
which local variables have been declared.

The STORE directive informs the code generator that the point separating
the declarations and code in a block has been reached. Any values left on the
stack are to be treated as variable initialisations and should be stored in the
appropriate places.

Static variables and tables are allocated in the program code area using
the ITEMN directive. The parameter to this directive is the initial value of the
cell that is reserved by this directive. For a table, the elements are allocated
by consecutive ITEMN directives. The DATALAB directive is used to associate a
label with a data area reserved by one or more ITEMN directives.

The SECTION and NEEDS directives are direct translations of the SECTION
and NEEDS source directives. The latter are used to indicate the start of a
BCPL module and the modules upon which the current one depends.

An OCODE module is terminated with the GLOBAL directive. The argu-
ments denote the number of items in the global initialisation list and each of
the Ki are offsets into the global vector and Ln is the label of the correspond-
ing offset (i.e., KiLi denotes an offset and the label to be associated with that
offset).

Directives are an important class of virtual machine instruction, although
little more will be said about them. One reason for this is that, once one
becomes aware of their need, there is little else to be said. A second reason
is that, although every system is different, there are things that are common
to all—in this case, the general nature of directives. It is considered that
the directives required by any virtual machine will become clear during its
specification.

2.6 The Intcode/Cintcode Machine

The Intcode/Cintcode machine is used to bootstrap an OCODE machine on
a new processor; it can also serve as a target for the BCPL compiler’s code
generator. The code is designed to be as compact as possible. The Cintcode
machine was originally designed as a byte-stream interpretive code to run
on small 16-bit machines such as the Z80 and 6502 running under CP/M.
More recently, it has been extended to run on 32-bit machines, most notably
machines running Linux.

The best descriptions of the Intcode and Cintcode machines are [45] and
[44], respectively. Compared with OCODE, (Ci/I)ntcode is an extremely com-
pact representation but is somewhat more complex. The complexity arises be-
cause of the desire to make the instruction set as compact as possible; this is
reflected in the organisation which is based on bit fields. The organisation of
the machine is, on the other hand, easily described. The following description



2.6 The Intcode/Cintcode Machine 25

is of the original Intcode machine and follows that in [45] (the account in [44]
is far more detailed but is essentially the same in intent).

The Intcode machine is composed of the following components. A mem-
ory consisting of equal-sized locations that can be addressed by consecutive
integers (a vector of words, for example). It has a number of central registers:

A,B: the accumulator and auxiliary accumulator ;
C: the control register. This is the instruction pointer; it points to the next

instruction to be executed;
D: the address register, used to store the effective address of an instruction;
P: a pointer that is used to address the current stack frame;
G: a pointer used to access the global vector.

Note that the Intcode machine has a framed stack and a global vector (both
necessary to implement OCODE).

Instructions come in two lengths: single and double length. The compiler
determines when a double-length instruction should be used.

The operations provided by the Intcode machine are shown in Table 2.6
(the idea is taken from [45], p. 134; the specification has been re-written
using mostly C conventions). As in the OCODE instructions, each operation
is specified by a code fragment.

Table 2.6. The Intcode machine functions.

Operation Mnemonic Specification
Load L B := A: A := D
Store S *D := A
Add A A := A + D
Jump J C := D
Jump if true T IF A THEN C := D
Jump if false F IF NOT A THEN C := D
Call routine K D := P + D

*D := P; *(D+1) := C
P := D; C := A

Execute operation X Various operations, mostly arithmetic of
logical operations operating on A
and B.

Each Intcode instruction is composed of six fields. They are as follows:

• Function Part: This is a three-bit field. It specifies one of the eight possible
machine operations described in Table 2.6.

• Address Field: This field holds a positive integer. It represents the initial
value of the D register.

• D bit: This is a single bit. When set, it specifies that the initial value of
the D register is to be taken from the following word.



26 2 VMs for Portability: BCPL

• P bit: This is single bit. It specifies whether the P register is to be added
to the D register at the second stage of an address calculation.

• G bit: This is another single bit field. It specifies whether the G register
is to be added to the D register at the end of the third stage of address
calculation.

• I bit: This is the indirection bit. If it is set, it specifies that the D register
is to be relaced by the contents of the location addressed by the D register
at the last stage of address calculation.

The effective address is evaluated in the same way for every instruction and
is not dependent upon the way in which the machine function is specified.

Intcode is intended to be a compact representation of a program. It is also
intended to be easy to implement, thus promoting BCPL’s portability (the
BCPL assembler and interpreter for Intcode occupies just under eight and a
half pages of BCPL code in [45]).

The Intcode machine also uses indirection (as evidenced by the three-
stage address calculation involving addresses in registers), thus making code
compact.

This has, of necessity, been only a taster for the Intcode and Cintcode
machines. The interested reader is recommended to consult [44] and [45] for
more information. The full BCPL distribution contains the source code of the
OCODE and Cintcode machines; time spent reading them will be rewarding.




