
Preface

I love virtual machines (VMs) and I have done for a long time. If that makes
me “sad” or an “anorak”, so be it. I love them because they are so much fun, as
well as being so useful. They have an element of original sin (writing assembly
programs and being in control of an entire machine), while still being able
to claim that one is being a respectable member of the community (being
structured, modular, high-level, object-oriented, and so on). They also allow
one to design machines of one’s own, unencumbered by the restrictions of a
particular processor (at least, until one starts optimising it for some physical
processor or other).

I have been building virtual machines, on and off, since 1980 or there-
abouts. It has always been something of a hobby for me; it has also turned
out to be a technique of great power and applicability. I hope to continue
working on them, perhaps on some of the ideas outlined in the last chapter
(I certainly want to do some more work with register-based VMs and concur-
rency).

I originally wanted to write the book from a purely semantic viewpoint.
I wanted to start with a formal semantics of some language, then show how
a virtual machine satisfied the semantics; finally, I would have liked to have
shown how to derive an implementation. Unfortunately, there was insufficient
time to do all of this (although some parts—the semantics of ALEX and a
part proof of correctness—were done but omitted). There wasn’t enough time
to do all the necessary work and, in addition, Stärk et al. had published their
book on Java [47] which does everything I had wanted to do (they do it with
Java; I had wanted to define ad hoc languages).

I hope to have made it clear that I believe there to be a considerable
amount of work left to be done with virtual machines. The entire last chapter
is about this. As I have tried to make clear, some of the ideas included in that
chapter are intended to make readers think, even if they consider the ideas
stupid!

A word or two is in order concerning the instruction sets of the various
virtual machines that appear from Chapter Four onwards. The instructions



viii Preface

for the stack machines in Chapter Four seem relatively uncontroversial. The
instructions in the chapter on register machines (Chapter Seven) might seem
to be open to a little more questioning.

First, why not restrict the instruction set to those instructions required to
implement ALEX? This is because I wanted to show (if such a demonstration
were really required) that it is possible to define a larger instruction set so
that more than one language can be supported.

Next, most of the jump and arithmetic instructions seem sensible enough
but there are some strange cases, the jump branching to the address on the top
of the stack is one case in point; all these stack indexing operations constitute
another case. I decided to add these “exotic” instructions partly because,
strange as they might appear to some, they are useful. Somewhere or other,
I encountered a virtual machine that employed a jump instruction similar to
the one just mentioned (I also tried one out in one of the Harrison Machine’s
implementations—it was quite useful), so I included it. Similarly, a lot of time
is spent in accessing variables on the stack, so I added instructions that would
make such accesses quite easy to compile; I was also aware that things like
process control blocks and closures might be on stacks. I decided to add these
instructions to build up a good repertoire, a repertoire that is not restricted
to the instructions required to implement ALEX or one of the extensions
described in Chapter Five.

I do admit, though, that the mnemonics for many of the operations could
have been chosen with more care. (I was actually thinking that an assembler
could macro these names out.) One reason for this is that I defined the register
machine in about a day (the first ALEX machine was designed in about forty-
five minutes!). Another (clearly) is that I am not terribly good at creating
mnemonics. I thought I’d better point these matters out before someone else
does.

I have made every effort to ensure that this text is free of errors. Undoubt-
edly, they still lurk waiting to be revealed in their full horror and to show that
my proof-reading is not perfect. Should errors be found, I apologise for them
in advance.



Preface ix

Acknowledgements

Beverley Ford first thought of this book when looking through some notes I
had made on abstract machines. I would like to thank her and her staff at
Springer, especially Catherine Drury, for making the process of writing this
book as smooth as possible.

My brother Adam should be thanked for creating the line drawings that
appear as some of the figures (I actually managed to do the rest myself). I
would also like to thank all those other people who helped in various ways
while I was writing this book (they know who they are).

Iain Craig
Market Square

Atherstone
14 June, 2005




