
A Systematic Look at Model Transformations

Andreas Metzger

Software Systems Engineering, University of Duisburg-Essen,
Schützenbahn 70, 45117 Essen, Germany
metzger@sse.uni-essen.de

Summary. Model transformations are at the heart of model-driven software development
(MDSD). As a typical example, models of a higher level of abstraction are transformed into
models that are closer to the target platform. However, there are also other forms of such
transformations: for example, a model at a certain level of abstraction can be evolved by
applying specific designs or modeling patterns.

We believe that a systematic classification of the kinds of transformations that are per-
formed during an MDSD activity is of great assistance in understanding such transformations
and in comprehending the sources of possible errors and difficulties. This chapter provides a
systematic look at model transformations and presents a detailed classification scheme that
we have found suitable. To support the soundness of this scheme, we provide examples for
its application (i.e., for classifying typical transformations) and we demonstrate how such a
classification can assist in understanding some of the problems that can occur within MDSD.

1 Foundation

Before the various kinds of model transformations can be discussed, the central term
“model” has to be clarified. In general, “a model is a set of statements about some
system under study” ([384], p. 27).

To enable the model users to concentrate on the significant system aspects, thus
allowing them to handle complexity, any useful model will exhibit some form of
abstraction from the system under study. One form of abstraction is the selection of
relevant from irrelevant or random properties, which is known as reduction (cf. [281],
p. 6). Other important forms of abstraction are generalization and classification. Gen-
eralization is a means by which differences among similar elements are ignored to
form an entity in which the similarities can be emphasized ([346], p. 155). Classifica-
tion is the process of identifying types, which are also known as concepts (cf. [327],
p. 12-2 and [346], p. 156). Classification is the basic form of abstraction found in
object-oriented or object-based modeling, where object types are the main elements
of conceptual models and classes their respective realization in design models (cf.
[327], p. 12-3).



20 Andreas Metzger

In traditional scientific disciplines models are usually descriptive, which means
that a model can be considered a “correct” description of the system under study if
all its statements are true for the system (see [384], p. 27).

In the case of software systems, a model can also be considered as the specifica-
tion of a system or rather a whole set of systems that should be built. In the context of
such a prescriptive (cf. [281], p. 8) form of model application, which can be found in
other engineering disciplines also, a specific system is considered as being “correct”
relative to its specification “if no statement in the model is false for the system under
study” ([384], p. 27). During software development, the models are refined (i.e., the
level of abstraction is reduced), whereby a subset of the initial set of systems is se-
lected. If successful, this process leads to the final software product, which realizes
the desired system in the end.

As is shown in Fig. 1, each model is based on a formalism (or language), which
precisely defines the model’s syntax (or notation) and its semantics (or meaning).
The syntax of a formalism is made up of the concrete and the abstract syntax. The
concrete syntax specifies the readable representation of the abstract notational ele-
ments. The semantics consists of the dynamic and the static semantics. The static
semantics, which should be more correctly called well-formedness rules (cf. [195],
p. 16), is implied by the dynamic semantics and represents restrictions on the set of
valid models that can be expressed using the underlying formalism.

Formalism

Concrete
Syntax

Dynamic
Semantics

Static
Semantics

bases on

represents
assigns 

implies

restricts
Model

Abstract
Syntax

System(s)

abstracts from/

meaning to

specifies

Fig. 1. System, model, and formalism (adapted from [55])

With these definitions of system, model, and formalism, we can more formally
describe transformations that can occur during software development. Using a modi-
fied form of a formalization that was introduced by Caplat and Sourrouille in [55],
we assume that M is the model of a system S (or a specification for a set of systems)
and F is the formalism in which the model is described. Any transformation t can
then be formulated as

t : M1(S1)|F1
→ M2(S2)|F2

(1)

where M1 is the source model and M2 is the target model of the transformation.



A Systematic Look at Model Transformations 21

2 Classification of Model Transformations

Note that the transformation t that has been introduced in (1) implies neither that
the source model will be modified nor that the target model will be created without
modifying the source model. This characteristic should be considered as being or-
thogonal to the transformation that is described by t. Typically, one would consider
the transformation of the latter kind as a query because it is free of side-effects (cf.
[12]).

A transformation can be monolithic (or atomic) or can be composed of many
separate steps, which implies a step-wise transformation (cf. [200]).

Caplat and Sourrouille [56] further distinguish model transformations as being
endogen if the formalism of source and target model is the same (F1 = F2) or being
exogen otherwise (F1 �= F2).

A further distinction between different kinds of transformations can be exercised
upon the purpose of the transformation. There exist transformations that are per-
formed to evolve the model and are therefore called horizontal transformations. If
a transformation is employed for implementing the model, i.e., for transforming the
source model into a model that is closer to the run-time platform, we speak of such
a transformation as being vertical (cf. pp. 335–339 in [79]). In the first case, the for-
malism of the source and target model is the same (endogen transformation), where
as in the latter case the target model’s formalism contains elements that describe
concepts that are closer to the final implementation platform (see p. 119 of this book
for an in-depth discussion of the term “platform”). Such a vertical transformation is
commonly known as code generation, when the target model is the actual implemen-
tation code (see [12]).

It should be noted that although vertical transformations are exogen transfor-
mations, not all exogen transformations have to be vertical transformations. As an
example, static analysis tools operate in the reverse direction. These tools usually
have implementation code as an input and compute a more abstract model as an out-
put. An example is the computation of the cyclomatic complexity for individual code
components (see [229], pp. 348–350).

Another characterization can be performed based on the degree to which model
transformations can be automated. As each model transformation represents a query
and modification of models, such models have to be machine readable and modifiable
for automating such activities. Only formal aspects of a model fulfill this requirement
and are thus available for a manipulation through software tools (cf. [327]). Conse-
quently, if the source and target models’ syntaxes are fully formalized, a fully auto-
matic transformation is conceivable. Otherwise, manual steps are required allowing
for partially automated or manual transformations only.

If a model transformation is exercised by a software tool, this transformation
will always be performed in a repeatable and deterministic way. Also, if the trans-
formation specification has been systematically tested (see p. 219 of this book) or
formally verified (cf. [439]), the chance for introducing errors into the target model
is considerably reduced compared to the manual execution of such an activity.



22 Andreas Metzger

Finally, model transformations can be classified by the technique that is used for
describing (resp. executing) the transformations. Two basic approaches for such a
description exist: an operational and a declarative approach.

In a declarative approach, transformations are described through rules, which
are specified by pre- and post-conditions. The pre-condition describes the state of
the model before the transformation is executed. The post-condition specifies the
state after a successful transformation. As most of the models or specifications can
be expressed as graphs, many of the declarative approaches that are used today are
graph transformations (e.g., see p. 91 of this book).

With declarative approaches, a specification of the transformation can be achie-
ved, which is often called a mapping (see [256]). Nevertheless, we will not distin-
guish between “transformation” and “mapping” in the remainder of this chapter but
will use the terms interchangeably for readability reasons.

In contrast to declarative approaches, in operational (or imperative) approaches,
the activities which must be performed to transform the source to the target model
are described explicitly by a sequence of actions (see p. 480 in [458]).

Czarnecki and Helsen present further approaches for classifying transformations
[80]. Among other aspects, they discuss the notions of model-to-model and model-
to-code translations and examine the differences of transformation approaches based
on the representation (syntax) of the transformation rules or the form of typing that
the “rule language” offers. Favre [120] distinguishes between transformation func-
tions (i.e., transformation specifications) and transformation instances (i.e., the ap-
plication of a transformation specification to a specific source model).

Although all of the above types of transformations may provide a suitable clas-
sification when examining certain properties of model-driven software development
(MDSD), we see the need for yet another classification scheme that allows one to
reflect on some of the potential pitfalls of MDSD. This scheme is introduced in the
following section and is followed by examples for its application in Sect. 3.

2.1 Fine-Grained Classification Scheme

In this section, a fine-grained classification scheme is introduced that considers the
possible variations of the systems, the potential changes of models, and the varia-
tions in the respective formalisms. To begin with, Fig. 2 shows an overview of the
identified types of transformations.

As the reader can observe, we have chosen a very simple scheme for naming
the different types of transformations by following the graphical layout of the fig-
ure, which should be easy to remember. With this classification scheme, each kind
of transformation can be described by a type from the left-hand side of the figure
together with a type from the right-hand side of the figure.

Not all of the above transformations are “true” model transformations, as some of
them do not require any modification of models (M1 = M2). However, we will show
that such mappings exist in reality and that these can be helpful when evaluating
model transformations.



A Systematic Look at Model Transformations 23

M1 = M2

M1 ≠ M2

F1 ≠ F2

F1 = F2

F1 = F2

S1 ≠ S2

S1 = S2

S1 ≠ S2

S1 = S2

F1 ≠ F2

IdentityIdentity

Formalism change 

Change ofModel change

Different systems
are described by

implies a change

Superposition

M0

00

SMa

00

0F

0M

does not change 

Model contents are
changed

formalism implies

Superposition

 the same model

Model change
 leads to an

SMb

S0

MFa

MFb

Type Type

of S0 + 0M of M0 + 0F

the model

equivalent model

of the system a model change

Fig. 2. Classification of Model Transformations

2.2 System and Model Transformations

We start the detailed discussion of our classification scheme by presenting the types
of transformations that are introduced on the left-hand side of Fig. 2.

Type S0 Transformations

At the beginning of this chapter, the nature of a model (or a specification) as being
an abstraction of a set of systems has been introduced. It is this very nature of a
specification that allows several systems to be represented by the same model, thus
leading to a “transformation” that can be classified as S0. Whenever two systems
differ only in properties either that have been eliminated in the model or that are not
reflected in the abstract model elements, we can observe a “transformation” of type
S0 between these two systems.

An illustrative example for the abstraction of such a property is provided by
Petri nets. In general, a Petri net is a directed bipartite graph with two distinct types
of nodes: places and transitions. To describe the dynamics of a Petri net, tokens
that can reside within places are introduced. A transition is enabled if and only if
there is at least one token in each input place of the transition. When a transition is
enabled, it can fire, upon which a token is removed from each of the input places and
a token is generated in each of the output places (for a more detailed introduction



24 Andreas Metzger

see, e.g., [359]). As the enabling of a transition only specifies its potential for firing,
each system that demonstrates any of the possible firings of transitions is a correct
realization of such an abstract Petri net model.

Type 0M Transformations

There exist model modifications that result in an equivalent model with respect to
the modeled system (type 0M).

An obvious example is that renaming an attribute i to countingVariable
will result in the very same software system. In fact, there exist tools to obscure
variable names in programs to make it difficult to understand the code when it is
de-compiled. The user of the program will discover no difference whatsoever.

However, determining the identity of two systems is far from trivial. If, instead of
using the variable from above, we were to introduce accessor and mutator methods
(i.e., getCountingVariable() and setCountingVariable()), the sys-
tems might still be identical from a given point of view. Nevertheless, the detailed
run-time behavior would be different, caused by the timing penalty that is imposed
by the method calls. As Kleppe and Warmer observe, there does not seem to be a
solution to this problem (cf. [256], p. 19). Yet, for our considerations we believe it
is sufficient to look at this problem in a more idealistic way and assume that we can
identify equality (even if this was possible for theoretical considerations only).

Type SM Transformations

A transformation of type SM comes in two facets. On the one hand, there is the
obvious case that a model change implies the change of the specified system (type
SMa). For example, if a UML object model is extended by a new class, the thus
extended system will most certainly differ from the original system.

On the other hand, the observed changes of the model as well as the system might
be attributed to the superposition of two other types of transformations (type SMb).
This is possible if a model change does not imply a change of the system (type 0M),
yet the system possesses properties that are not described in the model (type S0).

2.3 Model and Formalism Transformations

Now that the different types of transformations considering the variations of model
and system have been discussed, the kinds of transformations that can be found on
the right-hand side of Fig. 2 are presented.

Type 0F Transformations

A transformation of type 0F can lead to a change of presentation of the model only,
i.e., the concrete syntax of formalism F1 will differ from that of formalism F2. A
change of the abstract syntax or even the semantics of the formalism would force a
more drastic change (see type MF below).



A Systematic Look at Model Transformations 25

As an example of such a transformation, we introduce the Specification and De-
sign Language SDL (see [330]). SDL models can be described in graphical form
(SDL-GR) as well as in a textual representation (SDL-PR). In Fig. 3 both forms are
presented. The model describes a state transition from Z1 to Z2 after the reception
of a signal (or message) S1.

Z1

S1

Z2

SDL-GR SDL-PR

state Z1;

input S1;

nextstate Z2;

endstate;

Fig. 3. Different representations of an identical model

Type M0 Transformations

Transformations of type M0 could be considered as “true” model transformations
because the model information is changed while preserving the model’s formalism.

The above example of adding a UML class to an object model falls into this cat-
egory as well as the change of an existing model element (e.g., renaming an attribute
of a UML class). Type M0 transformations are the typical horizontal transformations
that we have introduced in Sect. 2.

Type MF Transformations

This last type of transformation (type MF) exhibits two facets, as is the case for type
SM. First, a change of formalism can imply a change of the model (type MFa). This
situation always occurs when the abstract syntax or the semantics of the formalism
changes.

To illustrate, if one changes the formalism from UML object diagrams (where
objects have dependent control flows per default) to the modeling language SDL
(where objects are realized as independent processes), this must have wide-reaching
consequences for the model (and if more than one object is modeled, for the modeled
system as well).

Additionally, a superposition (type MFb) is possible, i.e. although a (syntactical)
change of the formalism has no consequences (type 0F), a “true” model transforma-
tion (type M0) is performed.

3 Using the Classification Scheme

After the different types of transformations have been introduced and have been il-
lustrated with simple examples, this section presents other more complex examples



26 Andreas Metzger

for the application of the classification scheme. These include the analysis of trans-
formation steps that are performed by a high-level language compiler as well as
the classification of activities that are performed within a transformational software
development process. Additionally, common transformations that can be found in
state-of-the-art MDSD approaches (like OMG’s Model-Driven Architecture [294])
are evaluated. An example is provided for applying the scheme when a horizontal
model transformation is performed.

3.1 High-level Language Compiler Transformations

A traditional field of “model” transformations can be found when considering the
concepts of high-level language compilers (like C++ or Java compilers, e.g., see
[10]).

Source “model” Ms for these compilers is the source code in a high-level pro-
gramming language that should be transformed into the target “model” Mt, i.e., the
machine or byte code of the target platform or virtual machine. As a first step, an
abstract syntax tree Ma

s is created by parsing the source code (concrete syntax). This
tree, which typically can be found as an internal data structure of the compiler, is
then transformed into an abstract syntax tree Ma

t that reflects the target model. From
this abstract syntax tree, the final “model” in the concrete syntax of the machine
or byte code is attained through an unparsing activity. To summarize, the following
transformations are performed:

Ms
0F
−→ Ma

s
M0
−→ Ma

t
0F
−→ Mt (2)

Transforming the source model to its abstract representation is a pure formalism
transformation that does not affect the actual model. The same holds for the unpars-
ing activity. Therefore, both are of type 0F. The transformation of the abstract syntax
tree, however, requires a model change because the concepts of the source and target
language might differ, e.g., there will be no such concept like a for-loop in the ma-
chine or assembler language. Therefore, this usually must be mapped to a conditional
branch construct (like bne or beq).

It should be noted that in many compiler implementations, the transformation is
abbreviated by directly transforming the source to the target model, i.e., by employ-
ing a transformation of type MFa.

3.2 Transformational Software Development

The essence of transformational software development is that “from a formal speci-
fication of a problem to be solved, programs correctly solving that problem are
constructed by stepwise application of formal, semantics-preserving transformation
rules” ([345], p. V). It is this very focus on semantics-preserving transformations that
allows one to guarantee the correctness of the program by construction.

Typical examples of the application of the transformational approach are the
derivation of operational specifications (or code) from a declarative model of the



A Systematic Look at Model Transformations 27

problem as depicted by Partsch in [345], p. 189. The transformation rules that are
presented by the author are special forms of inference rules, the systematic appli-
cation of which will lead to an operational specification. Because of the semantics-
preserving nature of the inference rules, all transformations within such a transfor-
mational software process can be classified as being of type M0.

To allow for the smooth transition from the formal specification to the actual pro-
gram, wide-spectrum languages are employed. These languages, in addition to speci-
fication constructs (i.e., more abstract concepts), contain concepts that are known
from programming languages (cf. [345], p. 51]. This means that a wide-spectrum
language is a formalism with a single and consistent set of conceptual elements ([32],
p. 15). Based on our classification scheme, this implies that transformations between
“models” that are expressed in such a language are of type 0M.

3.3 MDSD Transformations

As an important and current example the application of our classification scheme,
we discuss the typical kind of transformation that occurs within most of today’s
model-driven software development approaches, of which the OMG’s Model-Driven
Architecture MDA (cf. [294]) is the most prominent example. However, also gen-
erative approaches that use the Specification and Design Language SDL (see above)
are commonly found here.

In all these cases vertical transformations are applied to generate models in a
less abstract formalism (target model) from models that are described in a more ab-
stract formalism (source model). Less abstract here means that the target model is
closer to the run-time platform than the source model was. In the context of the
MDA these transformations occur between the Platform Independent Model (PIM)
and the Platform Specific Model (PSM) as well as between the PSM and the ac-
tual implementation code. Currently, many of the MDA tools skip the generation of
the intermediate PSM model altogether and directly generate implementation code.
Well-known examples of such tools are iLogix’s Rhapsody, gentleware’s Poseidon,
or ARTiSAN’s Real-Time Studio. For the modeling language SDL, implementation
code is typically also directly generated from models, e.g., when using Telelogic’s
Tau SDL Suite.

It is this very transformation of source models to implementation code that we
want to evaluate in more detail. However, the results could also apply to any vertical
transformation of more abstract source to less abstract target models (cf. [256]).

Understanding what occurs during code generation becomes important especially
when the running system is being tested. The assumption that the properties of the
source model and the properties of the implementation code are identical can lead
to the incorrect identification of errors in the source model, or, worse, can obscure
errors.

As both the source model and the implementation code are models (both more or
less abstract from concrete systems), the creation of the implementation code from
the source model (the PIM in the case of MDA) is a kind of model transformation.



28 Andreas Metzger

As the formalism of the more abstract model and the formalism of the implemen-
tation code usually differ in many aspects, such a transformation inevitably implies
a major change of the model. One example of a transformation from a PIM to im-
plementation code could be the generation of Java classes from UML classes. Using
our classification scheme, such a transformation of the source model to code can be
considered a transformation of type MFa, i.e., a “true” formalism and model change.

Ideally, the systems that are realized by the implementation code should be a sub-
set of the set of systems that is described by the specification (semantics-preserving
refinement, see Sect. 3.2). Only this relationship would allow for the verification of
the considered properties of the specification (the source model) by employing the
implementation code for testing. Within the MDA, a model transformation is even
defined to be “the process of converting one model to another model of the same
system” ([294], p. 2-7). We therefore would have to require a transformation of type
0M. As Kleppe and Warmer observe in [256], such a transformation is only realistic
in an ideal situation.

The reason is that in a practical context, the required transformation of 0M is
complicated by the transformation of type MFa which was identified above. This
implies, in many cases, that the transformation of type 0M cannot even be realized.
This can be attributed to the fact that the formalisms of source and target models not
only differ considering their syntax but almost always differ in their semantics, i.e.,
in the basic paradigm of the conceptual elements (cf. [210], pp. 7–8) . Preserving the
semantics of the models during an MFa-type transformation therefore almost always
will be impossible (cf. [256]).

This fact presents a notable difference to the types of transformations that have
been illustrated in the previous sub-sections. Traditional compilers work with input
“models” that are at a low enough level such that “purely local optimizations are
sufficient” ([27], p. 41). A similar observation holds for transformational program
development, when a wide-spectrum language, which presents a formalism with a
single and consistent set of conceptual elements ([32], p. 15), is used.

Looking at MFa transformations in more detail, three different kinds of mappings
of source model elements to counterparts in the target model can be identified:

(1) Non-ambiguous mapping: One or more model elements of the source model can
be mapped to one ore more elements in the target model without losing their
meaning (example: an attribute of a UML class can be mapped to a variable in
Java). If this mapping can be applied for all model elements, we would arrive at
the ideal case of having a transformation of type 0M.

(2) Selection: One or more elements of the source model can be mapped to ele-
ments of the target model only after additional decisions have been made. Con-
sequently, such a mapping is ambiguous, which implies that a selection among
several alternative mappings must be performed.

(3) Approximation: For one or more source model elements, there exist no (seman-
tically equivalent) counterparts in the formalism of the target model. Therefore,
the elements of the source model have to be approximated as best as possible by
using elements of the target model.



A Systematic Look at Model Transformations 29

The last two cases are obviously the ones that prohibit the desired transformation
of type 0M. If there is no direct or no non-ambiguous mapping from elements in the
source model to elements in the target model, the resulting systems can hardly be
identical.

To give the reader an in-depth understanding of the critical situations that can
occur when a selection or approximation has to be exercised, we will present two
examples in the SDL. This language is comparable in many ways to the current
version of the UML (i.e., UML 2.0). Therefore, similar observations would apply.

Selection

A situation that requires a selection of a mapping alternative occurs when the parallel
processes that are described in SDL have to be realized within a monolithic operating
system process, which is typically implemented in the programming language C (this
is Telelogic Tau’s approach). To perform such a realization, an execution order of the
processes has to be defined to be able to execute them sequentially.

This sequentialization, however, can obscure errors because critical situations, in
which the errors would be visible, will never occur. To illustrate such a situation, we
introduce a small SDL example (see Fig. 4), in which the model architecture as well
as the behavioral description of the individual processes is shown.

system ABCDemo 1(1)
SIGNAL sigA;
SIGNAL sigB;
SIGNAL go;

producerA consumer producerB
chA

sigAgo

chB

sigB go

process consumer 1(1)

idle receiving

go via all 
chA, chB

sigA sigB

idle receiving receiving

process producerA 1(1)

idle

idle go

sigA

idle

process producerB 1(1)

idle

idle go

sigB

idle

Fig. 4. SDL model of a producer/consumer pair

There are three communicating processes: producerA, producerB, and
consumer. Signals from producerB can only be received after producerA has
initially sent a signal sigA to the consumer process (the transition from idle to



30 Andreas Metzger

receiving is taken). To start communication, the consuming process sends a go
signal to both producing processes.

Depending on the order of execution (i.e., whether producerA or producerB
is activated first), the consumer process might be able to receive signal sigB or will
lose the signal. These two possible scenarios of execution are shown in Fig. 5 as a
Message Sequence Chart (MSC; cf. [330], pp. 356–359), which is similar to UML’s
sequence diagrams in the form in which it is used here.

If the processes were scheduled according to scenario b) only, the error in the
specification would be obscured, as the potential loss of signals could never be ob-
served. This implies that even if the tests had been passed for a very specific test
case, the test might have failed when a different code generator was used (although
there had been no change of the source model whatsoever).

To increase the confidence of such tests, the selection of the properties should
always be considered. One could, as an example, generate code alternatives that use
a different form of selection and additionally test these alternatives. However, one
should keep in mind that the number of possible combinations that must be evaluated
might soon reach a limit above which the effort for testing is no longer feasible.

Approximation

Signals that are exchanged between SDL processes are stored in signal queues (cf.
[109], pp. 62–63). As a model abstraction, these queues can hold an infinite number
of signals. Because of obvious memory constraints, such queues can only be imple-
mented as data structures with a finite (although dynamic) length, i.e., the infinite
queues are approximated by finite queues. Especially in reactive systems that are
executed on hardware platforms with only small data memories, memory overflows
can easily occur that cannot be attributed to an error in the specification.

The following example, which is a modified form of an SDL model that is pre-
sented in Queins’ Ph.D. thesis ([353], pp. 179–180), depicts this situation in more
detail (see Fig. 6).

Using the timer perT, the sensor process periodically measures a certain
physical value that is sent to the logger process. Initially this process is in the

a) b)

producerBconsumerproducerA

receiving

idle

sigB

sigA

go
go

producerA consumer producerB

receiving

idle

go
go

sigA

sigB 

/* lost */

Fig. 5. Different execution scenarios for SDL model of Fig. 4



A Systematic Look at Model Transformations 31

system IODemo 1(1)
SIGNAL readout;
SIGNAL stop;
SIGNAL val(Real);

sensor logger
chA

val

chIO

readout, stop val

process logger 1(2)

logging

val

readoutlogging

readout

process sensor 1(2)

idle

readout

stop

logging

readout

val(v)

readout

val(v)

TIMER perT;

via chIO

idle

idle

perT

v := 
/* measure */

val(v)set(now+dT,
perT)

set(now+dT,
perT)

Fig. 6. SDL model of a data logger

logging state and does not consume the val signals (the rhomboid symbol de-
notes that the signals are kept, i.e. “saved”, in the input queue). As soon as the
logger process receives the readout signal from the environment (i.e., when
the user wants to receive a readout of the logged sensor data), all val signals in the
input queue are consumed and a respective signal is sent to the environment until the
stop signal is received.

Assuming that the period dT of the sensor process is ∆t and the maximal
queue size of our implementation is s (this upper limit can be imposed by either a
static data structure or the actual memory available to the running system), a memory
overflow will occur if the readout signal is not received within s∆t after system
start.

If the arrival of the readout signal can be guaranteed, the observed fault will
not be critical. However, in a reactive system the arrival of external signals can typ-
ically not be guaranteed (the user cannot be forced to read out the data before the
memory overflow occurs). As a consequence, the source model would have to be
changed, although the specification was correct. Unfortunately, this implies that the
chosen abstraction might not have been suitable or that the ideal of MDSD might not
be accomplished as easily as thought.

Additional Properties

In addition to the properties that differ between the systems that are described by the
source and the target model, the target system (in our case the running application)
can exhibit additional properties that have not been described in any of the models.



32 Andreas Metzger

This is a natural consequence of the abstraction that has been employed to achieve
the models.

To illustrate, the concrete execution time of an application is a property that is
typically not described by standard UML or SDL models. However, the running
system will exhibit a very specific run-time behavior and concrete execution times
can be measured. Consequently, we can observe a transformation of type S0.

This implies that even if the ideal transformation of type 0M could be achieved
by non-ambiguous mappings, the above fact will render this impossible on a more
detailed look. In the field of software prototyping this observation has lead to the
suggestion that a prototype that has been validated and accepted by the users should
always be kept as part of the overall requirements specification (cf. [54], p. 40). How-
ever, the reasons for that have not been discussed in detail.

3.4 Horizontal Transformations

The realization of the vertical transformations in the context of MDSD approaches
has been the logical next step in the abstraction and automation process that has been
started with high-level language compilers (or even assemblers).

Interestingly, examples of the automation of horizontal (i.e., evolutionary) trans-
formations can rarely be found. This might be attributed to the fact that source code –
even the one of a high-level programming language – is not semantically rich enough
to allow for such an automated evolution. Only with the introduction of modeling
languages and domain specific modeling (e.g., through meta-models) does this seem
to become possible. Czarnecki and Eisenecker even postulate that the more abstract
development information a source model contains, the more automated the support
for model evolution can become ([79], p. 338).

One such transformation is the automatic instrumentation of a model for debug-
ging or testing purposes. In the SDL example, a special output statement could be
added to each transition to monitor the execution of the system. This extension of the
model consequently is a transformation of type M0 (the source and the target models
are SDL models).

Because the instrumentation will produce additional output, the systems that are
finally derived from such an instrumented model will be different from the systems
that are derived from the initial source model. This means that this instrumentation
activity has to be classified as being of type SMa. This poses the problem that the
system that is being tested (the one with the instrumentation) differs from the system
that finally will be deployed, and thus the results of the tests might become question-
able.

Another example of such a vertical transformation is “model refactoring”, which
is introduced in detail by Gray et al. on p. 199 of this book.

4 Conclusion

In this chapter, we have shed light on the essential activity that is performed in
any model-driven software development: model transformation. After the most ba-



A Systematic Look at Model Transformations 33

sic terms and current classification schemes were introduced, a more fine-grained
scheme has been presented that considers the differences between the modeled sys-
tem, the model itself, and its formalism.

With this classification scheme, different examples of transformations have been
evaluated. These were transformations performed by high-level language compilers
as well as transformations within a transformational software development process.
Further, important forms of transformations have been discussed for state-of-the-
art MDSD approaches (like MDA), which included vertical transformations (code
generation) and horizontal transformations (where the instrumentation of a model
has been chosen as an example).

With this classification, problems that are eminent in all model-driven software
development approaches have been uncovered and the reasons for their existence
have been explained. In detail, we have illustrated why test results that have been
attained by testing systems that have been automatically derived from specifications
have to be evaluated critically. We believe that understanding what happens during
each type of model transformation is an important prerequisite for properly applying
MDSD approaches and for correctly using the associated tools. Therefore, we hope
that the concepts and views that have been depicted in this chapter will help “model-
driven software developers” in solving their challenging yet enthralling tasks.

5 Acknowledgments

I want to thank the anonymous referees for their critical and productive comments
that have led to the improvement of this contribution. I further would like to thank
Stefan Queins, who first brought the difference between a prototype (the target sys-
tem) and the specification (the source model) to my attention. I also have to acknowl-
edge Christian Floyd’s 1984 paper “A Systematic Look at Prototyping”, which in-
spired the title to this chapter. Finally, I am grateful to my aunt Anna-Lee Adams for
fine-tuning the English.


