
Preface and Overview of Papers

This volume contains a selection of papers presented at the 1999 International
Workshop on the Implementation of Functional Languages (IFL ’99), held at
Lochem in The Netherlands, September 7–10, 1999. This is the 11th in a series of
workshops that has lasted for over a decade, having previously been held in The
Netherlands, Germany, Sweden, and the UK. It is also the fourth IFL workshop
to be published in the Springer-Verlag series of Lecture Notes in Computer
Science (selected papers from IFL ’98 are published in LNCS 1595).

The workshop has been growing over the years, and the 1999 workshop
demonstrated the increasing relevance and applicability of functional program-
ming by attracting delegates from three different industries as well as from the
international functional language research community, the majority of whom
presented papers at the workshop. We are pleased to be able to present the high
quality selection of refereed and revised papers that appear herein.

While the original focus of the workshop was on parallel implementation, it
has broadened over time and currently covers a wide spectrum of topics related
to the implementation of functional languages, from theory and language design
to applications. The workshop therefore represents a cross-section of the active
research community. The papers presented in this volume have been grouped
under four topic headings as follows:

Applications. Wiering et al. have developed a game library in Clean designed
for the creation of parallax scrolling platform games; their results show that a
functional-programming approach to game creation is more productive than
the use of other low-level libraries (due to greater abstraction) and more
flexible than the use of game-creation programs (due to greater programming
power).

Compilation Techniques. In keeping with the key theme of the workshop, five
selected papers deal with abstract machines and compilation techniques.
Chitil presents a new deforestation method (to elide the construction and
deconstruction of intermediate data structures) that is targetted at appli-
cations of the foldr function; his method works across module boundaries
and is even able to deforest definitions of functions that consume their own
result.
Peyton Jones et al. discuss the issues raised by the implementation of memo
functions and present a collection of mechanisms that together support user-
programmable memo functions. These mechanisms include the novel concept
of “stable” names (references that are unaffected by garbage collection) and
a new form of weak pointers (which help the programmer to avoid space
leaks).
Van Groningen describes a new optimisation technique that improves the
execution time of lazy recursive functions that yield multiple results in a



VI Preface and Overview of Papers

tuple (thereby often creating unnecessary thunks); in some cases, execution
time is improved by a factor of two and allocation costs by a factor of four.
Grelck et al. describe a code-generation optimisation for WITH-loops in the
high-performance language SAC. This optimisation exploits the partial-order
evaluation semantics of SAC loops to perform extensive code re-ordering and
achieves speedups of up to a factor of 16.
Finally, Kluge presents a “reversible” abstract machine; that is, an abstract
machine that can both reduce a program to its weak head normal form and
then do inverse reductions which reconstruct the initial program term. This
facilitates both operational verification of the abstract machine and program
debugging.

Language Concepts. The programme committee have selected four papers
that address language-level issues such as GUI-building, foreign-language
interfacing, reflection, and concurrency-modelling.
Achten and Plasmeijer explain how interactive objects with local state are
implemented in the Clean object I/O library, using an elegant meta-circular
programming technique that relies on lazy evaluation.
Chakravarty introduces a new method by which Haskell programs can access
library routines written in C. This new asymmetric method re-uses existing
C interface specifications and uses plain Haskell for the marshalling code,
thereby providing a much simpler route for Haskell programmers to call C
library routines.
Didrich et al. report on an extension of the Opal language that allows the
programmer to access “reflective” run-time properties of the program (such
as run-time type information). The design and implementation of a reflective
system poses significant design and engineering problems (for example, how
to support full reflection for polymorphic functions, and how to minimise
the related system overheads); these problems and the adopted solutions
are discussed in depth. In particular, overheads are only incurred where
reflections are actually used.
Finally, Reinke introduces a new approach to the modelling of distributed
systems with concurrent activities and internal communication. He uses
Haskell as the inscription language to describe data objects and their manip-
ulations in the distributed system, and shows how start-up costs for the use
of such “Haskell Coloured Petri Nets” (HPCN) can be dramatically reduced
by defining a direct translation from HCPN to Haskell.

Parallelism. The exploitation of parallelism has always been a strong theme of
the IFL workshops and the programme committee have chosen the following
paper to conclude this volume of selected works:
Hammond and Rebón Portillo describe an implementation of “algorithmic
skeletons” that define common parallel forms for programs written in Glas-
gow Parallel Haskell. These skeletons are provided with cost models to guide
efficient implementation; the cost models are entirely decoupled from the
compiler to aid portability and user control. Both simulated and real results
are presented.



Preface and Overview of Papers VII

The papers published in this volume were selected using a rigorous
a-posteriori refereeing process from the 26 papers that were presented at the
workshop. The reviewing was shared among the programme committee, which
comprised:

Thomas Arts Ericsson Sweden
Chris Clack University College London UK
Martin Erwig Fern Universität Hagen Germany
Ian Holyer University of Bristol UK
Pieter Koopman University of Nijmegen The Netherlands
Herbert Kuchen Westfälische

Wilhelms-Universität Münster Germany
Rita Loogen University of Marlburg Germany
Greg Michaelson University of Edinburgh UK
Marcus Mohnen University of Aachen Germany
John Peterson Yale University USA
Sven-Bodo Scholz University of Kiel Germany
Colin Runciman University of York UK

To ensure a rigorous and objective refereeing process, the programme com-
mittee membership was drawn from five representative countries and comprised
researchers who were unable to attend the workshop in addition to those who
were able to participate. In addition to the members named above, the pro-
gramme committee also benefitted from the assistance of Peter Achten, Kevin
Hammond, John van Groningen, Rinus Plasmeijer, and Malcolm Wallace. The
editors were supported by Diederik van Arkel as LATEXguru.

The overall balance of the papers is representative, both in scope and tech-
nical substance, of the contributions made to the Lochem workshop as well as
to those that preceded it. Publication in the LNCS series is not only intended
to make these contributions more widely known in the computer science com-
munity but also to encourage researchers in the field to participate in future
workshops, of which the next one will be held in Aachen, Germany, September,
4th–7th, 2000 (for more information see:
http://www-i2.informatik.rwth-aachen.de/ifl2000).

April 2000 Pieter Koopman and Chris Clack

http://www-i2.informatik.rwth-aachen.de/ifl2000

